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The global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29-31,
2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the
Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC
data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a
strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID
parameters. The results of our study are summarized as follows: (1) large-scale TIDs (LSTIDs) and medium-
scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic
storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer
at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of
LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the
ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and
larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs
propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator
region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs
measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern
Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward
propagating LSTIDs are found in the equator region. These results mean that the Coriolis effect cannot be ignored
for the wave propagation of LSTIDs and that the propagation direction is correlated with polar magnetic activity.
Key words: Traveling ionospheric disturbances, Global Positioning System, gravity wave, total electron content.

1. Introduction

Most traveling ionospheric disturbances (TIDs) observed
in the ionosphere are the response of the ionosphere to
acoustic gravity waves (AGWs) (Hines, 1960). When the
gravity waves reach ionospheric height, the neutral wind
perturbations interact with the plasma via collisions. The
motion of the charged particles, constrained to move along
the magnetic field lines, carry them alternately to higher
and lower altitudes. Transportation along the field lines
results in electron density enhancements in some places
along the wave fronts (where the electrons have moved in
from above and below) and depletions in others. The reg-
ular enhancements and depletions of plasma density show
traveling wave’s properties, i.e. traveling ionospheric distur-
bances (Hooke and Schlegel, 1968; Tsugawa et al., 2003).

The observation and research of ionospheric perturbation
and gravity waves have been an important subfield of iono-
spheric dynamics studies; they also constitute an important
part of current research programs into space weather. In
particular, the investigation of TIDs caused by storms pro-
vides data that furthers our understanding of the evolution
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processes of energy transmission and conjugation from the
high latitudes to the low latitudes. The techniques for ob-
serving ionosphere perturbations include incoherent scatter
radar (Kirchengast et al., 1996), airglow imager (Ogawa et
al., 2002; Shiokawa et al., 2002), ionosonde (Wan et al.,
1995), HF Doppler (Wan et al., 1998), satellite beacon wave
reception (Davies, 1980), and Global Positioning System
(GPS), among others. Due to the high spatial and tempo-
ral resolution of GPS total electron content (TEC) data ob-
tained from the International GNSS Service (IGS) network
(Beutler et al., 1999), GPS TEC has, since the early 1990s,
become the most widely used observation technique for in-
vestigating the properties of TIDs.

There are many studies that focus on using GPS TEC
to study irregularities and perturbations in the ionosphere.
Large-scale ionospheric structures and TIDs conjugate lat-
itudinal enhancements were identified using GPS TEC dif-
ference maps during storm times (Ho, 1996). The F-
region Radio and Optical measurement of Nighttime TID
(FRONT) campaign in Japan was conducted to clarify the
physical mechanism of the TIDs in the F-region ionosphere.
Based on these observations, several new features of the
nighttime mid-latitude TIDs were determined, including the
property of TIDs having a wide spectrum (from 3 m to 1000
km) and the equatorward propagation of MSTIDs (Akinori,
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Fig. 1. In each figure, the three curves (upper) based on observed TEC
data correspond to the three receivers of an array, which are indicated
in the legend. The lines (lower) represent dTEC obtained from residues
derived from multi-order polynomial fits TEC time series, and the mag-
nitude stands for the amplitude of TID.

2002; Ogawa et al., 2002; Shiokawa et al., 2002). The
FRONT-3 campaign observed MSTIDs in the airglow im-
ages with horizontal wavelengths of 100400 km propa-
gating southwestward in Japan and northwestward in Aus-
tralia. A one-to-one correspondence of wave structures was
found between the Northern and Southern Hemispheres, in-
dicating strong electrodynamic coupling between the two
hemispheres through the geomagnetic field line. In addi-
tion, LSTIDs propagating towards the equator with a spatial
scale of approximately 1000 km were detected at these con-
jugate stations. The peak of LSTIDs in the Northern Hemi-
sphere was 20 min earlier than that in the Southern Hemi-
sphere, indicating that the observed LSTID was caused by
a wave in the neutral atmosphere rather than by an elec-
tric field structure (Shiokawa et al., 2005). Tsugawa et al.
(2003) and Shiokawa et al. (2005) used GPS TEC measured
from more than 1000 GPS sites in the Japanese chain of
islands to study the damping rate of LSTIDs during storm
times and deduced that the damping was due to the ion-drag
effect. Statistically, LSTID was also identified by a two-
dimensional GPS TEC map over Japan propagating south-
ward with a 1000-km scale, and some seasonal rules were
proposed (Tsugawa and Saito, 2004; Shiokawa et al., 2002,
2005).

