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The 2004 sequence of triggered earthquakes off the Kii peninsula, Japan
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We examine the spatial and temporal relationships of the sequence of strong earthquakes that occurred off the
Kii Peninsula, Japan, on 5 September 2004. The first event (Mj 7.1) occurred at 10:07:08 (UTC) on a northward
dipping plane within the subducting Philippine Sea plate. From 10:16 to 14:47 the seismicity shows a group of
earthquakes (Mj 3.2 to 4.8) 35 km to the east which are regarded as foreshocks to the second large earthquake.
At 14:57:17, a Mw 6.1 strike-slip event occurred on a northwest trending plane. Some 14 seconds later, a
large (Mj 7.4) thrust earthquake started 4.2 km southeast of the initial epicenter of the second earthquake. This
largest earthquake is thought to have occurred on a southward dipping plane with the strike in an east-southeastly
direction. Using the geometry of faults determined in this study, calculations of the Coulomb failure function
show that simple static stress changes do not provide a good explanation for the triggering of the subsequent

earthquakes.
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1. Introduction

A strong series of events, including two large earthquakes
with magnitudes greater than 7, occurred on 5 September
2004 close to the Nankai Trough in southwest Japan. A Mj
7.1 earthquake (called the foreshock in this issue) started
the sequence at 10:07:08 (UTC) and a Mj 7.4 earthquake
(called the mainshock) occurred about 35 km to the east of
the first earthquake about 5 hr later. From the depths and
locations, these two large thrust earthquakes are inferred to
be intraplate events within the subducting Philippine Sea
plate. The main purpose of this paper is to clarify the spatial
and temporal characteristics of the two large earthquakes
and the intervening seismicity.

The close spatial and temporal relationship between these
earthquakes suggests that they did not occur by random
chance, and that there was some triggering mechanism that
connected the occurrence of these events. For a num-
ber of past earthquakes, static and dynamic stress changes
have been proposed for triggering mechanisms of after-
shocks and multiple events (e.g. Stein, 1999; Gomberg et
al., 2003). Using the geometry determined for this sequence
of earthquakes, we investigate the effect of Coulomb static
stress changes (King et al., 1994) as a triggering mecha-
nism.

Globally large thurst earthquakes at this location within
a subduction zone are rather scarce (Christensen and Ruff,
1988). The locations and orientations of the fault planes de-
termined in this study are probably one of the best recorded
examples for these types of earthquakes and provide infor-
mation about the regional stress field within the subducting
Philippine Sea plate.
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2. Sequence of Events

We divide the sequence into four parts, as shown in
Fig. 1. First is the Mj 7.1 earthquake (Event 1) that started
the sequence at 10:07:08, second are the ‘foreshocks’ that
occurred between 10:16 and 14:47 leading up to the second
large earthquake (Event 2), third is the Mw 6.1 earthquake
at 14:57:17 (Event 2A), and fourth is the Mj 7.4 earthquake
at 14:57:31 (Event 2B). We use regional and teleseismic
waveform data to infer the geometry and size of the various
earthquakes in this sequence. We will use the terms Events
1,2, 2A, and 2B to separate clearly the sequence of earth-
quakes.

2.1 Eventl

The Mj 7.1 earthquake at 10:07:08 (called the foreshock)
occurred nearly under the Nankai Trough and determina-
tion of the moment tensor by the U. S. Geological Survey
(USGS), Harvard University, National Research Institute
for Earth Science and Disaster Prevention (NIED) agree
that it was primarily a thrust earthquake, although the di-
rections of strike and rake vary slightly between the solu-
tions. To determine the orientation of the fault plane and the
distribution of slip, we carried out a multiple-time window,
finite-fault inversion (Hartzell and Heaton, 1983). Synthetic
Green’s functions for the inversion were calculated using a
program of Langston and Helmberger (1975) with a one-
dimensional velocity structure modified from Nakanishi e?
al. (2002). The inversion procedure was carried out using a
least-squares algorithm with a positivity constraint (Lawson
and Hanson, 1974).

