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Paleomagnetism, rock-magnetism and geochemical aspects of early Cretaceous
basalts of the Paraná Magmatic Province, Misiones, Argentina
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The basalts of the Posadas Formation were extruded during the huge continental volcanism that affected the
Paraná Basin in the Lower Cretaceous. We have carried out a paleomagnetic and rock-magnetic study on samples
collected along a basalt outcrop section in Misiones, Argentina and determined that rocks classified as tholeiitic
basalts and andesi-basalts are characterized by a low to intermediate content of Ti. Paleomagnetic and rock-
magnetic studies suggest that the main magnetic mineral is low-Ti titanomagnetite of superparamagnetic (SP) to
single-domain (SD) sizes, and very low amounts of multi-domain (MD) particles. The stable magnetic remanence
enabled us to define characteristic remanent magnetizations (ChRMs) with a maximum angular deviation (MAD)
<5◦ in most cases; and in all the cases, a MAD<10◦. The sequence has registered at least two polarity reversions,
starting from a normal polarity at the base. The calculated virtual geomagnetic poles (VGPs) present an elongated
distribution similar to other distributions of VGPs published for the Paraná Magmatic Province. The elongated
distribution of the VGPs could be a real feature of the geomagnetic field at a time of frequent changes of polarity.
Key words: Paleomagnetism, rock-magnetism, basalts, Paranv Magmatic Province, Cretaceous.

1. Introduction
The basalts of the Posadas Formation (Gentili and Ri-

moldi, 1980) that outcrop in north-eastern Argentina and
extend into South Brazil, Paraguay and Uruguay where they
are called the Serra Geral, Alto Paraná and Arapey For-
mation, respectively, belong to one of the largest continen-
tal volcanic provinces in the world. These lava flows are
the product of the huge volcanism that affected the Paraná
Basin in the Lower Cretaceous. Coetaneous volcanic rocks
of the Posadas Formation are also exposed in Africa. Taken
as a whole, these effusions constitute the Paraná-Etendeka-
Angola Province (Bellieni et al., 1984a; Marzoli et al.,
1999). All of these lava flows, dikes and sills are consid-
ered to be representative of the volcanism that was active
prior to the opening of the South Atlantic, and they have
been associated with the initial stages of the rifting process
that generated the separation of South America from Africa
(Bellieni et al., 1984a; Piccirillo and Melfi, 1988; Renne et
al., 1992a).
We report here new petrographic, geochemical, rock

magnetic and paleomagnetic data on lavas sampled in
the Misiones Province, Argentina and discuss these re-
sults together with previous data obtained from Brazil and
Paraguay.

2. Geological Setting
The first paleomagnetic and radioisotopic studies of the

Paraná Basin basalts were made in the 1960s (Creer, 1962).

Copyright c© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.

Based on these data, a number of researchers proposed that
the initial volcanism occurred during the Jurassic age (Creer
et al., 1965; Amaral et al., 1966; Valencio and Vilas, 1970;
Herz, 1977). Other radiometric aging analyses suggested
that the age of the main effusion in Brazil extends from
140 to 120 Ma (Cordani et al., 1980; Mantovani et al.,
1985; Piccirillo et al., 1987), with the main eruptive phase
taking place in the Early Cretaceous between 135 and 130
Ma (Rocha-Campos et al., 1988; Ernesto and Pacca, 1988).
More recently, 40Ar/39Ar radiometric (133–130 Ma) and
paleomagnetic data revealed that only a few million years
were required for the emplacement of the major part of the
igneous rocks in the Paraná Basin (Renne et al., 1992a,
1992b, 1996a, 1996b, 1997; Ernesto et al., 1999). Turner et
al. (1994) suggested that the Paraná-Etendeka continental
flood basalts erupted over 10 million years ago, between
137 and 127 Ma.
The regional variation in the composition of the lavas

indicates that different sources and mechanisms were in-
volved in magma generation. This would be related to
the presence of a thermal anomaly in the deep mantle un-
der South America that produced extension while west-
ern Gondwana was moving towards the northwest. This
thermal anomaly is related to the Tristan da Cunha plume
(Renne et al., 1992a).