The majority of the investigations reported to date have
emphasized the local characteristics of ionospheric pertur-
bations. However, there is a subtle yet important trend in the
research of the evolution processes of ionospheric distribu-
tions on the global scale. The purpose of this paper is to
analyze the TIDs during the October 2003 magnetic storms
in the Asia-Australia, European and North American sec-
tors. By means of a multi-channel maximum entropy spec-
tral analysis on the GPS TEC data from more than 900 GPS
stations worldwide, we are able to provide a set of opti-
mal TID parameters to describe the propagation features of
TIDs during the superstorms.

This paper is organized as follows: Section 2 presents
details on the method used here for processing GPS TEC
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Fig. 2. The chosen locations of arrays, divided into three groups on
the world map. The dots show the geographic distribution of more
than 900 GPS receivers. One large circle represents one array and the
small circles are stations of the other chosen arrays. The dashed lines
denote dip latitudes 45°, 0°and —45°. The “*” denotes the location of
the magnetic pole. The vectors’ diagram of TID propagation of each
array during the three storms is also given. The amplitude of TID is
represented by the length of arrow, and the propagation azimuth of TID
is indicated by arrow’s direction. The colors of the arrows, blue, green,
and purple, are associated to the first storm, second storm, and third
storm, respectively. For each array, the long arrow of the same color is
the dominant propagation azimuth, while the short arrow is the minor
azimuth.

data; Section 3 introduces the statistical results from dif-
ferent global sectors together with discussions; Section 3
presents our conclusions.

2. GPS TEC Data Processing
2.1 Selection of GPS stations

The GPS TEC data used in this study were obtained from
the data center of the IGS network. We selected 26 sets of
arrays with three GPS stations for each array; in this way
we can acquire the data using correlation analysis method
to pick up the ionospheric disturbances in different areas.
In order to avoid the problem of phase integer cycle ambi-
guity in the time series of GPS TEC data, we adopted the
constraint that the distance between the different stations in
the same array should be less than the half of the horizon-
tal wavelength of the TIDs. Based on Hunsucker (1982),
Hocke and Schlegel (1996) distinguished between LSTIDs
with a period greater than 30 min and moving faster than
300 m/s and MSTIDs with shorter periods (from 10 to 50
min) and moving slower (50—300 m/s); accordingly, the dis-
tances between selected stations should be as small as pos-
sible and set at no more than 1500 km in order to accu-
rately estimate the parameters of the disturbance propaga-
tion. Since the stations are dense at mid-latitudes, the dis-
tances among most selected stations are less than 200 km.
However, due to the sparseness of the observational net-
work in the Southern Hemisphere, the constrained distances
among stations there are usually more than 1000 km so that
we can only focus on LSTIDs with a horizontal wavelength
of about 2000 km.

Figure 1 represents the waveform of TEC disturbances
observed from three different arrays on October 29, which
is the first day of the storm. As can be seen from each panel,
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Fig. 3. Background trends were removed using residues obtained from

polynomial fits. Observed slant TEC data from 31 GPS satellites are
indicated by the gray solid curves (upper). The solid lines (lower) repre-
sent dTEC obtained from residues derived from multi-order polynomial
fits TEC time series.

the same satellite at the same time interval has a very similar
waveform. Figure 1(a)—(c) also shows the satellite number
(PRN), geographic latitude and geographic longitude (GL)
and their stations’ distances (dist) in each array. It is ap-
parent that although the distances among these arrays are
different, the curves of the observed TEC time series are
very similar. As Fig. 1(c) illustrates, although the distances
among the stations are as great as 900—1400 km, the wave-
form of the observed TEC time series still maintains a good
correlation. Through extensive experimentation on the time
series from each array, we were able to determine that if the
distance among the chosen stations is less than 200 km, we
can obtain a high coherency of wave parameters where the
correlation coefficient is larger than 0.98; if the distance is
between 200 km and 600 km, the correlation coefficient is
about 0.95. Based on these rules of selection, we analyzed
the time series observed by each array that we selected on
the global scale and obtained accurate wave parameters us-
ing three-channel maximum entropy spectral analysis after
filtering.

Figure 2 shows the locations of the 26 chosen sets of
GPS arrays, which are numbered from Array 1 to 26, re-
spectively, and divided into three groups on the world map.
As shown in this figure, there are more GPS stations in the
North American, European and Asian sectors than over the
sea and Southern Hemisphere.

2.2 Method of calculating propagation parameters of
TIDs from GPS TEC

The four steps of our primary three-phase data processing
are as follows:

(1) We converted GPS observation files in Renix format
into slant TEC time series in ASCII format and removed the
outliers and wild points.

