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Strong ground motions recorded by a near-source seismographic array during
the 16 August 2005 Miyagi-Ken-OKki, JAPAN, earthquake (Mw 7.2)
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An earthquake of Mw 7.2 took place on August 16, 2005 at a plate boundary between the Pacific plate and
the North American plate off the coast of Miyagi Prefecture, Northeast Japan. During the Miyagi-Ken-Oki
event, we succeeded in recording strong ground motions at six stations in a seismograhic array with an epicentral
distance of about 70 km, where we have been operating seven strong-motion seismometers in an aperture of
about 500 m since April 2004. The predominant period of the ground motion was shorter than 0.3 s. The
peak ground acceleration exceeded 1.7 g at a station where non-linear site response may have occurred during
the mainshock. The short-period strong ground motions show a large spatial variation, with up to a ten-fold
difference in amplitude even within the array. However, there is a similarity between waveforms registered at
different stations for periods longer than 0.4 s. Therefore, the difference in the ground motions may be mainly
attributed to the difference in the shallow structure just beneath the stations.
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1. Introduction

In regions off the coast of Miyagi Prefecture, earthquakes
having a magnitude (M) of about 7.5 have repeatedly oc-
curred with a recurrence period of about 37 years during the
past 200 years. More than 27 years have passed since the
last event on June 12, 1978. According to the Headquarters
for Earthquake Research Promotion (HERP), the source re-
gions of these earthquakes are identified as regions A1, A2,
and B in Fig. 1, and the conditional probability of the occur-
rence of the next event within 30 years starting from January
1, 2005 is estimated to be 99% (HERP, 2005), probably the
highest in the world.

On August 16, 2005, an earthquake of Mw=7.2 took
place at a depth of around 30 km on the plate boundary
between the subducting Pacific plate and the North Ameri-
can plate. The epicenter is shown by a solid star in Fig. 1.
The focal mechanism is a thrust type. The HERP judged
that the event was not the expected one. The earthquake
produced the largest ground motions to date with an inten-
sity of 6 lower in the Japan Meteorological Agency scale.
There were no casualties; however 11 people were seriously
injured and 78 were slightly injured. At a nuclear power
plant located at the base of the Oshika Peninsula, the am-
plitude of acceleration response spectrum exceeded a level
expected for the design basis earthquake S2, which is the
expected maximum earthquake in the region, at a period
of about 0.05 s. Consequently, it is a serious issue why
such large-amplitude short-period ground motions were ob-
served for the Mw="7.2 earthquake, which is smaller than
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the expected one of about M7.5.

At the tip of the Oshika peninsula (shown by a solid trian-
gle in Fig. 1), we initiated an array observation using seven
strong-motion seismographs in April, 2004. The site of the
Oshika array may be closest on land to the source area of the
expected Miyagi-Ken-Oki earthquake. The strong-motion
seismographs deployed at the Oshika array are the Kinemet-
rics Altus-K2 with a full-scale range of £2 g, the records of
which are sampled at a rate of 100 Hz. Each seismograph is
installed on a concrete base that is coupled to the ground by
nine wooden pillars, each 80 cm long. The site is in a pas-
ture. Although the geological structure of the site is iden-
tified as volcanic rock in Mesozoic (early Cretaceous an-
desite and dacite tuff-breccia and tuff) (Editorial Commit-
tee of Geologic Atlas of Japan, 1992), the shallow structure
is not known since no geotechnical or geophysical logging
and boring investigations have been carried out. The obser-
vation is mainly aimed to estimate the rupture propagation
of the expected earthquake by the array analysis (e.g. Spu-
dich and Cranswick, 1984; Goldstein and Archuleta, 1991).
This approach will enable us to ’directly’ estimate rupture
propagation because we need not make any assumptions on
the rupture velocity as used in the waveform inversion but
use the velocity structure between the source and the re-
ceiver.

During the August 16, 2005 event, we succeeded in
recording strong ground motions at six stations in the ar-
ray, which is located about 70 km westerly-north-west from
the epicenter. Only one station, OSK3, recorded P-waves
but not S-waves part correctly because the anchor bolt be-
came loose by the strong motion. Within 1 month after the
mainshock, seismograms of ten aftershocks, whose epicen-
ters are shown by open stars in Fig. 1, were also recorded.
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Fig. 1. The location of the Oshika array (solid triangle) and the epicenter
of the August 16, 2005 Miyagi-Ken-Oki earthquake (solid star) and ten
aftershocks (open stars). The regions A1, A2, and B are expected source
regions of the expected Miyagi-Ken-Oki earthquake of M around 7.5.
The lower map shows the configuration of stations in the Oshika array.
This map is overwritten on the enlarged 1:25,000-scale topographical
map of ‘Kinkasan’ issued by the Geographical Survey Institute of Japan.
There are seven stations constituting the Oshika array. A number is
appended to each station, as shown in the map. The station code is the
character ‘OSK’ and the number (e.g., OSK2 for the number of 2).