The data we used were teleseismic P waves from 20 sta-
tions that represent a good azimuthal distribution around the
earthquake. Recorded data were converted to displacement
waveforms and high-pass filtered at 100 sec. The align-
ment of the data and model synthetics was done by visual
inspection. The P wave data for all the stations were quite
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Event 1: M7.1 Sep. 5 10:07:08
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Fig. 1.

Time sequence of earthquakes for the activity off the Kii Peninsula on 5 September 2004. Stars show epicenters of the larger earthquakes.

Boxes show the approximate rupture areas of the two main events. Thicker lines of the boxes indicate the updip side for the dipping fault planes. The

minimum magnitude of located earthquakes is about Mj 2.5.
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Fig. 2. Example of the variance as a function of dip for north and south
dipping fault planes. The strike is fixed at 270°.

impulsive, so there was almost no ambiguity in picking the
initial arrival. Data for the inversion and Green functions
were sampled at 0.05 sec.

We divided the fault region into subfaults, 10 (along
strike) by 5 (along dip), covering an area of 50 x 47 km?.
Preliminary runs of the inversion were carried to test the
size of the fault area to find a reasonable size that contained
the rupture area. Five time windows spaced at 2.5 sec were
used. The rupture process was parameterized by triangular
source-time functions of 3 sec duration. For the inversion
runs we tested the north and south dipping fault planes for
various orientations of the fault strike, dip angle, starting
depth, and rupture velocity. As an example, Fig. 2 shows
the model fits for various dips using a strike of 270° and
rupture velocity of 2.0 km/sec. For almost all of the cases
that we tested, the north-dipping plane resulted in a better

fit to the data. Our best-fitting final solution is for a strike
of 270°, dip of 40°, starting depth of 20 km (Table 1), and
rupture velocity of 2.0 km/sec. There was not a very strong
constraint on the rupture velocity.

The final slip distribution in Fig. 3(a) shows a relatively
simple pattern that has dimensions of about 40 x 30 km?
with most of the slip in the region of the hypocenter. The es-
timated moment was 1.0 x 10?7 dyne - cm, which is equiv-
alent to Mw 7.3. Similar to our results, Yagi et al. (2004)
also reported a north-dipping fault. However, Yamanaka
(2004) reported a south-dipping fault for this event. The
depth and location of the earthquake show that it was an
intraplate event within the subducting Philippine Sea plate.
2.2 Foreshocks of Event 2

Figure 1 shows the seismicity during the 4.5 hr period
from 10:16 to 14:47, following Event 1, using the reloca-
tions by Enescu et al. (2005) of the Japan Meteorological
Agency (JMA) data. Aftershocks of Event 1 can be seen
in the region of the fault plane. Also there is a group of
earthquakes (12 events with magnitudes of Mj 3.2 to Mj
4.8) which occurred about 35 km to the east of the Event 1
epicenter, in the area where Event 2 subsequently occurred.
The earthquakes are outside the rupture area of Event 1 (Fig.
1) and appear to form a northwest-southeast trend which is
similar to a feature seen in the aftershocks following Event
2. These events may be regarded as foreshocks to Event 2.
Here we use the term ‘foreshock’, as in Jones (1984) where
foreshocks are small events that are located close (within a
few kilometers) to the mainshock, with the inference that
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Table 1. Source parameters determined for the earthquakes in this study.

