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A previous work introduced a new method for seismic hazard evaluation in a system (a geographic area with
distinct, but related seismogenic regions) based on modeling the transition probabilities of states (patterns of
presence or absence of seismicity, with magnitude greater or equal to a threshold magnitude Mr , in the regions
of the system, during a time interval �t) as a Markov chain. Application of this direct method to the Japan area
gave very good results. Given that the most important limitation of the direct method is the relative scarcity of
large magnitude events, we decided to explore the possibility that seismicity with magnitude M ≥ Mm

r contains
information about the future occurrence of earthquakes with M ≥ Mm

r > Mm
r . This mixed Markov chain method

estimates the probabilities of occurrence of a system state for M ≥ M M
r on the basis of the observed state

for M ≥ Mm
r in the previous �t . Application of the mixed method to the area of Japan gives better hazard

estimations than the direct method; in particular for large earthquakes. As part of this study, the problem of
performance evaluation of hazard estimation methods is addressed, leading to the use of grading functions.
Key words: Earthquake Hazard, Markov Chains, seismic catalog.

1. Introduction
Seismic hazard assessment is one of the main goals of

seismology, because hazard estimates are of primary im-
portance to diminish the social and economical devastating
effects of earthquakes. By seismic hazard we mean here
the probability of occurrence of earthquakes within a given
time, space, and magnitude ranges.
Seismic hazard assessment is often based on statistical

analyses of the seismic history of a given area. Many
of these assessments are purely probabilistic; some exam-
ples are hazard from recurrence-time estimates based on the
Gutenberg and Richter distribution (Gutenberg and Richter,
1944), the numerous models based on Poissonian seismic-
ity models (e.g. Brillinger, 1982; Lomnitz and Nava, 1983)
the main assumption of these models is that earthquake oc-
currences are independent in space and time. Neverless,
modeling the seismicity as a memory-less system may of-
ten yield adequate results for areas affected by earthquakes
originating in many separate regions, but they are rarely
suitable for specific and small areas where the seismic re-
bound model should apply (Lomnitz and Nava, 1983). For
this reason, it is necessary to consider other stochastic mod-
els that, in contrast to the Poisson model, describe a type of
dependence in a sequence of events, and the Markov model
is a method compatible with the factors of causality and
memory implicit in the elastic rebound model. Tsapanos
and Papadopoulou (1999) used a discrete Markov model in
order to model the occurrence of great earthquakes. Vere-
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Jones (1966), Knopoff (1971), Hagiwara (1975), and Pat-
wardhan et al. (1980) are other examples of the applica-
tion of the Markov Model. Extreme distributions (Gum-
bel, 1958) and other empirical distributions (e.g. Epstein
and Lomnitz, 1966; Nava and Espı́ndola, 1993) have also
been used. Almost all seismic hazard models, including a
causal physical component, are based, directly or indirectly,
on the elastic-rebound model (Reid, 1910; Richter, 1958).
Among these models are those for recurrence times based
on seismotectonic arguments, like the time-predictable or
slip-predictable models of Shimazaki and Nakata (1980),
those based on the seismic gap concept (e.g. Fedotov, 1965;
McCann et al., 1979; Kagan and Jackson, 1991), and on
seismic migration (e.g. Richter, 1958; Mogi, 1968). Other
methods include non-catalog information, such as micro-
seismic, geophysical, or biological precursory data (Aki,
1981; Hagiwara et al., 1997; Yong and Wai, 1995).
There are other statistical techniques based on the

detection of seismic spatiotemporal variations (pattern-
recognition techniques). For instance, Keilis Borok and
Kossobokov (1990) presented a technique for pattern recog-
nition where subjective weights are assigned to the past
seismic activity in order to determine times of increased
probability (TIP) for strong earthquakes. Evidence that in-
formation concerning the location and time of occurrence
of future large earthquakes can be found in occurrence pat-
terns of smaller earthquakes is on the rise. For example, Ag-
new and Jones (1991) indicate that at short timescales, some
large earthquakes are preceded by smaller earthquakes that
occur in zones very close to the source of the great event.
Herrera (2001) and Nava et al. (2005) proposed a statisti-

cal method for seismic hazard evaluation, based on model-
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ing the transition probabilities of seismicity patterns, i.e.,
patterns of occurrence or non-occurrence of large earth-
quakes in different regions of a given geographic area dur-
ing a given time interval, as a Markov Chain. Application
of this method (henceforth called here the direct method)
to the Japan area gave extremely good results and sug-
gested some possibilities for future investigations. Since
the method presented here is a development of the direct
method, we will give a brief summary of its motivation and
bases.