Table 1. Peak ground acceleration (PGA) and peak ground velocity
(PGV).
PGA (cm/s?) PGV (cm/s)
Station EwW NS UD EwW NS UD
OSK1 557.0 6259 3315 1691 25.69 7.55
OSK2  1365.1 1747.6 869.1 3235 4181 12.75
OSK4 987.9 10152 5343 2390 2497 1223
OSK5 13539 1516.0 4682 2049 2417 8.71
OSK6 9304 11024 368.7 17.10 19.76 6.66
OSK7 572.5 867.2 4650 17.40 11.05 9.31

Because it is rare to record strong ground motions in such
a small area, the data provide rare opportunity to clarify the
spatial variation of ground motions.

The purpose of this article is to summarize the character-
istics of observed strong ground motions during the events
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Fig. 2. Acceleration records at six stations in the Oshika array. (a) EW,
(b) NS, (c) UD component. Eastward, northward, and upward motions
are positive in all the traces.

in terms of acceleration records, acceleration Fourier spec-
tra, velocity response spectra, spectral ratio between station
pairs, and the similarity of waveforms among the stations.
In addition, this study may help researchers gain an under-
standing of just to what degree the difference in site condi-
tions contributed to the large-amplitude ground motions in
Oshika peninsula caused by the August 16, 2005 event.

2. Strong Ground Motions Observed at the Os-
hika Array

East-west (EW), north-south (NS), and vertical (UD)
components of the observed acceleration records for 60 s
are shown from top to bottom in Fig. 2. Baseline correction
is applied to all the records. The shape of the waveforms
is not similar between the stations, although the distance
between stations is only about 150 m on average. Large-
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Fig. 3. Acceleration Fourier spectra for 20-s-long S-waves of the main-
shock. (a) EW, (b) NS, (c¢) UD component.

amplitude motions continue for about 20 s after the S-wave
arrival. Several peaks are found for the envelope shapes.
The peak ground acceleration (PGA) and the peak ground
velocity (PGV) are enumerated in Table 1. Each PGV is
read from a velocity record calculated by the integration of
an acceleration record and by filtering out periods longer
than 10 s. Residual displacement is not easy to be recov-
ered from the double integration of our acceleration records,
although coseismic displacement of 5.6 cm eastward and
4.9 cm downward was detected at a Global-Positioning-
System station in the same peninsula for the event (Geo-
graphical survey institute, 2006) . Stations OSK2, OSK4,
OSKS, and OSK6 recorded PGA larger than 1 g. The max-
imum PGA exceeded 1.7 g for the NS-component record
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Fig. 4. Pseudo-velocity response spectra with 5% damping. Dotted,
broken, and solid curves stand for the results for the EW, NS, and UD
component, respectively.

at OSK?2, while it was smaller than 1 g at stations OSK1
and OSK7. PGA varies among the stations by up to ap-
proximately threefold. At station OSK2, PGV also reached
40 cm/s. The PGV also shows approximately a threefold
variation among the stations.

Figure 3 shows acceleration Fourier spectra for the S-
wave part. The S-wave part is chosen here as the 20-s-
long time window starting from 1 s before the S-wave onset
shown by an arrow in Fig. 2. To calculate the spectra, we
first calculate power spectra for time windows of 40.96 s in
which the S-wave seismograms of 20 s and trailing zeros
are included. The cosine taper is applied to both 5% ends
of the S-wave data. The power spectrum is smoothed by
operating the Hanning window ten times, and the square
root of the power spectra is calculated. The results reveal
that amplitudes at periods shorter than about 0.2-0.3 s are
predominant at all stations. We also find that the shape of
the spectra varies from station to station. At station OSK?2,
it is remarkable that a narrow peak exists at a period of about
0.15 s and that the amplitude of the peak is up to tenfold
larger than that of other stations. This peak is prominent
on the horizontal components. The large PGA and PGV at
this station can be attributed to the peak. The characteristics
of the NS and UD components at station OSKS are different
from those at other stations in periods longer than 2 s. These
are due to long-period noise, but the origin is not clear.

The pseudo-spectral velocity (PSV; or pseudo-velocity
response spectrum) with 5% damping are shown in Fig. 4.
The response spectrum shows the maximum amplitude (ac-
celeration or velocity or displacement) of a damped oscilla-
tion of a single-degree-of-freedom pendulum with a certain
natural frequency subjected to an input earthquake ground
acceleration The results for EW, NS, and UD are shown in
dotted, broken, and solid curves, respectively. The variation
in the PSV among the stations is large in shorter periods and
small in longer periods. Two horizontal components gener-
ally show similar response spectra. At station OSK2, the
amplitude of PSV is up to 200 cm/s at a period of about
0.15 s, corresponding to the sharp peak in the acceleration
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Fig. 5. Spectral ratio between pairs of the stations in the Oshika array.
Results for NS components are shown. Spectral ratios for the mainshock
are drawn by thick solid curves. Average and £2 SD of the spectral ratio
for ten aftershocks are shown by white solid curves and shaded regions,
respectively.