Origin time (UTC) Latitude Longitude Depth Strike Dip Rake Seismic moment Mw
Event 1 2004/09/05 10:07:08 33.0297° 136.8005° 20km 270° 40° 123° 1.0 x 10 dyne-cm 7.3
Event 2A 2004/09/05 14:57:17 ~ 33.1597°  137.1250° - 310°  90° 180° 2.0 x 10 dyne -cm 6.1
Event 2B 2004/09/05 14:57:31  33.1403° 137.1637° 18km 105° 40° 94° 2.1 x 10’ dyne-cm 7.5
strike
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Fig. 3. Results of the teleseismic inversion of Event 1. (a) Slip distribu-
tion determined from the inversion. (b) Fit of model (dotted lines) to
data (solid lines). Vertical scale bars indicate 0.01 cm. Amplitudes of
stations without a scale bar are on the same scale as AAK. (c) Aver-
age focal mechanism determined from the inversion. (d) Source time
function.
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they are occurring on the same fault as the mainshock. In
this terminology, Event 1 is not considered to be a foreshock
of Event 2.

We regard these earthquakes as foreshocks. However,
they might be thought of as off-fault aftershocks of Event
1. They are intriguing because they seem to be a precursory
activity to the larger earthquakes that subsequently occurred
several hours later in the same location.

2.3 Event2A

Event 2 (called the mainshock) initiated at 14:57:17
about 35 km northeast of the epicenter of Event 1. The loca-
tion is taken from Enescu et al. (2005). Using the P-wave
first motions at 21 regional Hi-Net and F-Net stations (op-
erated by NIED), we determined a strike-slip mechanism
(strike 310°, dip 90°, rake 180°) on a vertical fault plane,
as shown in Fig. 4. From the northwest trend of the fore-
shocks and aftershocks, the northwest striking nodal plane
is inferred to be the fault plane. We label this initial earth-
quake Event 2A. From the following aftershock locations
that form the northwest trending feature, the depth of fault-
ing for this earthquake is inferred to be about 5 to 15 km,
which indicates that it probably occurred within the sub-
ducting Philippine Sea plate. We used regional P waves
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Fig. 4. (a) Focal mechanism determined from P first motions (b) Stations
used for focal mechanism determination.
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Fig. 5. (a) Examples of regional waveforms showing the large arrival of
Event 2B about 14 sec after Event 2A. (b) P arrival times of Event
2B relative to Event 2A. The line is a least-squares fit for a location of
Event 2B, 4.2 km at an azimuth of 121° from Event 2A.

on F-Net stations and estimated the seismic moment to be
2.0 x 10% dyne - cm by comparing the recorded data to
synthetic P waveforms calculated for the strike-slip mech-
anism and a one-dimensional velocity structure. This mo-
ment is equivalent to Mw 6.1.



318

Event 2B
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Fig. 6. Example of the variance as a function of dip for north and south
dipping fault planes. The strike is fixed at 105°.
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Fig. 7. Results of the teleseismic inversion of Event 2B (a) Slip distri-
bution determined from the inversion (b) Fit of model (dotted lines) to
data (solid lines) (see Fig. 3(b) for vertical scale). (c) Average focal
mechanism determined from the inversion (d) Source time function.
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Fig. 8. Schematic diagram of the faulting geometry for the earthquakes of
the 2004 sequence off the Kii peninsula.

24 Event2B

About 14 sec following the initiation of Event 2, large
amplitude P arrivals can be seen on both regional and tele-
seismic seismograms. Examples of some of the regional
waveforms are shown in Fig. 5(a). Using the timing of these
arrivals relative to the initial P waves at 15 regional stations,
we estimated that the initial source of the large amplitude
waves was located 4.2 km to the southeast (azimuth 121°) of
the initiation (Fig. 5(b)). This direction is very close to the
strike of the inferred fault plane of Event 2A, and suggests
that Event 2B initiated near the southeast edge of Event 2A.
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Table 2. Results of ACFF calculations for various source and receiver

faults. ‘+’ indicates a ACFF value consistent with faulting. ‘-’
indicates a AC F F value inconsistent with faulting. Mechanism (strike,
dip, rake) : South-dipping Event 1 (90, 40, 77), North-dipping Event 1
(270, 40, 123), Event 2A (310, 90, 180), South-dipping Event 2B (1)
(105, 40, 63), South-dipping Event 2B (2) (90, 40, 90), North-dipping
Event 2B (1) (279, 50, 86), North-dipping Event 2B (2) (270, 40, 90).
Horizontal row - Source fault, vertical row - receiver fault.