3. Petrography and Geochemistry
The Paraná Magmatic Province (PMP) is geographi-

cally divided into three major parts—northern, central and
southern—by the Rı́o Piquiri and Rı́o Uruguay tectonic lin-
eaments (Fig. 1(a)). This division is in accordance with
petrological and geochemical features (Piccirillo and Melfi,
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Fig. 1. (a) Sketch map of Paraná flood basalts. Thick straight lines indicate Rı́o Uruguay (1) and Rı́o Piquiri (2) tectonic lineaments which divide the
Paraná Magmatic Province into three mayor parts: northern (NPMP), central (CPMP) and southern (SPMP), (after Piccirillo and Melfi, 1988); A-B:
sampling section. (b) Sketch map of Misiones province, Argentina, with sampling section from site 0 at A to site 37 at the B position.
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Fig. 2. Classification diagrams of the volcanic rocks from Misiones corresponding to the present study. (a) TAS (Total Alkali-Silica diagram, Le Bas
et al., 1986). (b) R1–R2 (De La Roche et al., 1980; Bellieni et al., 1981). R1=4Si−11(Na+K)−2(Fe+Ti), R2=6Ca+2Mg+Al. Filled and open
circles, High-Ti and low-Ti rocks, respectively, according to Bellieni et al. (1984b).

1988). In the present study, petrological and geochem-
ical studies were carried out on samples collected along
the Eldorado-Bernardo de Irigoyen road cut. The sampling
area is located in the central part of the PMP (Fig. 1(b)).
The lava flows at this location are massive to amygdaloidal
with peperitic levels locally intercalated (Lagorio and Leal,
2005); this clearly demonstrates the close interaction be-
tween effusive and sedimentary processes. It should also be
noted that several textural variations were verified based on
their positions inside the flow.
Major and trace elements were determined at the Uni-

versity of Trieste using an XRF spectrometer and proce-

dures developed by Philips (1994) for the correction of ma-
trix effects. Major element abundances were recalculated to
100% on a volatile-free basis; FeO was obtained by titration
and loss of ignition, corrected for FeO oxidation gravimet-
rically. The analytical uncertainties were estimated to be
less than 5 and 10% for major and trace elements, respec-
tively. Rare Earth Elements (REE), Th, Ta, Hf, U and Ga
of selected specimens were measured by inductively cou-
pled mass spectrometry (IC-MS) at the Atclabs Laboratory
(Canada). Representative data of the whole sample ana-
lyzed are given in Table 1.
Based on the TAS (Total Alkali-Silica) diagram the an-
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Table 1. Representative majora and trace element composition of volcanic
rocks from the study area.