Fourier spectrum. In contrast, the PSV at around 1 s is about
10 cm/s. In such a case, the damage to buildings may be
small despite the large PSA and PSV, as suggested by Sakai
et al. (2004).

3. Discussion
3.1 Spectral ratio between stations

We have considered the spectral ratio between two sta-
tions for a certain event. Since the aperture of the array is
about 500 m, the effect of the source and the propagation
path is considered to be the same for all the stations in the
array. Consequently, we can estimate the difference in the
site amplification factor of two stations by taking the spec-
tral ratio between the stations. We calculate the spectral
ratio between each station pair for the mainshock as well
as for ten aftershocks. The epicenter of the aftershocks is
shown by open stars in Fig. 1.

Power spectra for the aftershocks are calculated in the
same manner as for the mainshock except that the S-wave
part is chosen as 10-s-long time window starting 0.5 s be-
fore the onset of the S-wave. The spectral ratio is calculated
from the square root of the power spectra for the mainshock
and the aftershocks. Some of the calculated spectral ratio
are shown in Fig. 5. A thick solid curve is the result for
the mainshock and a solid white curve is the average for ten
aftershocks. A shaded region stands for 2 SD for the ten
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Fig. 6. Spatial variation of strong ground motions. In addition to the

records at six stations in the array, the record at the station MYGO11 is
shown in the bottom. (a) original acceleration records, (b) band-passed
acceleration records in a period band from 1 to 10 s.

aftershocks. For the station pairs including station OSK2,
the value of the spectral ratio is up to ten at a predominant
period of about 0.15 s. The predominant period seems to be-
come longer for the mainshock than for the ten aftershocks.
However, we can not find the difference in the amplitude of
the spectral ratio at the period between the mainshock and
the aftershocks. For station pairs not including OSK2, we
can not find any significant shift in the predominant period.
As such, we can point out that the nonlinear site response
(e.g., Field et al., 1997) may occur at the station OSK?2 dur-
ing the mainshock. For all station pairs, the amplitude of
the spectral ratio is around one for periods from about 0.5
to 2 s. In longer period ranges, the range of the £2 SD for
the aftershocks is large, possibly because the spectra for the
aftershocks are contaminated by noises.
3.2 Implications for the spatial variation of strong
ground motions

About 2 km north from the array, there is a strong-motion
station MYGO11 of the K-NET, NIED. To observe the spa-
tial variation of ground motions, we compare the strong-
motion record of the mainshock at this station with those
at the array. In Fig. 6(a) shows the original acceleration
records. The bottom trace is for station MYGO11, and the
difference between this station and the others is clear. How-
ever, when we perform a band-pass filter in a period ranging
from 1-10 s, we obtain records that are similar among all
the stations, as shown in Fig. 6(b). Therefore, the similarity
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in the waveform is found even at longer station separations
for longer periods (or lower frequencies). Among records
at the stations in the array, we confirmed the waveform sim-
ilarity down to a period of 0.4 s. Therefore, we suggest us-
ing the array analysis techniques such as the beam-forming
within the period range.

4. Conclusions

We have succeeded in recording strong ground motions
at a near-source seismographic array during the August 16,
2005 Miyagi-Ken-Oki earthquake. Analyzing the records,
we have clarified the following characteristics:

(1) PGA is more than 1 g at four stations among the
six operational. The largest PGA exceeds 1.7 g at
station OSK2.

(2) Components with periods shorter than about 0.3 s are
predominant.

(3) Short-period ground motions show a large spatial
variation, with up to a tenfold difference in ampli-
tude within the array with an aperture of only 500 m.

(4) Waveform similarity is found between stations in the
array for periods longer than 0.4 s.

(5) The non-linear site response may have occurred at
station OSK?2 during the mainshock.

It is necessary to clarify the velocity structure beneath
the stations to understand why ground motions with such a
large amplitude and such large spatial variation were gen-
erated in the array. The irregular topography at the array
certainly contributes to the spatial variation. However, to-
pographical change has an effect of at most a factor of two
on the spatial variation of ground motion, and may have a
smaller effect than the subsurface velocity structure (e.g.,
p. 252, Architectural Institute of Japan, 2005). Because the
application of the array analysis to records is possible in
the longer periods, it is suggested that we may detect the
rupture propagation of the mainshock as the change of az-
imuth and incident angles to the array from the source. In
addition, the probability of the occurrence of the expected
Miyagi-Ken-Oki event still remains high. We should con-
tinue the array observation to capture the strong ground mo-
tions from the pending expected event.
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