South-dipping North-dipping Event 2A

Event 1 Event 1
Event 2A - -
South-dipping Event 2B (1) - + +
South-dipping Event 2B (2) + + -
North-dipping Event 2B (1) - - +
North-dipping Event 2B (2) + + -

Teleseismic (USGS and Harvard moment tensors) and re-
gional (NIED moment tensor) waveform analyses indicate
that Event 2 was primarily a thrust event, so we infer that
the thrust faulting initiated at this time, 14 sec following the
initial strike-slip event. This earthquake is labeled Event
2B.

Using the same methods described for Event 1, we car-
ried out a teleseismic waveform inversion to determine the
fault orientation and slip distribution for Event 2B. Data
were teleseismic P waves from 23 stations. The fault grid
for the inversion was 10 (along strike) by 5 (along dip) cov-
ering an area of 100 x 39 km?. Five time windows spaced
at 2.5 sec were used. The alignment of the data was again
done by visual inspection and, compared to Event 1, there
was more ambiguity, since we chose the start of the large
arrivals about 14 sec following Event 2A for the data used
in the inversion. The estimated uncertainty in the arrival
was about 1.0 sec, which probably does not make a large
difference to the results. The time for the rupture to travel
between adjacent subfaults in the model is about 4 sec.

Similar to Event 1, we searched for the best-fitting fault
geometry. There was a significant improvement of the
fits for stations located toward the south using a fault that
dipped toward the south, as compared to a fault that dipped
toward the north. The fit of the waveforms also consistently
showed a better fit for a range of strike directions (Fig. 6),
which shows the fit for various dip angles using a strike of
105°. Our best fitting model is for a strike 105°, dip 40°,
and rupture velocity of 2.0 km/sec (Table 1). In general,
the determination of the fault plane for Event 2B was more
robust than for Event 1.

The slip distribution in Fig. 7(a) shows that faulting oc-
curred over a length of about 80 km with a moment of 2.1 x
10?7 dyne - cm, which is equivalent to Mw 7.5. The area of
largest slip was in the shallow region updip of the hypocen-
ter. Yagi et al. (2004) also determined that the southward
dipping plane was likely the fault plane. However, results
of other waveform modeling studies give different geome-
tries for the fault plane of this earthquake (e.g. Wu et al.,
2004; Yamanaka, 2004).

It is difficult to distinguish if there is a continuous rupture
between Events 2A and 2B, or if they should be regarded
as distinct earthquakes separated in space and time. The
spatial and temporal separations are not typical of normal



S.-C. PARK AND J. MORI: TRIGGERING SEQUENCE OF THE 2004 OFF KII PENINSULA EARTHQUAKES

139"

é% :

137 138

as'
M m 5.000

E H 0.100
H- 0.050
H- 0.030
H- o010
H- 0.005
H- 0.000
H--0.005
H-0.010
--0.030
--0.050
--0.100

--5.000
MPa

Event 2A

(a)

319

aq I 5.000

I 0.100
I 0.050
H 0.030
( 0.010
[ 0.005
H 0.000
[ -0.005
-0.010
-0.030
-0.050
-0.100

-5.000
MPa

Event 2B

w

Event 2A

(b)

Fig. 9. (a) ACFF distribution from the slip distribution of Event 1 (fault area indicated by a rectangle) calculated for the strike-slip mechanism (strike
310°, dip 90°, rake 180°) of Event 2A. Calculation is for a depth of 10 km. Black dots indicate the epicenters of the foreshocks of Event 2A. (b)
ACFF distribution from Event 2A (fault indicated by white solid line) calculated for the thrust mechanism (strike 105°, dip 40°, rake 63°) of Event
2B. Calculation is for a depth of 18 km. The calculations were done using an apparent coefficient of friction of 0.4.