Sample M64 M69 M71 M77 M79 M80 M83 M87

Rock AB ThB AB ThB ThB ThB AB ThB

Type Pnp Rbr Pnp Rbr Pnp Pnp Pnp Rbr

ITi LTi ITi LTi ITi ITi ITi LTi

SiO2 53.53 51.27 53.57 51.80 51.84 51.60 52.28 51.68

TiO2 2.21 1.58 2.18 1.61 1.97 1.75 1.77 1.66

Al2O3 13.11 14.25 12.88 14.25 14.39 15.35 14.07 15.55

FeO 14.06 11.95 14.23 11.78 12.74 11.85 12.27 11.52

MnO 0.21 0.17 0.18 0.20 0.19 0.17 0.20 0.18

MgO 3.56 6.31 3.29 5.91 4.85 4.80 5.76 5.13

CaO 8.89 11.15 8.34 10.56 10.15 10.18 10.10 10.11

Na2O 2.66 2.31 2.47 2.24 2.38 2.79 2.29 2.78

K2O 1.43 0.74 2.51 1.39 1.17 1.22 0.95 1.12

P2O5 0.34 0.27 0.34 0.25 0.32 0.28 0.30 0.26

sum 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

mg# 0.34 0.52 0.32 0.50 0.44 0.45 0.49 0.47

L.O.I. 0.92 2.77 1.50 2.50 4.71 1.76 2.70 2.88

FeO 4.40 5.23 1.59 6.93 0.90 2.36 0.87 1.48

Fe2O3 10.72 7.46 14.03 5.38 13.14 10.53 12.66 11.14

Cr 74 177 79 178 112 115 145 135

Ni 38 75 39 76 55 68 70 75

Rb 37 17 106 31 17 26 18 18

Ba 318 252 337 269 363 327 296 290

Sr 251 354 280 332 404 401 330 355

Nb 19 15 17 13 14 16 13 14

Zr 239 143 204 142 171 157 153 137

Y 38 20 29 23 24 24 28 24

La 22,60* 19 24 14,60* 24 19 16,40* 19

Ce 46.70 38 50 30.60 53 49 34.00 43

Pr 5.93 3.89 28 4.26

Nd 27.40 22 25 17.60 20.10 20

Sm 6.51 4.18 4.78

Eu 2.03 1.44 1.60

Gd 6.90 4.21 4.95

Tb 1.24 0.76 0.85

Dy 7.48 4.35 5.14

Ho 1.49 0.87 1.02

Er 4.23 2.54 2.92

Tm 0.61 0.34 0.43

Yb 4.02 2.34 2.74

Lu 0.59 0.34 0.41

Hf 5.20 3.10 3.50

Ta 0.96 0.62 0.66

Q (norm.) 5.83 1.19 4.34 1.28 3.00 0.49 3.60 0.52

Hy (norm.) 17.19 20.23 16.63 19.46 18.68 17.67 20.84 18.67

Ti/Y 349 474 451 420 492 438 379 415

Ti/Zr 55 66 64 68 69 67 69 73

Zr/Y 6,3 7,2 7,0 6,2 7,1 6,5 5.5 5.7

aMajor elements were recalculated to 100% on a volatile-free basis.
mg#, Mg/(Mg + Fe2+) and CIPW-normative compositions assuming
Fe2O3/FeO=0.15; Q and Hy, CIPW-normative quartz and hypersthene,
respectively. Trace element contents in normal type and and italics
indicate measurements by XRF and ICP-MS, respectively. AB, Andesi-
basalt; ThB, tholeiitic basalt; ITi, intermediate-Ti; LTi, low-Ti; Pnp,
Paranapanema-type; Rbr, Ribeira-type.

alyzed rocks can be classified as basalts and basaltic an-
desites (Le Bas et al., 1986; Fig. 2(a)). In the R1-R2 dia-
gram they plot as tholeiitic basalts and andesi-basalts (De
La Roche et al., 1980; Bellieni et al., 1981; Fig. 2(b)).
The different lava flows show middle to coarse in-

tergranular or intersertal textures to weakly micropor-
phyritic/porphyritic textures (Fig. 3). The latter varieties
are composed of microphenocrysts and/or phenocrysts of

157

Fig. 3. Photomicrograph, in cross-polarized light, of a basaltic andesite
with porphyritic texture. A phenocryst of plagioclase and a microphe-
nocryst of titanomagnetite (upper left corner) are set in an intergranular
groundmass.
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Fig. 4. Sr versus Ti/Y diagram, to discriminate the diverse magma types
defined by Peate et al. (1992), (see text for explanation). Filled squares,
Paranapanema-type; open diamonds, Ribeira-type. Fields correspond-
ing to Urubici, Esmeralda and Gramado types are also shown; Pitanga
magma type was not taken into account because of TiO2 contents lower
than 2.8 wt% of the studied rocks.
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Fig. 5. Primitive mantle (Sun and McDonough, 1989) normalized
multi-elemental plots for representative rocks from the study area.

plagioclase (An65−50), augite, opaque minerals, olivine (fre-
quently altered to iddingsite and/or bowlingite) and pi-
geonite. The groundmass is made of the same phases, also
showing intergranular/interstitial textures; interstitial potas-
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Fig. 6. Typical hysteresis loops for specimens representative of the lower (Mi4d, site 4) and of the upper (Mi32d, site 32) lava flows.

Table 2. Volume magnetic susceptibility (χ ) and F factors for the speci-
mens.

Sample χE−5 SI F factor
Mi0d 588 1.0
Mi1d 40 5.0
Mi2d 2542 0.0
Mi3d 1410 0.6
Mi4d 270 6.7
Mi6d 2498 0.2
Mi7d 3260 1.5
Mi8d 2658 0.7
Mi9d 1552 0.9
Mi10d 3341 0.2
Mi11d 2482 0.7
Mi12d 1400 0.3
Mi13d 800 0.0
Mi14d 1302 0.5
Mi15d 1174 1.4
Mi16d 2468 0.9
Mi17d 3494 0.7
Mi18d 5842 0.7
Mi19d 4898 0.6
Mi20d 650 3.7
Mi21d 430 0.5
Mi22d 308 3.9
Mi24d 80 5.0
Mi25d 74 10.8
Mi26d 1940 0.6
Mi27d 3176 0.3
Mi29d 3354 1.7
Mi30d 1686 1.4
Mi31d 984 0.8
Mi32d 734 7.1
Mi33d 1452 0.3
Mi34d 1684 0.7
Mi35d 1482 0.5
Mi36d 2392 1.0
Mi37d 2012 0.0

sium feldspar and accessory apatite frequently occur. Glass
may be fresh or replaced by celadonitic products. Calcite-,
quartz-, celadonite- and siliceous-zeolites bearing amyg-
dales may be sparsely present.
On the basis of their optical characteristics, opaque min-

erals correspond mainly to titanomagnetite and, to a lesser
degree, ilmenite. Magnetite grains show a slight alteration
to haematite. While the titanomagnetite crystals usually dis-
play dimensions up to 0.55 mm (as can be seen in Fig. 3), in
some rocks they present two contrasting modal sizes: 0.7–
1.2 mm and less than 0.15 mm. Very small crystal sec-

Fig. 7. Hysteresis data of Posadas Formation samples. Grain size deter-
mination according to Dunlop (2002).

tions also appear, both as inclusions in plagioclase and/or
clinopyroxene crystals, in the vitreous groundmass.
Based on Bellieni et al. (1984b), Paraná tholeiitic rocks

have essentially been grouped into two main rock types on
the basis of their TiO2 content: low-Ti basalts with TiO2