(2) Background trends were filtered out from the time se-
ries of TEC. We applied a sliding window with a duration
of 2-3 h to the original time series of TEC data. Back-
ground trends of the time series were removed from these
sliding windows using residues obtained from 2- to 3-order
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polynomial fits (Ding et al., 2004) and a band-pass filter
with the passband (60/(2x3600), 60/(10x60)). Note that
there are many issues involved in the background trends of
slant TEC, such as TEC diurnal variation, TEC variations
relative to the elevation angle of the line of sight, TEC vari-
ation with latitudes and longitudes, and Doppler Effect due
to satellite motion of GPS, among others. Figure 3 shows
the original TEC time series (upper) observed at station dent
(50.93°N, 3.39°E) on October 29, 2003 and the time series
of TEC fluctuation (dTEC) after filtering that is used to de-
scribe ionosphere disturbances obtained from residues de-
rived from multi-order polynomial fits of the original TEC
time series in sliding windows. This figure illustrates that
our method is very effective in showing that the intense pe-
riod of disturbance variation of TEC appears between 1800
UT-2000 UT (1800-2000 LT) instead of in the afternoon
(about 1400 LT) when the strongest range of TEC diurnal
variation occurs.

(3) By adopting the three-channel maximum entropy
method (Strand, 1977), we derived the main frequency and
phase differences between dTEC fluctuation time series.

(f, $21, $31) = MEM(/}, I, I3) (D

where I, I, and I3 are the dTEC fluctuation time series
observed at the same time at three stations, MEM is the
maximum entropy method, f is wave frequency, and ¢;,
¢3) are phase differences between the time series observed
at the three stations. Galileo transformation was applied to
eliminate the error caused by the Doppler shift in the dTEC
time series due to the movements of GPS satellites (Wan et
al., 1997).

@)

—
Wwave = Wobserve T K wave * 7ipp

where i, represents the horizontal speed of the move-
ment of the ionospheric pierce point.

(4) Finally, we identified TID events and evaluated the
propagation parameters of TIDs. Assuming that the surface
of the Earth around the observation points is a plane; a
rectangular plane coordinate system is set with the origin at
the observation station, in a way that the wave parameters
satisfies:

{ kyxor +kyyo = ¢21 3)
kyxzr +kyy3r = @3

where k, and k, are unknown horizontal wave numbers.
Terms (x21, y21) and (x31, y3;) are the relative positions of
the observation points. Equation (3) yields the solution of
ky and ky:

Y2931 — yai¢2 b — 21431 — X31¢21

ky y =
X31Y21 — X21)31 X21Y31 — X31)21

“

Consequently, we obtain the horizontal phase speed v,,;, and
wave propagation azimuth o':

Vpn = 27f/ [k + kf &)
o = arctan(k,/k,) 6)
r=1/f (N
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Table 1. The parameters for TIDs propagation from 26 chosen arrays in the 3 storms.

