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We report on the first lidar observations of the nighttime mesospheric sodium layer from Gadanki (13.5°N,
79.2°E) site in India. The lidar measurements of upper atmospheric sodium made on 6 nights between the 10
and 16 January 2005 are presented in this paper. The Gadanki lidar uses a Nd:YAG pumped dye laser, tuned to
the sodium D2 line (589.0 nm), as a transmitter. Using the system, sodium number density profiles have been
obtained with a vertical resolution of 300 m, a time sampling of 120 s. During the initial six nights of observation,
the peak sodium concentration is found at a height of 95 km, and the top side scale height is usually about 2 km.
On three occasions, a secondary peak was observed at heights between 87 and 92 km. Measurements at Gadanki
site indicate that the mean sodium abundances appear to decrease after sunset and increase before sunrise. The
average nocturnal columnar abundances were in the range 2-8.9x 10° cm~2. The nightly mean centroid heights
range between 92.9 and 95.2 km and the rms widths vary between 4.3 and 4.9 km. On some nights, wave like
structures in the sodium layer were observed with wavelength of about 3 km and downward phase velocities of
about 1 km/hr. Four sporadic layers were observed during the initial 54 h of observation. The formation and
decay of an intense sporadic sodium layer was observed on the night of 11 January 2005. The layer was found to
develop between 93 and 90 km altitude and appear between 0230 and 0430 LT.
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sodium layer.

1. Introduction

It is well known that metallic sodium atoms exist in the
neutral state in the upper part of the atmosphere (Slipher,
1929). Ablation of meteorites and comet dusts is believed
to be the dominant source for the formation of sodium (Na)
and other metal layers in the mesosphere (Bills and Gard-
ner, 1990; Clemesha et al., 1992; Alpers et al., 1993). The
mesospheric Na layer generally appears in the altitude range
of 80 to 110 km with a peak close to the mesopause where
the Na number density is of the order of 103 to 10* cm™3
(Richter et al., 1981).

Since the mesospheric region is difficult to measure, be-
ing too low for satellites and too high for balloons and
rocket flights are too infrequent, most studies rely on
remote-sensing techniques. Over the past three decades,
resonance lidar systems have been used to study most of
the alkaline metals and dynamics of the mesopause region.
The metal layers are useful for remote sensing as they can
be excited at specific wavelengths to emit resonance fluo-
rescence. For sodium the resonant wavelength is 589 nm,
bright orange in color, which matches the frequency of Na
atomic transition from the ground state to the first-excited
state. The resonance scatter occurs when the absorbed ra-
diation is re-emitted by the Na atoms. The resonance scat-
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tering is one of the most efficient scattering processes in the
atmosphere. It is noted that the Rayleigh backscatter cross-
section at 589 nm wavelength is about 3x 107! m? (Nico-
let, 1984), while the Na-resonance cross-section of the D,
line is about 107°—10~'¢ m? (Fricke and von Zahn, 1985).
This shows that the Na cross-section is about 15—16 orders
of magnitude larger than the Rayleigh or molecular cross-
section. Because of this reason, the mesospheric sodium has
become the most frequently studied metallic component of
the Earth’s atmosphere.

Resonance lidar observations of the atmospheric sodium
layer have been made by numerous groups at different lo-
cations. These studies show that the mesospheric sodium
layer is subject to seasonal and shorter term variations,
which differ significantly from location to location (Kwon
et al., 1988; Clemesha et al., 1992; Kane et al., 1993;
Clemesha, 1995; Nagasawa and Abo, 1995; Clemesha
et al., 1999; Kane et al., 2001; Yi et al., 2002). The
sodium layer is also an excellent tracer of the atmospheric
wave motion. Perturbations generated by atmospheric tides
and gravity waves have been detected by various workers
(Batista et al., 1985; Gardner and Shelton, 1985; Gardner
and Voelz, 1987; States and Gardner, 1999).

Much of the information about the mesospheric atomic
sodium layer has been obtained from lidar measurements
around the globe. However, the measurements in the tropi-
cal region are relatively sparse in comparison to those avail-
able at mid and high latitudes. Though there are some lidar
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Table 1. Main specifications of sodium lidar.