<2 wt%, and high-Ti basalts bearing TiO2>2 wt%. While
northern PMP is dominated by rocks of high-Ti content,
southern PMP is characterized by low-Ti basalts, while in
the central part both types have been verified (Piccirillo and
Melfi, 1988). More recently, various researchers (e.g. Peate
et al., 1992) have distinguished six distinct magma types
that broadly correspond to the earlier classification: Gra-
mado, Esmeralda and Ribeira types were defined as low-
Ti basalts, and Paranapanema, Pitanga and Urubici types
as high-Ti varieties. Nevertheless, Paranapanema is in fact
considered to be intermediate Ti rocks. It should be noted
that in this classification the low-Ti lavas can contain up
to 2.3 wt% TiO2 while the intermediate and high-Ti vari-
eties may display as little as 1.7% TiO2. Samples falling in
between this overlapping zone can distinguished by taking
other compositional parameters into account, such as Ti/Zr,



M. MENA et al.: PALEOMAGNETISM OF BASALTS OF THE PARANÁ MAGMATIC PROVINCE 1287
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Fig. 8. Orthogonal plots, stereoplots, and magnetic intensity curves for demagnetization of representative specimens. In orthogonal plots, open
(solid) squares indicate projection onto the vertical (horizontal) plane. In stereoplots, open (solid) squares indicate projection onto the upper (lower)
hemisphere.

Ti/Y, Zr/Y ratios and Sr content (Peate et al., 1992).
According to the latter classification, the rocks of this

study correspond to Paranapanema (intermediate-Ti) and
Ribeira (low-Ti) types, as can be seen in Fig. 4; this clas-
sification is in agreement with the coexistence of rocks with
variable Ti content in the central region of the Paraná Basin
(Piccirillo and Melfi, 1988). The Ribeira type is distin-
guishable from the Paranapanema variety by its lower TiO2

content (1.5–1.7 wt% vs. >1.7 wt%, respectively). In all
cases, a TiO2 content of less than 2.8 wt% excludes the
presence of the Pitanga type.
The multi-elemental diagrams normalized to the primor-

dial mantle of Sun andMcDonough (1989) show Nb-Ta and
Sr negative anomalies that are typical of the tholeiitic conti-
nental lava flows (Fig. 5). A negative Sr anomaly is partic-
ularly striking in the sample of Parapanema variety with a
higher TiO2 content (M64 = 2.21 wt%). Compared with the
sample of the Ribeira variety (low-Ti), this sample contains
the highest content of most of the incompatible elements,
with the exception of Ba, Rb and K (Fig. 5).
The stratigraphic sequence of the geochemical types

shown here is based on systematic studies of the profiles
taken from exploratory wells in Paraná Basin, Brazil. From
the lower to the upper flows the sequence is formed by the
Gramado (locally interbedded with Urubici-type flows), Es-
meralda, Ribeira, Pitanga and Paranapanema units (Peate et
al., 1992). Therefore, the studied lavas correspond to two
of the three younger units of the sequence.

4. Paleomagnetic Study
A paleomagnetic and rock-magnetic study was carried

out on diverse lava flows and dikes from the Posadas Forma-
tion in Misiones, Argentina. Hand samples were collected
along road cuts between Puerto Eldorado and Bernardo de
Irigoyen (Fig. 1(b)). The lava flow sequence is well ex-
posed in this location, and the sampling was facilitated by
the steep slopes, controlled by the sub-horizontal position
of the basaltic flows. Thirty-four lava flows and three sills
were recognized. Neither the upper or lower contacts could
be identified. Individual flows were determined by their
physical characteristics, such as the presence of vesicles,
grain size and joints. Since these lava flows were extruded
on a previous relief, their stratigraphic positions are not nec-
essarily indicative of their relative age. Therefore, it is pos-
sible that among the sampled flows, units may have been
sampled more than once. In some places it was impossi-
ble to collect hand samples or to uniquely identify the units
because the outcrops were highly weathered. Each iden-
tified unit was considered to be a site, and hand samples
were collected at each site. We drilled at least three cylin-
drical specimens (diameter: 2.54 cm; height: 2.2 cm) of
each sample.