Region No GPS array Glat, Glon Mlat, Mlon Amplitude (TECU) Period+15 (min) Vph (m.s™h) Azimuth (°)
©) ©) Ist 2nd 3rd 1 2 3 1st 2nd 3rd Ist 2nd 3rd
High latitude 13  joen vaas mets 62,28 58,119  +12 +12 60 100-500 180
(Europe) 14 sodatrol kiru 68, 24 63,120 +15 £12 +£12 50 60 45 200+200 <200 <200 180 180 (360) 180 (360)
15 rigalama vins 56, 24 54,110 £3.5 £12 £10 60 60 60 200-400 100-300 100-300 175 170 180 (360)
Mid-Lat 1 ktbw twhl pabh 47, —122 53, -63 £10 +22 +£23 42 42 45 200400 <250 200400 180 180 180 (360)
(North Am) 2 blynlkcp seaw 48, —122 54, —-63 +12 422 421 38 33 38 150 (450) 4004200 150 185 180 180 (360)
3 ucdl cmbbptrb 38, —120 45,-59 +£1 +£24 +18 60 48 48 200400 200-400 <200 185 190 210 (330)
5 blrw nlib ris1 43, -90 53,-24 +4 +£9 £14 42 45 42 250 (600) 2004100 200100 190 180 180
6 gust uptc pitl 41, —-80 52,—12  £10 £20 =19 45 45 70 200100 150+£100 2504100 190 190 170 (360)
7  woos freo colb 40, —81 51,—13  £10 18 422 42 45 45 3504£100 <200  200-800 190 190 180 (360)
8  hbrk Imnondsl 37, -97 47,-30 £5 £20 =423 50 70 48 400+£200 200-600 1504100 200 200 220 (50)
9 mem2okomhtvl 35,—-89 45, -22 £3 +£15 423 48 45 45 400£200 200+100 2004100 195 190 180 (340)
10 mcdl cev3 kywl 27, —82 38, —13  £2 420 423 50 45 45 5504200 200-800 200-400 240 190 270 (60)
Mid-Lat 16  dent brus dour 51,4 52,88 +2 +10 £12 48 48 48 300£100 2004100 200+£100 185 185 190 (360)
(Europe) 17  uzhl penc mopi 48,20 47,102 +4 £2  £2 50 50 50 200-800 <400 <100 180 (360) 180 180 (360)
18  nova tori geno 45,8 46, 90 +5 +1 +1 48 48 48 200100 400-800 2004100 180 (360) 180 185
Mid-Lat 20  sele sumk pol2 46,74 33,152 +6 £3 £2 48 48 600200 2004200 195 185
(Asia) 21 bjsh jixn tain 40,117 29,—173 +6 +£10 =£12 50 50 50 500-800 200-600 300-600 185 190 200
22 tskbksmv kgni 36,140  26,—152 +£12 +5 £3 55 45 45 400-600 200-400 200-400 185 170 185
Low latitude 4  mauiupol hilo 21, —-156  21,—-89 £13 £18 +£22 45 45 45 200400 0-300 200£100 215 (40) 220(50) 220 (60)
and equator 11  guatssiamana 15,-91.5 24, -21 +45 £45 45 40 200 100£100 210 (40) 210 (50)
regions 19  tela lhav ramo 32,36 28,111 +8 £15 £2 45 45 45 2004+£200 400-800 1004100 270 (90) 260 (130) 100 (270)
23 guanqion xiam 23,112 12, —176  £18 +£17 +21 48 48 45 3504+200 4004200 400+£200 180 180 (330) 150 (340)
24 samp ntus bako  —3, 103 —8,170 £19 +2 +4 48 48 48 700-900 250-600 400-800 10 220 (20) 20 (230)
Southern 12 riog palmohi2  —60, —64  —43,3 +2 22 45 45 45 200-900 200-900 185 (20) 182 (360)
Hemisphere 25  Karr alic yar2 —23,122 -32,—171 £10 *+1 £1 48 50 62 800+200 600-800 600200 8 360 (210) 360 (210)
26 auck ousd macl —40,170 —-50,—107 +£18 £5 +1 65 48 62 400-600 4004200 400£200 320 (130) 330 (150) 330 (150)

The experimental results showed that the suggested
method of residues obtained from the multi-order polyno-
mial fits gives a good result in terms of acquiring the vari-
ation of perturbance within a short time series by removing
the long-term trend. The MEM spectral analysis also as-
sures the acquisition of a high-resolution frequency domain
and facilitates our analysis of the qualities of wave propaga-
tion parameters in the time and frequency domains. This in
turn provides the accurate value of the propagation param-
eters of TIDs.

2.3 Identification of TID events

We applied a sliding window with a duration of 2-3 h to
the original dTEC time series. This generates a sequence
of a shorter time series within the 2- to 3-h period. The
length of the chosen sliding window was set to be longer
than the estimated period of wave disturbance so that the
time series of 2—3 h is long enough to contain at least one
cycle of TID. The three-channel MEM was then applied to
the generated shorter time series. This yielded a sequence
of TIDs propagation parameters which vary with time.

The main reason for determining these parameters is as
follows. It is necessary to determine whether there is a most
frequent and dominant value in the distribution function of
the period, in horizontal phase velocity, and in the azimuth
of the ionospheric disturbances during the observation in-
tervals. If such a dominant value exists, the ionospheric
disturbances with the similar waveform among the time se-
ries, which are detected by the three GPS stations of one ar-
ray, can be regarded as one TID, and the distances between
the chosen stations are reasonable. As a result, the mean
value and standard deviation of the computed peak values
of period, horizontal phase velocity, and azimuth could be
used to express their true values and the dominant range of

variation at the array area, respectively.