2. System Seismic Hazard
The system is defined as a geographic area that includes

R seismogenic regions. Given a seismic catalog and a start-
ing time, during each successive time interval �t , the state
of each region, sr , has one of two values: 0 or 1, corre-
sponding, respectively, to the absence or presence within it
of earthquakes with magnitude larger than or equal to some
threshold value Mr . The total state of the system s is the
sum of the regional states:

s =
R−1∑
r=0

2r sr , (1)

and there are S = 2R system states. In binary format, s
is simply the concatenation of the binary regional states;
it ranges from 00. . . 00 to 11. . . 11 and shows at a glance
which regions have earthquakes and which have not for
each state. Thus, the system seismic hazard is the proba-
bility of the system having a given state during a particular
interval.
Given that, for a causal system, the stress state of the sys-

tem (and, hence, the occurrence of large earthquakes in it)
depends heavily on the seismic history of each seismogenic
region, the possibility of a system having memory and be-
having in a Markovian manner was explored.

3. Direct Method
In this method, the state of the system is evaluated for

each successive interval, and from this succession of states
a transition matrix � is constructed with elements θi j corre-
sponding to the number of times state j occurred after state
i . Also constructed is a vector �, where each component
ξi = ∑

j θi j corresponds to the total number of transitions
originating from state i . After processing all data, the tran-
sition probability matrix P , with elements

pi j = θi j

ξi
(2)

is built. From the observed state of the system over an
interval �t , the P matrix gives Markovian hazard estimates
for each state of the system for the next �t .
As shown in Nava et al. (2005), application of this

method to the Japan area with Mr = 5.5 gave very good
results, much better than those obtained from null hypothe-
sis (memory-less) uniform and Poissonian models. The di-
rect Markovian results had negligible probabilities of being
obtained by purely random guessing.

Fig. 1. Seismicity of the study zone reported in the ISC (1964–2002), and
the four regions of the system.

4. Mixed Method
Hazard estimates are important mostly for large, poten-

tially dangerous earthquakes, and the most important limi-
tation of the direct method is the relative scarcity of large
magnitude events. Given a �t appropriate for some Mr ,
when a larger threshold magnitude is considered, then tran-
sitions to state 0 (no earthquakes anywhere) dominate, so
that other transitions are not very well represented; increas-
ing �t correspondingly, decreases the number of transi-
tions, which decreases the representativity and robustness
of the transition probability matrix.
Hence, we decided to explore the possibility of seismicity

with a threshold magnitude Mm
r , having information perti-

nent to the occurrence of earthquakes with a higher thresh-
old magnitude M M

r > Mm
r . We call this the Mixed Marko-

vian method.
In this method, for each interval �t , the nth one, say, we

have two states of the system sm
n and sM

n corresponding to
occurrence or non-occurrence of earthquakes with thresh-
olds Mm

r and M M
r , respectively. Thus, after processing all

the data, we have two parallel histories of the system states:

sm = {sm
n ; n = 1, . . . , N } and

sM = {sM
n ; n = 1, . . . , N },

where N is the total number of time intervals used for
constructing the matrix.
From these two system-state histories, we construct a

transition matrix �, with elements θi J corresponding to the
number of times state s M

n+1 = J occurred after state sm
n = i

(we will use lowercase letters for states with threshold Mm
r ,

and uppercase ones for states with threshold M M
r ). After

processing all data, we construct the transition probability
matrix P , with elements

pi J = θi J

ξi
, (3)

where ξi = ∑
J θi J corresponds to the total number of

transitions originating from state i .
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Table 1. System states: decimal (left) and binary (right) showing which
regional states (0 or 1) it comprises.