5. Magnetic Properties
Magnetic susceptibility measurements at room temper-

ature and at two frequencies (470 Hz and 4700 Hz) were
carried out using a Bartington MS2 susceptibility meter. F
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factors [100(χlower − χhigh)/χlow ) higher than 6% were ob-
tained in some specimens (Table 2). These values suggest
the presence of superparamagnetic particles (SP) of sizes
near 30.10−9 m (Dunlop and Özdemir, 1997; Maher and
Thompson, 1999; Evans and Heller, 2003, among others).
Hysteresis loops for different representative lithologies

were determined. The coercivity of remanence (Hcr ) was
calculated from isothermal remanent magnetization (IRM)
and back field measurements using a Vibrating Sample
Magnetometer (VSM, Molspin). The magnetic parameters
obtained in these cycles are presented in Table 3. The coer-
civity values indicate that the dominant magnetic mineral is
magnetite (Dankers, 1978; Roberts et al., 1995). The shape
of the hysteresis loops is typical of single-domain (SD)- to
pseudo-single-domain (PSD)-sized magnetite (Fig. 6).
The ratio of the hysteresis parameters Mrs /Ms vs. Hcr /Hc

are plotted in Fig. 7. The magnetite particles have a size be-
tween pseudo single domain (PSD) and single domain (SD)
according to Dunlop (2002). Hcr /Hc values observed in
samples Mi10d, Mi29d andMi36d could indicate a bimodal
grain size of magnetite and / or the presence of a high co-
ercivity mineral, probably haematite. In these samples, the
coarser particles would constitute an overwhelmingly large
fraction of the total volume of magnetite (Parry, 1982).

6. Paleomagnetic Results
To analyze the stability of the magnetic remanence, we

subjected the specimens to alternating field (AF) and ther-
mal detailed demagnetization techniques. Remanent mag-
netization measurements and demagnetizations were made
with a Digico modified spinner, a 2G cryogenic magne-
tometer and a Schonstedt furnace.
Thermal demagnetization was performed in 15 steps

from 100◦C up to 620◦C. Possible mineralogical changes
were controlled by measuring the bulk susceptibility after
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Table 3. Magnetic parametersa for representative specimens.

Sample Mrs Ms Hcr (mT) Hc (mT) Mrs /Ms Hcr /Hc %χpa %χfe

(E−9 Am2/kg) (E−9 Am2/kg)

Mi1d 1.17 3.31 43.66 18.15 0.35 2.40 10.36 89.60

Mi4d 18.54 83.15 49.78 17.69 0.22 2.81 4.43 95.57

Mi10d 46.81 371.17 41.30 5.70 0.12 7.24 0.35 99.65

Mi25d 1.30 1.48 24.36 23.66 0.87 1.02 6.13 93.87

Mi29d 30.37 213.32 35.92 5.70 0.14 6.30 1.26 98.74

Mi32d 28.40 116.11 39.87 17.04 0.24 2.33 2.47 97.53

Mi36d 63.26 367.7 45.37 8.75 0.17 5.18 0.92 99.08
aMrs , Saturation remanence; Ms , saturation magnetization; Hcr , coercivity of remanence; Hc , coercive force; %χpa, percentage
paramagnetic susceptibility; %χfe, percentage ferromagnetic susceptibility.

each step. Only a few samples retained 10% of their ini-
tial remanences at temperatures of 610◦C. Remanence was
generally removed between 570◦ and 580◦C, indicating that
the main remanence carriers are titanomagnetites (virtually
Ti-poor magnetite).
AF demagnetization was applied in 13 steps from 5 to

100 mT. Many specimens presented a soft viscous rema-
nence of low intensity that was easily removed in 5- to 10-
mT fields (Fig. 8). This behavior could imply the presence
of either grains with low relaxation times of very small sizes
or of multi-domain (MD) grains. After the elimination of
the viscous component, most of the specimens showed a de-
cay of the magnetization toward the origin, which is typical
of a stable single component (Fig. 8). The samples from the
bottom and the top of the profile have a stable component
with negative inclination. The samples with intermediate
positions have a stable component with positive inclination.
Few samples from the upper lava flows showed bicom-

ponent magnetizations (Fig. 9(a) and (b)): (1) a normal po-
larity component with a direction coincident with those of
the lower lava flows and (2) a reverse polarity component al-
most antipodal to the other. The normal component presents
low coercivity and unblocking temperatures of 450–570◦C,
suggesting that it is carried by grains of Ti-poor titanomag-
netite. The reverse component is defined only in the last
steps of thermal and magnetic demagnetization, and its high
coercivity and low intensity suggest that haematite is the
carrier (Fig. 9(a) and (b)). Given that the direction of the
reverse components is antipodal to that of the normal com-
ponent, it is most probable that haematite was formed in a
early stage of oxidation, very near in time to the extrusion,
but after a polarity change in the geomagnetic field. The
susceptibility values measured after each thermal demagne-
tization step did not change, indicating that new minerals
were not generated (Fig. 9(c)). Because of the low propor-
tion of haematite to titanomagnetite the former mineral is
not evident in the IRM acquisition curves (Fig. 9(d)). The
remanence directions isolated by AF and thermal demagne-
tization are coincident in all cases.
IRM studies were performed by applying fields between

0.05 and 3.5 tesla on one specimen of each site after de-
magnetization. Most of the specimens reached saturation
at fields less than 300 mT, indicating that the remanence is
carried by magnetite (Fig. 10(a)), and only specimens from
the dikes (sites 22, 24 and 25) presented magnetizations that
did not saturate at the applied fields (Fig. 10(b)). This sug-

Table 4. Paleomagnetic results for the Posadas Formationa.