Transmitter

Pump Laser
Continuum, USA make Power Lite model 8020

Repetition rate
Energy (per pulse)
Laser beam size
Beam divergence
Pulse width
Line width

20 Hz
200 mJ max
8 mm
0.5 mrad
6 ns

1cm™!

Dye Laser
Continuum, USA make Jaguar Narrow scan model D9ODMA

Tunable range
Tuning mechanism
Dye used
Energy (per pulse)
Conversion efficiency
Grating resolution
Precision
Divergence
Line width
Stability
External beam expander
(CVI, USA)
Divergence

(After beam expander)

330 — 740 nm
Dual Grating
Sulfo Rhodamine B (Kiton Red)
25 mJ (normal)
20 percent maximum
2400 lines/mm
1 pm
Set to 1.0 mrad
0.05 cm™! or 2 picometer
0.05 cm~! °C~! hours™!
10X

100 prad

Receiver

Telescope diameter

750 mm, Newtonian type

Field of View 1.0 mrad
IF filter CW 589.0 nm
IF filter FWHM 1.0 nm
Peak transmission 60 percent
PMT 12 dynode, low dark current (1 nA), not peltier cooled type
PMT R3234 — 01, Head-on type, Hamamatsu, Japan make
Quantum efficiency 8 percent
Gain of PMT 2.5 x 107 units
Data acquisition system
Type Single photon counting
Model EG and G Ortec, MCS-plus
Maximum counting rate 100 MHz
Bin width 2us
Number of bins per pulse 1024

observations of the mesospheric sodium that have been re-
ported from a few low latitude stations such as Mauna Kea,
Hawaii (20°N) (Kwon et al., 1988) and Arecibo, Puerto
Rico (18°N) (Beatty et al., 1989), Kototabang, Indonesia
(0.2°S) (Shibata et al., 2006), however, there no measure-
ments at other lower latitudes. Another important feature
of the sodium layer is the event of sporadic sodium, occur-
rence of sharp sodium densities in short time, whose for-
mation mechanism is still not understood. However, the re-
cent report by Clemesha ef al. (1998) show that the occur-
rence rate of sporadic Na layers at a southern hemisphere
low latitude site is quite different compared to the north-
ern hemisphere low latitude location (Kwon et al., 1988).
Thus, the measurements of mesospheric sodium at the least

probed low latitude sites are important and valuable to un-
derstand the latitudinal behavior and dynamics of atmo-
spheric sodium layer.

Recently a resonant-scatter lidar system has been setup
at the National Atmospheric Research Laboratory (NARL),
Gadanki (13.5°N, 79.2°E; dip 12.5°N, 6.3° magnetic lati-
tude), to study the aeronomy of the mesopause region over
this tropical low-latitude site on regular basis. Using the li-
dar system, we have observed Na layer at altitudes between
80 and 105 km during January 2005 for the first time over
the Indian sub-continent and also observed sporadic forma-
tion of thin dense layers of sodium during late night hours.
In this paper, we present the preliminary observations made
during January 2005.
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Fig. 1. Photon count profile obtained by integrating the laser returns from
2400 shots.

2. Equipment setup

A state-of-the art Rayleigh and Mie backscattering lidars
(Bhavani Kumar et al., 2000, 2001, 2006) were set up at
Gadanki (13.5°N, 79.2°E) in 1998 under the Indo-Japanese
collaboration programme. Recently the lidar system was
augmented with the capability of probing the mesospheric
sodium. The broadband Na lidar system at Gadanki was
setup in a mono-static configuration. The power-aperture
product of the lidar system was approximately 0.35 W-
m?. The detailed specifications of lidar system are given
in Table 1.