Using the method described above, we can auto-identify
the duration of the disturbances and merely calculate the
part of the existing disturbances. We divided the perturba-
tion of 3 days into three intervals. The first duration was
0400-1400 UT October 29; the second duration was from
1200 UT October 29 to 0800 UT October 30; the third dura-
tion was from 0600 UT October 30 to 1300 UT October 31.
According to the geomagnetic indices Dst and AEt, there
were three major groups of storms in existence. The prop-
agation parameters of the time series in terms of the dis-
turbances in the three intervals are statistically illustrated in
Table 1 and Fig. 4. The examples, which consist of distri-
bution plots and a histogram of the TIDs parameters (pe-
riod, the horizontal velocity, and the azimuth) of about nine
arrays ((a)—(c) are from North America, Europe and Asia-
Australia, respectively) calculated by MEM, are exhibited
in Fig. 4.

In general, if there are wave-like structures in the time
series, this analysis reveals the observed period, horizontal
phase speed, and propagation direction of the TIDs. If
a steady wave field is passing, the wave parameters for
the components of the field should remain steady for the
duration of that field (Ding et al., 2004). Because of the
continuous observation of GPS TEC data, we can obtain
mean wave parameters on each day during the storm time
using Egs. (4) —(7).

3. Statistical Results and Discussion

A drastic burst of solar activity—the largest since 1990—
occurred during the period October 29 to November 01,
2003. This triggered three sets of storms, which were ac-
companied by a series of ionospheric storms. A threefold
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Fig. 4(a). The distribution plots and histogram of wave parameters derived from three-channel maximum entropy spectral analysis. The detected TID
periods (hours, first row), velocities (m/s, second row), and azimuth (degree, third row) for North America (a), Europe (b), and Asia (c), respectively.
The first storm was at 0400—1400 UT October 29; the second storm, 1600 UT October 29 to 1000 UT October 30; the third storm, 1400 UT October

30 to 1000 UT October 31.

decrease in the Dst time series corresponds to the three ma-
jor groups of storms. During these three superstorms, the
maximum Kp reached 9, the Dst index declined to a mini-
mum of —400 nT, and the AE index reached a maximum of
5000 nT.

Figure 5 presents the time series of ionospheric distur-

bances acquired from GPS array 7 (woos freo colb) (40°N,
81°W) during the period October 29 to November 1, 2003.
This figure also illustrates that the amplitude of ionospheric
disturbances during the main phase of the storms is more
obvious than those at other times. It also shows that there
is a high correlation between the time series of ionospheric
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Fig. 4(b). (continued).

disturbances and the variations in the Dst and AE index and
that there is a slight lag or advance corresponding to the lat-
itudes of different regions. Although this agrees with the
concept of the geomagnetic control of the TID amplitude,
it does not correlate with the absolute level of Dst, but with
the value of the time derivative of Dst. The phenomenon is
also illustrated by Afraimovich et al. (2001).

‘We applied the methods described in Section 2 to an anal-

ysis of the TEC data from 26 sets of GPS receiver arrays
located in the American, European, Asian and Australian
sectors and calculated the propagation parameters, includ-
ing amplitude, period, horizontal phase velocity, and az-
imuth, of the ionosphere disturbance. The parameters for
TIDs propagation derived from 26 chosen arrays data are
presented in Table 1.
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Fig. 4(c). (continued).

3.1 TIDs observed in high latitude

We selected three sets of arrays—13, 14, and 15—in the
European sector at the Northern Hemisphere high latitudes
to calculate the values of the MSTID and LSTID propaga-
tion parameters during the three major storms in October
29 to October 31. Figure 2 shows the locations of these
arrays. Following the sudden commencement (SC) of the
magnetic storm at 0612 UT on October 29, the TIDs at the

geographical latitudes 60-75°N were detected with maxi-
mum amplitudes of 17 TECU, which were larger than those
at middle latitudes 50—60°N. The LSTIDs with a mean pe-
riod of 55 min were detected as wave-like structures, prop-
agated in the equatorward direction with a horizontal veloc-
ity of about 400-600 m/s and southward phase progression
as the main azimuth of 180°. In addition, the concomitant
MSTIDs with a period of 45 min were also detected with
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Table 2. Average evaluations of wave parameters at mid-latitudes.

Amplitude Period Vph Azimuth
(TECU) (min) (ms™1) (©)
North-Am +20 ~46 200-600 200£100 200+100 187.6
Europe +10-15 ~49 250+100 300400 2004100 184.0
Asia +10 ~49 400-700 200-500 200-500 187.5

Fig. 5. Variations of the geomagnetic indices Kp (a), Dst (b), and AE (c)
on October 28 to November 1, 2003. (d) shows the variation of TEC
during the geomagnetic storms observed at mid-latitudes (GPS array
no.7). Dashed lines in the second panel indicate times that Dst values
started to decrease to their minimums.

a horizontal velocity of less than 300 m/s to propagate due
southward. The maximum traveling time of TIDs is around
12-16 h in this area.