Site D I alfa95 N VGP lat VGP long h

0 19.4 −35.2 3.7 5 −70.8 198.1 100

1 26.0 −43.4 11.4 4 −66.6 218.7 110

2 13.7 −40.7 10.5 6 −77.2 204.3 130

3 354.9 −55.1 7.4 5 −79.8 329.4 240

4 349.4 −45.3 9.9 4 −80.5 30.6 260

5 181.9 40.7 7.4 2 86.4 335 230

6 6.2 −39.7 7.8 4 −83.2 182.6 230

7 4.8 −38.1 4.7 4 −83.4 167.9 230

8 345.9 −38.9 8.9 4 −71.2 62.2 280

9 0.0 −41.6 8.1 5 −87.5 125.6 280

10 2.7 −44.3 5.7 5 −87.5 207.3 300

11 355.0 −33.1 6.3 5 −80.5 95.6 320

12 351.4 −37.1 5.6 6 −80.3 69.5 340

13 2.5 −42.0 6.7 3 −86.9 173.4 340

14 357.7 −43.1 6.0 4 −87.6 66.7 370

15 358.1 −46.0 3.7 4 −88.0 4 370

16 358.9 −45.6 3.8 6 −88.8 359.7 430

17 8.2 −42.9 11.5 4 −82.4 206.7 430

18 3.5 −27.4 7.0 4 −77.7 141.9 500

19 5.8 −29.4 5.5 5 −78.1 153.9 500

20 347.6 −33.5 1.9 6 −76.0 68.3 500

21 182.8 65.7 6.9 4 68.2 120.7 580

22 202.1 80.5 12.8 2 43.1 116.4 590

23 210.3 42.5 5.4 4 62.7 38.9 640

24 156.6 73.5 5.2 3 53.2 145.8 640

25 179.8 74.6 5.4 2 55.1 126.2 640

26 160.3 68.9 6.6 4 60.0 150.4 670

27 204.3 65.0 13.5 3 61.8 89.6 670

28 190.7 29.8 5.9 3 75.7 352.2 700

29 178.7 63.6 6.4 4 71.0 128.9 700

30 180.2 45.3 9.9 3 88.9 316.1 720

31 156.9 44.3 5.0 6 69.3 211.8 740

32 160.8 44.3 6.3 5 72.8 212.8 740

33 350.9 −46.6 4.5 4 −81.7 23 780

34 7.5 −54.8 5.3 4 −78.9 272.7 790

35 359.7 −43.5 5.6 5 −89.1 109.3 790

36 351.3 −47.5 6.8 4 −81.9 17.2 800

37 7.2 −40.7 7.8 5 −82.8 193.4 810

aD, I , Declination and inclination for the site mean direction, re-
spectively; alfa95, Fisher statistical parameter for this mean; N ,
number of specimens used in the calculation; h, approximate ele-
vation of the site (m).
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Fig. 12. South virtual geomagnetic poles (VGPs) for Misiones sites (M): (a) VGPs for all the sites, (b) normal polarity VGPs, (c) reverse polarity VGPs,
(d) normal polarity VGPs joint to selected reverse VGPs.

gests an important presence of haematite. The magnetic be-
havior of the specimens of these sites is characterized by
the presence of a component with high positive inclination
(Fig. 10(c)). It should be noted that the presence of low-
Ti titanomagnetites, which are the most frequent magnetic
carriers, coincide with the petrological descriptions of these
tholeiitic basalts.
Characteristic remanent magnetization (ChRM) direc-

tions were determined by principal component analysis
(Kirschvink, 1980). In most specimens ChRMs were de-
fined with a maximum angular deviation (MAD) smaller
than 5◦; in all specimens MAD was smaller than 10◦. Mean
site direction was obtained by averaging the magnetic com-
ponents of all the specimens using fisherian statistic. The
corresponding virtual geomagnetic pole (VGP) was calcu-
lated for each mean direction (Table 4).
When the increases in the altitude of the outcrop from

site 0 to site 37 are taken into consideration, the polarities
of the VGPs would indicate that the sequence has registered
at least two polarity reversions. On the lower section, the
VGPs have a normal polarity, while in the middle they have
reverse polarity, culminating with a group of flows with
normal polarity VGPs. A site of reverse polarity is located

in the normal initial sequence. This could indicate either
another reverse polarity interval or that this site belongs to
a younger flow of the reverse series located between the
normal polarity lava flows as a result of a paleotopographic
effect.
The normal polarity directions form a concentrated group

with its mean located at declination D=1.2◦; inclination
I=-41.8◦ for N=25 sites, and with Fisher parameters
k=68; alfa95=3.5◦ (Fig. 11(a)). The directions correspond-
ing to a reverse polarity are more scattered, with a mean
at D=180.7◦; I=58.0◦; N=13; k=19 and alfa95=9.8◦