The transmitter consists of a tunable pulsed dye laser
pumped by a frequency-doubled Nd: YAG-laser. The pulsed
dye laser is tuned to the D, resonant absorption line of Na
at a wavelength near 589 nm. The dye laser employs a dual
grating system that is controlled by a computer and which
enables a rapid selection of transmitted wavelength. The
line width of laser is about two picometer. The dye laser is
pumped with 200 mJ at 532 nm to get an output pulse en-
ergy of 30 mJ at 589 nm. The dye laser uses Kiton Red as
laser medium. The laser beam is expanded and transmitted
into the atmosphere using a steering mirror. The receiv-
ing system uses a 750 mm Newtonian telescope with field
optics and an interference filter. We employed photomulti-
plier tube (PMT) for photon detection. The output pulses of
the PMT are amplified by a broadband amplifier and then
fed into a PC based photon counting multichannel scalar
(MCS). The MCS counts the pulses in successive time bins.
Each time bin is set to 2 us, corresponding to a vertical res-
olution of 300 m. The photon counts are accumulated for
2400 shots that corresponding to a time resolution of 120 s.
A typical photon profile is shown in Fig. 1.

The resonant scattering from the Na layer is clearly seen
between 80 and 100 km. The strong photon counts at 30—
60 km heights are essentially due to the Rayleigh-scattering
from air molecules. A sudden fall in signal counts below 12
km was due to the application of electronic gating to PMT.
The observed nonzero count rate at 60—80 km and above
110 km altitude is caused by background noise which in-
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Fig. 2. Height profile of Na number density derived from the photon count
profile shown in Fig. 1. The horizontal bars represent statistical error in
the retrieved Na number density. The error bars shown are mentioned
for the selected measurement points.

cludes any light sources other than the emitter light such
as airglow emission, starlight, detector dark counts. It may
be mentioned here that the background signal returns much
above Na layer whose count level was stable and constant
over the integration period is utilized in the Na density re-
trieval. The Na number density profiles are determined with
standard computational technique given by Gardner (1989).
The computational method involves the processing of pho-
ton count data for background noise correction and range
normalization. The normalization altitude is usually taken
above the background aerosol layer, which means above
30-35 km altitude. From the processed data and by using
reference temperature and pressure for January from stan-
dard atmosphere model (CIRA 86), we calculated the abso-
lute Na density profiles. However, the presence of sodium
layer at mesospheric height causes the differential extinc-
tion to the laser beam transmission. Hence, a differential
extinction correction is required for the retrieved Na col-
umn densities (Fricke and von Zahn, 1985; Simonich and
Clemesha, 1983).

Figure 2 shows the retrieved Na number density profile
with the differential extinction correction. It has been ob-
tained from the photon count profile shown in Fig. 1. The
Na density profiles are obtained with a vertical resolution
of 300 m and a time sampling of 120 s. The statistical er-
ror in the retrieved Na number density is shown in Fig. 2
as horizontal bars at selected altitudes over the Na num-
ber density profile. The detailed system and method of the
mesospheric Na number density computation and the statis-
tical error from the NARL sodium lidar is given elsewhere
by Bhavani Kumar et al. (2007).

3. Results and Discussion

The resonance lidar measurements of mesospheric
sodium were made at Gadanki on 6 days between the 10
and 16 January 2005. During most of the measurement, pe-
riod sky conditions were clear. The time periods over which
the lidar was operated are shown in Table 2.
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Table 2. Timing details of Na layer measurements at Gadanki site during
January, 2005.

Date Start time  End time  Total duration (hrs)
10 January 2005 22.21 02.27 04.06
11 January 2005 18.47 05.51 11.04
12 January 2005 19.03 05.54 10.51
13 January 2005 19.03 06.00 10.57
15 January 2005 21.15 05.53 08.38
16 January 2005 19.57 05.55 10.58

Parameters such as profile structure, layer properties,
wave parameters and formation characteristics of sporadic
thin dense layers generally characterize the mesospheric Na
layer. The profile structure of mesospheric Na layer shows
the distribution of sodium in the layer, top and bottom scale
heights and the altitude of peak sodium. The layer param-
eters such as column abundance (C,), centroid height (z,)
and rms width (o ,) provide the structure of the mesospheric
sodium layer. Wave parameters inform the details of propa-
gating wave period, velocity and wave number. Character-
istics of sporadic formation of thin dense layers of sodium
include their time of occurrence, duration, thickness, alti-
tude and maximum density.