3.2 LSTIDs observed in middle latitude

As described by Lin et al., equatorial ionization anomaly
(EIA) expanded to very high latitudes during the entire
storm period, with a large increase in TEC immediately af-
ter the storm started that is detected in Northern America.
This illustrated the occurrence of a strong plasma fountain
effect, perhaps caused by a penetration electric field from
the high to low latitude, and a strong upward ExB drift
in the ionosphere lifted the ionosphere layers (Foster and
Rideout, 2005; Lin et al., 2005; Zhao et al., 2005). All
of these led to larger amplitudes in the ionosphere distur-
bances in the American sector compared with those in the
European and Asian sectors.

From the results of spectral analysis (Fig. 4) derived
from 14 GPS arrays (1-3, 5-8, 16-22) at the mid-latitudes,
we obtained the parameters of ionosphere disturbances in
North America, Europe, and Asia, shown in Table 1. It
can be seen that a small quantity of MSTIDs with scales
of 20—40 min correspond to the enhancement of LSTIDs
with scales from 40 min to 2 h, with the obvious dominat-
ing MSTID due southward or southwestward direction in-
dependent of the scales. Moreover, in this case, an increase
in the intensity of medium-scale and small-scale irregulari-
ties is caused by the dissipation process of intense LSTIDs
of auroral origin, accompanied by the appearance of iono-
spheric irregularities in a wide range of scales, including
MSTIDs and small-scale ones. These phenomena were

also observed by Afraimovich et al. (2006). The propaga-
tion directions of those ionospheric disturbances had shifted
somewhat clockwise from the south, resulting in a NW-SE
phase surface and a southwestward movement in the North-
ern Hemisphere. Shiokawa er al. (2003) suggested that
the electrodynamic instability in the ionosphere could cause
southwestward MSTIDs that are generated by an oscillating
electric field in the ionosphere (Fukao et al., 1991; Garcia et
al., 2000). However, there is still no evidence to show that
the electrodynamic instability caused these large-amplitude
LSTIDs. Thus, we believe that the westward deflection
of those disturbances, including LSTIDs and medium-scale
and small-scale irregularities caused by the process of dis-
sipation of intense LSTIDs during the three storms, is the
result of both the westward-blowing thermospheric winds
and the Coriolis force effect attributed to the Earth’s rota-
tion. This means that the Coriolis effect cannot be ignored
for the wave propagation of LSTIDs (Sawako et al., 1980).
This will be discussed further in Section 3.3.

The results of the spectral analysis reinforced the results
indicating an increase in intense LSTIDs during the propa-
gation. Figure 6 illustrates the waveform of the disturbance
time series based on data from the ten arrays at the middle
latitudes. This waveform reveals that in the North Amer-
ican sector, both the value of TEC and the amplitudes of
disturbance are largerr than those in Europe and Asia after
the storm SC.

From the average parameters of ionosphere disturbances
in North America, Europe, and Asia presented in Table 2,
the average period of disturbances is approximately 46 min.
There is an obvious dominating southwestward direction
for ionospheric disturbances, with an average azimuth of
187.6°, and the southward propagation direction deviated
about 7° to the west.

Meanwhile, the propagation parameters in the European
and Asian sectors differ considerably from those in North
America. The amplitudes of the disturbances in Europe
are larger than those in Asia. The ionospheric disturbances
observed in Europe were characterized by an average period
of 49 min and a propagation azimuth of 184° during the
three storms. While in Asia, the scale keeps on 49 min for
period and 187.5° for mean azimuth of those ionospheric
disturbances during the three storms.

3.3 LSTIDs observed in at low latitudes and the equa-
tor regions

The data from GPS arrays 4, 11, 19, 23, and 24 were se-
lected to display the propagation of LSTIDs at the low lati-
tudes and equator regions. There are abundant ionospheric
disturbances in these regions. The phenomena of distur-
bances are complex: the amplitudes peak from 13 to 45
TECU on October 29, and the duration is longer than that at
the mid-latitudes and high latitudes. Figure 7 illustrates the
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Fig. 6. Variations in dTEC time series at mid-latitudes (the range of geographic latitudes from 30° to 60°) during the October 29-31 magnetic

storms. The locations of these arrays are given above each panel. GL: geographic latitude and geographic longitude, ML: geomagnetic latitude and
geomagnetic longitude, dist: the distances between two stations. The geomagnetic indices AE and Dst are also displayed by gray lines.