(Fig. 11(a)). Both mean directions are not antipodal, giving
a negative reversal test (Fig. 11(b)). Figure 11(a) shows that
the positive inclination directions seem to form two groups:
one of tightly grouped set of directions with a steep incli-
nation (sites 21, 22, 24, 25, 26 and 29) and another of scat-
tered directions with a lower inclination (sites 5, 23, 28, 30,
31 and 32). The inverted direction to the mean normal po-
larity direction is centered in the group of lower inclination
reverse directions, suggesting that the high inclination di-
rections may represent a period of pronounced secular vari-
ation or transitional field directions.
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Fig. 13. South VGPs distribution from (a) Central PMP, Brazil (Ernesto et al., 1990), (b) Southern PMP, Brazil (Ernesto et al., 1990), (c) Northeastern
PMP, Brazil (Ernesto et al., 1999), (d) Central PMP, Brazil (Alva-Valdivia et al., 2003), (e) Northern PMP, Brazil (Ernesto et al., 1990), (f) PMP,
Paraguay (Ernesto et al., 1996).

Table 5. Best-fit great circle pole and associated elongations calculated for VGP distributions obtained from published data.

Locality Great circle pole Elongation N a References
Long Lat.

Northern PMP, Brazil 299.7 −4.5 0.913 31 Ernesto et al. (1990)
North-eastern PMP, Brazil 299.9 −3.9 0.890 66 Ernesto et al. (1999)
Southern PMP, Brazil 285.9 −6.0 0.788 181 Ernesto et al. (1990)
Central PMP, Brazil 291.6 −4.1 0.573 119 Ernesto et al. (1990)
Central PMP, Brazil 138.5 −2.2 0.821 36 Alva-Valdivia et al. (2003)
Misiones 305.4 −1.6 0.900 31 This study
Paraguay 162.8 −3.3 0.766 72 Ernesto et al. (1996)

aN , Number of VGPs

7. VGP Distribution
Despite the non-ideal number of samples included in this

contribution, a conspicuous pattern is observed. The distri-
bution of calculated VGPs is elongated (Fig. 12(a)). This
elongation is more notable when only VGPs correspond-
ing to normal polarities are considered (Fig. 12(b)). The
reverse polarity VGPs are more scattered, and their distri-
bution seems to be more circular (Fig. 12(c)). A possible
cause of this behavior could be unremoved overprint in re-
verse samples that lead to more scattered characteristic di-
rections.
If we consider all normal VGPs and only reverse VGPs

corresponding to the group of antipodal directions to the
normal ones, the distribution is elongated in a direction
given by a great circle with a pole of 305.4◦E, −1.6◦S
(Fig. 12(d)).
Similarly, the distributions of VGPs of PMP in Brazil

are elongated. In Fig. 13(a)–(e) the VGPs corresponding
to the north (Ernesto et al., 1990), northeast (Ernesto et al.,
1999), central (Ernesto et al., 1990; Alva-Valdivia et al.,
2003) and south areas of the PMP (Ernesto et al., 1990)
are plotted in the Southern Hemisphere. The distribution of
VGPs obtained from basalts and alkaline rocks of Paraguay
(Ernesto et al., 1996), although very scattered, also show a

distinct elongation (Fig. 13(f)).
To compare VGP distributions from the different regions,

we calculated best-fit great circles. The degree of ellipticity
of each group was determined by the procedure of Oviedo
and Vilas (1986): first, the VGP center of mass was cal-
culated. Then, the VGPs were rotated in order to coincide
the center of gravity with the Z axis. These vectors were
projected onto a Lambert projection to avoid any change
in the density of the distribution due to the projection. For
the group of projected vectors, the eigenvalues λ1 and λ2

(λ1≥λ2), were calculated. The elongation of the group was
determined by e = 1 − (λ1/λ2)

1/2. A value for e near 0
indicates a circular distribution; if e = 1 the distribution is
linear. The great circles and their associated elongations are
given in Table 5.
These data indicate that VGPs from the three regions of