Region Region

Status 3 2 1 0 Status 3 2 1 0

0 0 0 0 0 8 1 0 0 0

1 0 0 0 1 9 1 0 0 1

2 0 0 1 0 10 1 0 1 0

3 0 0 1 1 11 1 0 1 1

4 0 1 0 0 12 1 1 0 0

5 0 1 0 1 13 1 1 0 1

6 0 1 1 0 14 1 1 1 0

7 0 1 1 1 15 1 1 1 1

Before applying this method to the same data base used
for the direct method and comparing results, an appropriate
method for performance of evaluation needs to be devised.

5. Performance Evaluation
For any method of hazard estimation, one direct measure

of its performance is assessment of the probability it as-
signed to the actual outcome, or outcomes. For our case,
when before transition n the system is in state i , the proba-
bilities pi J ; J = 1, . . . , R, constitute the hazard estimates
for the next state; if state k occurs, then the observed transi-
tion probability is p̂n = pi j . The mean observed probability

p̂ ≡
∑nt

n=1 p̂n

nt
, (4)

where nt is the number of realized transitions, is a measure
of the average probability with which actually occurring
states were expected. According to this measure, the best of
several hazard estimate methods would be the one yielding
the highest p̂, and to judge whether a given hazard estimate
by itself is good, its p̂ can be measured against the “natural”
reference level, which is the maximum entropy probability
corresponding to the null hypothesis uniform probability
where all states are equally likely to occur:

pU
i j ≡ u = S−1 = 〈pi j 〉. (5)

However, the p̂ measure does not take into account that
the main object of hazard estimation is to forecast earth-
quake occurrences so that society may be prepared for them.
A useful evaluation must take into account factors like the
probability level of forecasts, multiple (and contradictory)
forecasts, false alarms, missed forecasts, etc. We will now
define quantitative measures for results that characterize the
performance of a given method or model.
We define a forecast as the statement that a given out-

come has a high probability of occurring; where a probabil-
ity is considered high if it lies above a given threshold

px = fx u, (6)

where fx is a success factor which expresses the threshold
in terms of the uniform probability u. A forecast is suc-
cessful when an outcome with pi j > px occurs, and the
number of successful forecasts is nx . When a forecast is

Fig. 2. Grades of the direct method as a function of the threshold magni-
tudes for aftcasts.

Fig. 3. Optimal grades for the mixed method with M M
r = 6.2 as a function

of Mm
r . Horizontal dashed lines are best values for direct method.

not successful, then it is a false alarm (type I error), and the
number of false alarms will be denoted by n f .

The multiplicity, mi , is the number of elements larger
than px in row i of the transition probability matrix, i.e.
the number of simultaneous forecasts. When mi = 0, then
there is no forecast (no success or false alarm) and outcome
i is a missed event (type II error). The number of missed
events is ns = nt −n p, where n p is the number of transitions
for which there was a forecast and nt (as defined above) is
the total number of considered transitions. In order to be
very strict with successes, each forecast success was divided
by the corresponding multiplicity; for example, for mi = 2,
a successful forecast would count as half a success plus one
false alarm, while an unsuccessful one would count as two
false alarms.
The regional error, e, is the number of regions whose

activity (occurrence or nonoccurrence of earthquakes) was
erroneously forecast.
All the above counts are normalized by nt so that perfor-
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Fig. 4. Transition probability matrices: direct method with Mr = 6.2 (left), and mixed method for M M
r = 6.2 and Mm

r = 5.7 (right).