waveform of disturbances according to five arrays at low
latitudes. The ionospheric disturbances of the middle and
low latitudes in the Eastern Hemisphere occurred on Octo-
ber 28 (301st day) before the SC of the storm, but they were
not detected in North America due to high geomagnetic lat-
itudes. The big fountain effect increased the TEC in both
hemispheres before the SC. Nevertheless, compared with
October 29, the TEC had extended to slightly higher lati-
tudes but had not spread to North America, and the west-
ward propagation was not as significant on October 28. The
values of the horizontal phase velocity of the ionospheric
disturbances are diverse in these respective regions. The
two dominant directions of propagation can be observed

at the low latitudes and equatorial region. The southward
propagation direction is deflected by 35° to the west, the
while propagation direction of the northward disturbances
are deflected by 354+20° to the east. We believe that the
deflection to west (Saito et al., 1998; Ogawa et al., 2002;
Shiokawa et al., 2003, 2005; Tsugawa et al., 2003; Otsuka
et al., 2004) are caused by both the westward-blowing ther-
mospheric winds and, partially, by the Coriolis force effect
attributed to the Earth’s rotation. Sawako et al. (1980) and
Afraimovich et al. (2000a, b) discussed similar phenomena
of the LSTIDs of auroral origin. Another explanation of
such a structure of a disturbance wave front was proposed
by Foster et al. (1989). According to this model, the ‘curl-
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Fig. 7. Variations of dTEC time series at low latitudes (—10° to 30°) during the multiple magnetic storms; there are no data at arrays 11 and 23 on

November 1, 2003.

ing’ of the disturbance front is an effect of a great stream of
plasma being ejected from the rotating sun-ward polar cap.
In addition, Hernandez et al. (2006) found that North Amer-
ican and New Zealand MSTIDs have a drift on the propa-
gation azimuth caused by the Coriolis effect. We obtained
the same results at both areas. Lin et al. (2005) suggested
that the very large fountain effect increased the larger TEC
in both hemispheres and that TEC extended to polar regions
and propagated westward in the subauroral region due to a
poleward electric field in the subauroral polarization stream
(SAPS). However, it is still difficult to elaborate on the
characteristics of their propagation direction from these ob-
servational results due to their large and variable deviation.

As can be seen in the observational results of our study
from arrays 4, 11, 19, 23, and 24 at low latitudes shown in
Fig. 7, the disturbances happened before the day of the mag-

netic storm’s SC and lasted from October 28 to November 1
(Doy: 301st to 305th) in varying degrees. The disturbances
correlated only slightly with the storm, but they correlated
well with the ionospheric inclination that has a large TEC
gradient and abundant electrodynamic processes in the low
latitudes region, if they were not caused by the TEC error
in the measurements in this region.

In addition, from the perturbation time series of dTEC
observed at six GPS arrays (13, 16-20) shown in Fig. 8,
we noticed an abrupt increase disturbance, similar to the
SC of the storm, at 9000—1200 UT between 0° and 75° of
east longitude. Further investigation is needed to clarify the
generation mechanism of the sharp phenomena.

3.4 The Southern Hemisphere

Due to the limited number of stations and the distribu-

tion of these GPS stations in the Southern Hemisphere, it
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Fig. 8. Variations of dTEC time series between longitudes 0—75°E from 301st to 302nd . The locations of these arrays are given in Table 1.

is difficult to determine the precise period and horizontal
phase velocity of these LSTIDs in this event. (The maxi-
mum distance between stations of one array in the Southern
Hemisphere is 5000 km; the minimum distance is 300 km.)
We only obtained the range of azimuth, between 320°—
360°-20°, which shows that the ionospheric disturbances
are northward propagating from the three selected arrays,
12, 25, and 26. The northward propagation direction devi-
ated about 30—40° to the west from array 26 with the influ-
ence of the Coriolis force. This result is the same as that
in Herndndez et al. (2006). We believe that the propagation
of ionospheric disturbances in the Southern and Northern
Hemisphere is conjugated (Otsuka et al., 2004; Lin et al.,
2005; Shiokawa et al., 2005) based on the above facts.