Brazil and from Misiones are distributed along very simi-
lar great circles and that they have high elongation values
(Fig. 14). The VGPs of the central area obtained by Alva-
Valdivia et al. (2003) have the lowest elongation values but
nonetheless yield similarly oriented great circles. These au-
thors used a graphic test and concluded that at 95% confi-
dence levels a Fisher distribution hypothesis cannot be re-
jected. The scatter determined for these VGPs is slightly
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smaller than those calculated using data from other studies
on these basalts and may be due to sampling bias or a sam-
pled interval that is too short to average the paleosecular
variation (Alva-Valdivia et al., 2003). The Paraguay VGPs
have relatively high elongation values, but their correspond-
ing great circle is far from the others. The large scatter of
these data was attributed to possible structural problems or
anomalous data from rolled blocks (Ernesto et al., 1996).
The scatter of mean directions observed in the first pale-

omagnetic study of Serra Geral basalts from Brazil (Creer,
1962) was attributed mainly to secular variation of the ge-
omagnetic field. Similar scatter was found in subsequent,
more systematic studies made on those rocks (Ernesto and
Pacca, 1988). One of the causes of this dispersion could
be that multiple flows with slow cooling registered geomag-
netic field variations (Ernesto and Pacca, 1988). Also, it has
been suggested that the low angular dispersion found from
the PMP (less than the expected dispersion due to secular
variation) can be an artifact of the inhomogeneous temporal
distribution of data (Ernesto et al., 1990).
On the other hand it has also been suggested that an elon-

gated distribution of South America Cretaceous paleomag-
netic poles could be due to a complex trajectory of the plate
(Valencio et al., 1983). An elongate distribution was also
found in VGPs calculated from volcanic rocks of the Early
Cretaceous rift of Sierra Chica, Córdoba, Argentina. This
distribution was attributed to an inadequate structural cor-
rection or to an incomplete average of the paleosecular vari-
ation (Geuna and Vizán, 1998).
The VGPs from different sites of the PMP show similar

elongations and are distributed along great circles. If the
elongate distribution was due to fast plate movements, the
VGP position along a great circle should be sequential, but
this does not seem to be the case. On the other hand, lo-
cal tectonic causes are also rejected. No tectonic tilting was
observed in the study area. The attitude of the basalt flows
is sub-horizontal. Dips, smaller than 5◦, are probably more
associated with paleotopography than with any tectonic tilt-

ing. As a consequence, the elongated distribution of the
VGPs cannot be attributed to tectonic causes.
A large number of 40Ar/39Ar aging analyses on the vol-

canic rocks of the Paraná basin (Renne et al., 1992a, 1992b,
1996a, 1997; Turner et al., 1994; Ernesto et al., 1999) show
that only a few million years, (3–10) were required for the
bulk of the PMP eruptions. Several polarity intervals are
registered in the lava sequences, which allow one to assume
that the involved time is of the order of several cycles of
secular variation. The elongated distribution of VGPs could
therefore be due to anomalous characteristics of paleosecu-
lar variation at this time of highly frequent polarity changes.

8. Conclusions
—The studied lavas belong to the central section of

the Paraná Magmatic Province, and can be classified as
tholeiitic basalts and andesi-basalts. They are of low-
Ti and intermediate-Ti, corresponding to Ribeira- and
Paranapanema-types, two of the three youngest units of the
sequence.
—Paleomagnetic and rock-magnetic studies suggest that

the main magnetic mineral is poor-Ti titanomagnetite of SP
to SD sizes and very low amounts of MD particles.
—The studied rocks typically yielded ChRMs with MAD

<5◦; in all cases, with a MAD <10◦.
—The studied sequence has registered at least three po-

larity chrons, starting from a normal polarity at the base.
—The calculated VGPs present an elongate distribu-

tion similar to other distributions from VGPs published for
Paraná Magmatic Province.
—This elongated distribution is unlikely to have been

produced by any tectonic cause, either continental drift or
local basculations.
—Since at least three polarity intervals are registered in

the lava sequences, the involved time is of the order of sev-
eral cycles of secular variation. The elongated distribution
of VGPs could therefore be due to anomalous characteris-
tics of paleosecular variation at this time of highly frequent
polarity changes.
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geomagnetic and geodynamic implications, Phys. Earth Planet. Int.,
138, 183–196, 2003.

Amaral, G., U. G. Cordani, K. Kawashita, and J. H. Reynolds, Potassium-
argon dates of basaltic rocks from Southern Brazil, Geochem. Cosm.
Acta, 30, 159–189, 1966.

Bellieni, G., E. M. Piccirillo, and B. Zanettin, Classification and nomen-
clature of basalts, IUGS, Subcommission of the Systematics of Igneous
Rocks, Circ. 34, Contrib. Mineral. Petrol., 87, 1–19l, 1981.

Bellieni, G., P. Brotzu, P. Comin-Chiaramonti, M. Ernesto, A. J. Melfi, I.



M. MENA et al.: PALEOMAGNETISM OF BASALTS OF THE PARANÁ MAGMATIC PROVINCE 1293
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