rupture velocities (4 km over 14 sec), and the significantly
different focal mechanisms suggest that they are separate
earthquakes, so we interpret our results as indicating that
they are separate events.
2.5 Sequence summary

The results of the data analyses described above can be
summarized by the following description of the sequence
of earthquakes. The activity started with a Mj 7.1 earth-
quake (Event 1) within the subducting Philippine Sea plate
under the Nankai Trough. The earthquake occurred on a
north-dipping fault plane trending nearly east-west, with di-
mensions of about 40 x 30 km?. Following Event 1, reg-
ular aftershocks were seen in the rupture area, plus a small
group of earthquakes (Mj 3.2 to Mj 4.8) occurred 35 km to
the east, close to the location of the subsequently occurring
Event 2A. These earthquakes are considered to be fore-
shocks to Event 2A. About 5 hr after Event 1, a Mw 6.1
strike-slip earthquake (Event 2A) occurred on a steeply-
dipping, northwest trending fault in the area of the fore-
shocks. Some 14 seconds after Event 2A, Event 2B, the
largest earthquake of the sequence (Mj 7.4), occurred close
to Event 2A. Event 2B was a thrust event that ruptured a
south-dipping, east-southeast trending fault plane, with di-
mensions of about 80 x 30 km?. All of these earthquakes
are thought to have occurred within the subducting Philip-
pine Sea plate. The combined geometry of all of the earth-
quakes is shown in Fig. 8. Other studies (e.g. Baba et al.,
2005; Satake et al., 2005) suggest that the Mj 7.4 earth-
quake resulted from multiple faulting. This is consistent
with our interpretations of Events 2A and 2B, even though
there is still some discrepancy in the suggested fault geome-
tries.

3. Static Stress Triggering

The close spatial occurrence of Event 2A, along with its
preceding foreshocks following Event 1, are suggestive of
static stress triggering. Using the fault geometry determined
in the previous section, we calculated the Coulomb failure
function (e.g. King et al., 1994) to evaluate the effect of
simple static stress triggering. We used the slip distribution
of Event 1 on a northward dipping plane and calculated the
static stress change (AC F F) for the strike-slip mechanism
obtained for Event 2A at a depth of 10 km, using the fol-

lowing expression.

ACFF = At + i - Ao,. (1)

The changes in shear stress, At, and normal stress, Ao,
were calculated using the program of Okada (1992) and the
value of the apparent coefficient of friction, u, was set to
0.4. The AC F F contribution from the slip of each subfault
was summed on a grid with spacing of 0.02° to produce the
distributions shown in Fig. 9.

We found that for the strike-slip mechanism of Event 2A,
the region of the foreshocks and the initiation of Event 2A
is a strongly negative region (Fig. 9(a)). This indicates that
the slip from Event 1 does not cause static stress changes
conducive to the triggering of Event 2A nor its foreshocks.

For the large thrust earthquake, Event 2B, the largest
static stress changes was probably due to the closely located
strike-slip Event 2A. At such close proximity, one needs a
detailed slip distribution for Event 2A to accurately evalu-
ate the static stress changes in the region of the initiation
of Event 2B, which is not available. However, if one as-
sumes that Event 2B initiated near the southeastern end of
the fault (as indicated by the relative location), for simple
slip distributions on the strike-slip fault, the initiation of a
southward dipping thrust event is in a highly negative region
(Fig. 9(b)). Static stress changes from a simple strike-slip
fault are not conducive to the triggering of the reverse fault
mechanism of Event 2B.