mances with different lengths may be compared.
There is one last factor to consider, and it is the use-

fulness of the forecasts; i.e. to have non-trivial forecasts.
There are two trivial cases: one is when the threshold mag-
nitude is larger than the largest observed one; in this case,
the probability of no earthquakes at all p00 = 1, and all
other probabilities are null. The second trivial case is when
the threshold magnitude is very small and pS−1S−1 = 1.
This case is not so important to us since we are interested
in large earthquakes only. For both trivial cases, the mea-
sures described above would yield optimum values, but the
forecasts would be completely useless because they would
carry no information at all. Thus, to avoid trivial, or close
to trivial, cases it is necessary to penalize a hyperabundance
of transitions ending in the 0 and S − 1 states; we will do
this by considering the diminishing information content of
the corresponding transition probabilities.
The information (in bits) contained in a forecast with

probability p is commonly defined as I (p) = − log2(p)

(cf. Goldman, 1953). Here, we will use ubit information
units that assign a value of 1 to the information in the uni-
form probability, i.e. I (u) = 1 ubit. If a total of Nt transi-
tions have been used to evaluate the transition probabilities,
then the probability of any transition ending in state 0 is

p0 =
∑

i pi0

Nt
, (7)

and, for p0 > u, all p̂i0 probabilities and forecast successes
are multiplied by I (p0) (in ubits) before being counted.
Observed p̂i S−1 probabilities and successes are qualified in
a similar way.
All measures except p̂ depend on the choice of success

factor; a large fx is desirable because we want forecasts to
be made for high probabilities, and it will minimize false
alarms, but too large a value can so reduce the number
of forecasts (increasing the number of missed events) and,
hence, of successes, as to make the model almost useless.
A low fx will result in high multiplicity and yield a large
number of false alarms and increase the regional error (both
undesirable). So, the optimum value of fx has to be found
in order to get the best performance out of a given model
(a given combination of system, �t , Mm

r , and M M
r ; for the

direct method Mm
r = M M

r = Mr ).
Choosing the method or model which yields the best per-

formance is not straightforward, because there are usually

tradeoffs between desirable and undesirable traits, which
make direct inspection and comparison unpractical. There-
fore, we decided to make use of grading functions, i.e.
mathematical functions which take into account all rele-
vant factors, weighted according to their relative size and
importance, and combines them in such a way that desir-
able features increase its value and undesirable ones de-
crease it. Adjusting for relative size is necessary because
we may be comparing quantities with different orders of
magnitude (e.g. average probability vs. normalized number
of successes or false alarms). Weighting for importance is
largely subjective, but reflects a consensus of desirability
for different traits; for instance, false alarms are quite unde-
sirable (for many obvious reasons) and it is usually prefer-
able to have fewer false alarms than more successes.
There is no rule to say which form a grading function

should take. We tried linear, non-linear, product, and mixed
grading functions, but in this work we show the results of
only two:

d0 = 0.8 + 5 p̂ +
(
10nx − n f − e − ns

nt

)
+ 0.00001 fx , (8)

d1 = 1.0 +
(

(400 + 0.00002 fx ) p̂2n2
x

nt (n f + e + ns)

)
. (9)

Of course, the absolute values from a grading function are
quite arbitrary and can be changed by modifying some of
the baseline or scaling parameters (chosen here so both
grades can be clearly seen when plotted using the same
scales); but we are mostly interested in the relative values,
or relative optimum values (using always the same param-
eters in the grading function, of course). However, some
idea of what the actual values do represent can be had by
comparison with grades obtained for the reference “null hy-
pothesis” Poisson and uniform (mere guess) models.
In actual forecasting, all available data to date are used to

estimate the transition probabilities used in forecasting the
system state for the time interval beginning immediately. A
serious problem is that a minimum number of transitions
must be used to achieve robust probability estimates, and
this may not leave enough transitions to have a represen-
tative sample for assessing the model’s performance if the
catalog is not long enough. This was the case for our appli-
cation discussed below; a stopgap solution we adopted, un-
til enough forecast transitions are observed, is to aftcast all
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Table 2. Best results of state aftcasting. nt is the number of transitions, fx is the success factor, nx is the number of successes, pb is the Bernoulli
binomial probability of observing nx successes in nt transitions with uniform probability u; d0 and d1 are grades from the grading functions.