3.5 Phase velocity of TIDs during the storms

Several scale irregularities were detected, and an in-
crease in the intensity of medium-scale and small-scale ir-
regularities was caused by the process of dissipation of
some intense LSTIDs of auroral origin during the storms
(Afraimovich et al., 2006). Ionospheric irregularities (in-
cluding MSTIDs and small-scale ones) of different scales
showed a wide range of horizontal phase velocity (Vph).
The follow statements are based on the Vph of TIDs, as is
shown in Table 1 and Fig. 4:

1. In the North American region, the dominant Vph de-
duced from arrays 1, 2, 3, 5, and 6 during the first and sec-
ond storms shows that both LSTIDs and MSTIDs prevailed
at mid-latitude. The dominant Vph from arrays 8 and 9
was statistically smaller during the second and third storm
than that during the first storm. During the third storm, the
Vph was dominated by MSTIDs with magnitudes of about
200+£100 m/s.

2. In the European region at middle latitudes, the Vph de-
rived from arrays 15, 16, 17, and 18 was also characterized
by both LSTIDs and MSTIDs during the first and second
storm. The dominant Vph was decreased to less than 300
m/s during the third storm.

3. In the Asian-Australian region at the middle to low
latitudes, at arrays 20, 21, 22, and 23, the dominant Vph
featured with LSTIDs and showed a tendency towards a re-
duced magnitude with decreasing latitude during the first
storm. At the equatorial area, the Vph deduced from ar-
ray 24 was dominated by LSTIDs that possibly originated
from the Southern Hemisphere and propagate to the north.
During the second and third storms, the dominant Vph was
reduced remarkably at mid-latitudes, as illustrated at arrays
20-22, but it remained fairly constant (~400 m/s) at array
23. The distribution of azimuth for this array shows that
some part of this Vph was contributed from the disturbances
that propagated from the Southern Hemisphere.

4. Conclusion

The parameters of wave propagation were derived from
the multi-channel maximum entropy spectral analysis of the
optimized filters on a GPS TEC time series during the Octo-
ber 2003 storms. Based on the statistical results, we studied
the propagation and distribution of LSTIDs and MSTIDs in
different global sectors, and reached the following conclu-
sions:

1. After the SC of storms on October 29, the obvi-
ous ionospheric disturbances were detected over the entire
globe, and the amplitudes of ionosphere disturbances at lat-
itudes 60—75°N were significantly greater than those in the
region at latitudes 50-60°N. Spectral analysis indicated that
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the average period, horizontal phase velocity, direction of
dominant propagation, and life time of ionosphere distur-
bances are around 5545 min, 2004200 m/s, 180°, and 12—
16 h, respectively.

2. In the mid-latitudes, there is a high correlation be-
tween the time series of ionospheric disturbances and vari-
ations in the Dst and AE index. The amplitudes of the dis-
turbances in the North American sector were greater than
those in Europe and Asia. The ionospheric disturbances
were observed in North America with an average period
of 46 min. The dominant Vph during the first and second
storms shows that both LSTIDs and MSTIDs prevailed at
mid-latitude. However, the dominant Vph at the arrays 8
and 9 was statistically smaller during the second and third
storm than that during the first storm. During the third
storm, the Vph was dominated by MSTIDs with magnitudes
of about 2004100 m/s. There was an obvious dominating
southwestward direction for ionospheric disturbances, with
an average azimuth of 187.6° and a southward propagation
direction that deviated about 7° to the west. In addition,
the amplitudes of the disturbances in Europe were larger
than those in Asia. TIDs observed in Europe were charac-
terized by both LSTIDs and MSTIDs during the first and
second storm with a Vph of 100-800 m/s and the dominant
azimuth of 184°. The dominant Vph decreased to less than
300 m/s during the third storm. In Asia, the dominant Vph
was 400-600 m/s during the first storm, and the dominant
Vph (~200-300 m/s) decreased remarkably during the sec-
ond and third storms, with an average azimuth of 187.5°,
respectively. The deflections to the west in the southward
propagating disturbances might be subject to the influence
of the Coriolis effect.

3. The statistical result in this study reveals that the
amplitudes of ionospheric disturbances can reach approx-
imately 13—45 TECU in the low latitudes and equatorial
regions and that the durations are longer than those in the
middle and high latitudes. The ionospheric disturbances of
the middle and low latitudes in the Eastern Hemisphere oc-
curred before the SC of the storms. The average period
is around 45 min. The two dominant propagation direc-
tions, 215° and 35°, can be observed in the low latitudes
and equatorial region. The southward propagation direction
is deflected by 35° to the west, while the propagation direc-
tion of the northward disturbances is deflected by 35420°
to the east. The deflection to west may be partially caused
by the Coriolis force. Conjugatedly, the azimuth of iono-
spheric disturbances in the Southern Hemisphere, which is
between 320°-360°-20°, is calculated. Because of the in-
fluence of the Coriolis force, the northern propagating dis-
turbances are deflected 30-40° to west from array 26.
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