Using our preferred model, we showd that simple static
triggering is not consistent with the occurrence of Events
2A and 2B. However, we acknowledge that there are many
variables and conditions that were assumed in the calcula-
tion. It is difficult to evaluate the whole range of variabil-
ity for all of these parameters. However, we carried out
some calculations for representative cases to check the re-
sults. First we repeated the calculations for a range of u'
from 0.1 to 0.7. Since Event 2A is in a strongly negative
part of the static stress distribution, the different values of
' did not significantly change the results, and Event 2A is
consistently in a negative region. The depth of Event 2A is
not well determined, so we also tested various depths from
5to 15 km. Since Event 2A is a vertical strike-slip fault, the
depth dependence is not strong and again Event 2A consis-
tently falls in a negative region.
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The largest differences in the effects of static trigger-
ing for this sequence probably arise from the differences
in geometry of the source fault and triggered earthquake.
For example, we determined a northward dip for Event 1,
while other studies (e.g. Yamanaka, 2004) reported a south-
ward dip. We calculated the ACF F for several different
geometries of the source and receiver faults, with the re-
sults summarized in Table 2. A ‘+’ in Table 2 indicates
that the AC FF was conducive to faulting, and a ‘-’ indi-
cates AC F F inconsistent with the faulting. For the various
source fault geometries, we used the best-fitting slip distri-
butions from our teleseismic inversions. In Table 2 there
are a variety of positive and negative triggering conditions.
However, one significant result is that both a north and south
dipping fault for Event 1 produce negative AC F F effects
for the strike-slip mechanism of both Event 2A and its fore-
shocks. The effect of Event 2A on Event 2B is difficult
to judge because of the close proximity of the two events,
where small changes in fault geometry and the unknown
slip distribution have great effect on the ACFF.

In all of these calculations, we assume that the static
stress level at the hypocenter of the triggered event is the
important value, instead of looking at the stress change over
the whole fault plane. This is probably reasonable because,
at these distances to a triggered fault, once a rupture begins,
the dynamic stress changes associated with the rupture front
are much larger than the static stress changes (e.g. Aber-
crombie and Rice, 2005).

Since the simple Coulomb failure function does not seem
to provide a good explanation for the triggering of Events
2A and 2B, further investigation of static and dynamic trig-
gering mechanisms is needed to explain this sequence.

4. Outer-Rise Earthquakes

Large thrust earthquakes in the vicinity of the trench
and outer-rise of subduction zones are not common events
worldwide. Christensen and Ruff (1988) identified some
regions that have outer-rise compression earthquakes, with
subduction zones that are strongly coupled. The idea is that
the compressive stress from the oceanward side accumu-
lates if the slip is locked on the subduction interface. For
more weakly coupled subduction zones, where slip is occur-
ring on the subduction interface, the amount of accumulated
compressive stress is less, and the bending stresses near
the outer rise dominate, producing mainly normal faulting
earthquakes. The recent thrust earthquakes in 2004 seem to
be consistent with the idea of a strongly coupled subduc-
tion zone that produces compression earthquakes near the
outer-rise.

S. Conclusions

We used teleseismic and regional data to determine the
faulting geometries of the earthquakes of the sequence that
occurred off the Kii Peninsula near the Nankai Trough on 5
September 2004. Our results show that the activity began
with a Mw 7.3 thrust earthquake (Event 1) on a north-
dipping fault. Following this event, there was foreshock
activity of M3-M4 earthquakes prior to a Mw 6.1 strike-
slip earthquake (Event 2A) that occurred about 35 km to the
east. Some 14 sec after the initition of Event 2A, the largest

S.-C. PARK AND J. MORI: TRIGGERING SEQUENCE OF THE 2004 OFF KII PENINSULA EARTHQUAKES

earthquake (Event 2B) of the sequence occurred. This was
a Mw 7.5 thrust event on a south-dipping fault plane that
had a rupture length of about 80 km.

Calculations of the Coulomb failure function for the fault
geometries determined in this study, indicates that the trig-
gering of Events 2A and 2B is not well explained by simple
static stress changes.
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