Method Mr nt fx nx d0 d1 pb

Direct Mr ≥ 6.1 384 6.2 49 1.699 1.100 1.2 × 10−6

Mixed M M
r = 6.1 & Mm

r = 5.7 384 5.0 51 1.661 1.095 2.3 × 10−7

Mixed M M
r = 6.2 & Mm

r = 5.7 384 5.0 51 1.717 1.100 2.3 × 10−7

Mixed M M
r = 6.3 & Mm

r = 5.7 384 6.2 43 1.680 1.077 8.9 × 10−5

Mixed M M
r = 6.4 & Mm

r = 5.8 384 7 37 1.607 1.058 2.7 × 10−3

Mixed M M
r = 6.5 & Mm

r = 6.1 384 6.5 33 1.525 1.039 1.4 × 10−2

Table 3. Best results of state forecasting. Quantities are the same as in Table 2.

Method Mr nt fx nx d0 d1 pb

Direct Mr ≥ 6.1 20 7.5 4 2.794 1.632 2.6 × 10−2

Mixed M M
r = 6.1 & Mm

r = 5.5 20 7.5 6 4.680 6.686 9.4 × 10−4

Mixed M M
r = 6.2 & Mm

r = 5.5 20 5 6 4.420 5.804 9.4 × 10−4

Mixed M M
r = 6.3 & Mm

r = 5.8 20 7.5 4 3.327 2.349 2.6 × 10−2

Mixed M M
r = 6.4 & Mm

r = 5.8 20 7.5 4 3.327 2.349 2.6 × 10−2

Mixed M M
r = 6.5 & Mm

r = 5.8 20 7.5 4 3.457 2.995 2.6 × 10−2

384 available transitions, i.e. do “forecasts” for data already
used in estimating the probabilities, and compare these re-
sults with the true forecasts of 20 transitions (transition
number 365 was made from probabilities estimated using
the first 364 transitions; number 366 using transitions up to
365, and so on). As will be shown, aftcast and forecast per-
formance evaluations roughly agree; but comparisons will
be based mainly on aftcast results.
We use the whole catalog, without eliminating after-

shocks, for the following reasons. First, most aftershocks
occur close in time after the main shock so that they have
a strong probability of being part and parcel of the activity
within the time interval in which the main event occurred, in
which case their presence or absence is immaterial. Second,
aftershocks smaller than the threshold magnitude (the great
majority) are discarded anyway. Third, if large aftershocks
do occur during the following interval in a large number of
cases, we want to be able to forecast them. If aftershocks
were the main constituent of the system’s memory, then the
diagonal elements would dominate the transition probabil-
ity matrix; which is clearly not the case (Fig. 4).

6. Application and Results
The models described in the sections II and III were ap-

plied to the Japan area, using data, from 1964 to 2002, from
the International Seismological Centre. The system was
chosen because of its tectonically distinct seismogenic re-
gions, high seismicity (Fig. 1), and good catalog coverage.
Four regions, shown in Fig. 1, were chosen: Kurile Islands,
Central Japan, SE Japan, and Ryukyu Islands, defining 16
system states (Table 1). Nava et al. (2005) applied the direct
method to a combination of �t = 0.10 yr and Mr = 5.5.
We have kept the same time interval (384 transitions), and
explored models with threshold magnitudes Mm

r = 5.7 and

M M
r = 6.2. The following figures show results obtained

from our analysis.
Based on the values of the grading functions, we found

the optimal fx for each model, and these optimal models
were then compared to see both how the mixed method
compared with the direct one and which would be the best
model to use for issuing useful forecasts.
Figure 2 shows the aftcast performance of the direct

method, indicating that best results are obtained for Mr =
6.1 ( fx = 6.2), with a secondary peak at Mr = 5.8
( fx = 5). Forecast grades (not shown) have a peak at
Mr = 5.8 ( fx = 4.5), but have smaller values at higher
magnitudes, and grow for smaller ones.
The mixed method for M M

r = 6.1, does not improve the
grades, although it does give a larger amount of successes
(Table 2). The main motivation behind the mixed method
is to estimate seismic hazard for higher magnitudes, and
the results shown in Table 2 show that for higher M M

r ,
the mixed method does considerably improve the grades
(compare values with Fig. 2). The last column of the table
is the probability of obtaining nx successes in nt transitions
by chance given a uniform probability u; it can be seen
that the direct method compares most favorably with chance
forecasting, but the mixed method compares even better.
For forecasts, the mixed method for M M

r = 6.1 does
give better results, in all aspects, than the direct method
(although 20 transitions do not constitute a really significant
sample); the comparative results are shown in Table 3.
Figure 3 shows the aftcast grades of the mixed method

for M M
r = 6.2, as a function of Mm

r ; the horizontal dashed
lines indicate the (optimum) values for the direct method.
It can be clearly seen that the mixed method gives better
results than the direct method for several values of Mm

r ;
both grading functions show improvements for Mm

r = 6.1,
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Fig. 5. Optimum grades for the mixed method with M M
r = 6.5 as a

function of Mm
r . Horizontal dashed lines are best values for direct

method.

6.0, 5.8, 5.7, and 5.6, with the maximum at 5.7. The mixed
method not only improves on the direct one for M M

r =
Mr = 6.2, but gives even better results than those of the
direct method for Mr = 6.1 (Table 2). Results are even
better for forecasts (Fig. 3 and Table 3).
Figure 4 shows the gray scale-coded transition probabil-

ity matrices P obtained by the direct method with Mr = 6.2
(left), and with the mixed method for M M

r = 6.2 and
Mm

r = 5.7 (right). It can be seen that, although the overall
shape is the same, maxima differ between them; the matrix
for the mixed method is not a scaled version of the direct
one.
The ratio r = (d(mixed)

0 − d(direct)
0 )/d(direct)

0 for aftcasts of
the whole catalog (384 transitions) and forecasts of 20 tran-
sitions, shows that the mixed method gives hazard estima-
tions 6.6% better than the estimated by the direct method
(for aftcast and threshold magnitudes Mr = 6.2 and M M

r =
6.2). For forecasts and threshold magnitudes Mr = 6.1 and
M M

r = 6.1, r indicates an improvement of 67% in the haz-
ard estimations of the mixed method. Very similar values
result for the corresponding d1 estimates.

For larger M M
r , the mixed method consistently has better

performance, although with diminishing returns, than the
direct method all the way to M M

r = 6.5 (Tables 2 and 3),
after which magnitude the Markovian model results lack
information content; Fig. 5 shows the behavior of grades
of this border case. For all cases, forecasts yield higher
determinant values. For actual forecasting at a given target
(higher) threshold, the lower threshold used should be the
one giving the best results, those with higher grades, for
the forecast history up to the current date. How large can
the higher threshold be is determined by the length of the
homogenous catalog.

7. Conclusions
Application of both Markovian methods to the Japan

area, for aftcasts of the whole catalog and forecasts of 20
transitions, yields extremely satisfactory results that have

negligible probabilities of being obtained by purely ran-
dom guessing or by a memory-less model; a Poissonian
model yields grades about 20% smaller than those obtained
by Markovian methods. This result confirms the results of
Nava et al. (2005) that indicate that this seismic system is
not memory-less.
For the direct method, use of grading functions suggests

that, for time intervals of �t = 0.10 year, best results are
obtained when predicting activity with magnitudes M ≥
Mr = 6.1; these results are better than those for Mr = 5.5
reported in Nava et al. (2005), and this is good because
larger magnitudes are of greater importance for seismic
hazard assessments.
The mixed method consistently gives consistently better

results than the direct one, particularly for true forecasts
(although, unfortunately, there are not enough cases to be
statistically significant). This result a very important impli-
cation: there is some information about future earthquakes
with M ≥ M M

r in the occurrence of slightly smaller ones
M ≥ M M

r > Mm
r . A practical corollary is than it is pos-

sible to extend the forecasting magnitude limit of a given
catalog, to estimate seismic hazard for slightly larger, more
important, events.
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