3.1 Profile structure

Figure 3 shows the average sodium profile for the en-
tire measurement period. The mean sodium profile starts
to appear around 80 km. During the measurement period,
only once, we see sodium lower than this but not below 75
km. The layer reaches its peak close to 95 km and then
falls to near zero value around 105 km. The peak density
value is around 4000 cm~3. The measured profile struc-
ture of the sodium layer is very similar to that observed
at other locations (Kirchhoff and Clemesha, 1973; Cleme-
sha et al., 1998). Above the peak, the vertical gradient
in sodium number density was seen with a smaller scale
height, which is about 2 km. Photo-ionisation has been
suggested as loss mechanism which produce a steep top-
side by removing atoms as they diffuse upwards (Hanson
and Donaldson, 1967). Above 90 km, the Na layer is con-
trolled by ionic rather than neutral chemistry (Plane, 1991).
On the bottom side of the layer, the sodium density falls off
less rapidly. However, the sodium profile measured on 10
January 2005 shows an unusually small-scale height, with
a steep gradient, on the underside of the sodium number
density between the heights of 83 and 85 km. A rapid de-
crease in the atomic Na number density on the underside of
the layer is mainly caused by the corresponding decrease in
atomic H and O (Clemesha et al., 1995). With respect to the
bottom side of the sodium layer, a number of loss mecha-
nisms for the removal of sodium have been suggested in the
literature: these include oxidation, mainly by O, and O3, the
formation of cluster ions, and attachment of aerosols parti-
cles (Richter and Sechrist, 1979; Hunten, 1981; Kirchoff et
al., 1981; Granier et al., 1985; Plane, 1991; Clemesha et
al., 1995). The top vertical gradient in sodium density is
quite similar to the observations reported by Kirchhoff and
Clemesha (1973) at 23°S and Clemesha ez al. (1998) at 2°S.
The centroid height for the mean profile shown in Fig. 3 is
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Fig. 3. Mean vertical distribution of the mesospheric sodium measured at
Gadanki during January 2005.
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Fig. 4. Mean Na profiles for 10, 11, and 12 January 2005 showing double
peaked structure.

93.0 km. This is 900 m above the Sao Jose (23°S) annual
mean and 500 m higher to the measured mean at Alcantara
(2°S) (Clemesha et al., 1998).

In Fig. 4, we show the average profiles for three con-
secutive nights 10, 11, 12 January 2006. These profiles
show a double peaked structure with primary layer peak
at about 95 km. The secondary peak in sodium number
density was observed at heights between 87 and 92 km.
The mesosphere is a region of complex photochemical and
dynamic interaction. The distribution of sodium strongly
depends on background distribution of the minor species,
such as O3, O, and H (Clemesha et al., 1995; Xu et al.,
2003). It is also affected by vertical transport and diffu-
sion. The lower peak perhaps might be due to the con-
tribution of the mesospheric photochemistry. Sometimes
horizontal and vertical motion fields in the 70-90 km re-
gion might transport atomic oxygen downward producing
an increase in the abundance of this constituent in this re-
gion. The lifetime of atomic oxygen is of the order of a day
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Fig. 5. Mean Na profiles for 13, 15, and 16 January 2005 showing single
layer structure.

or more in this region so that vertical motions as small as
1-10 cm s~! would be expected to be an important factor
in determining the atomic oxygen abundance (Geisler and
Dickinson, 1967). Since atomic oxygen is involved in re-
ducing the sodium compounds to atomic sodium, this might
be expected to cause a corresponding increase in the atomic
Na number density (Clemesha et al., 1995). Thus, the sec-
ondary peak of atomic sodium observed could possibly be
due to an abrupt increase in atomic oxygen abundance in
this region. However, observations and numerical model
simulations also indicate that sodium profiles often expe-
rience time-dependent large perturbations that are thought
to be due to transport associated with gravity waves (Gard-
ner and Voelz, 1987; Clemesha et al., 2001; Xu and Smith,
2003).

We observed a considerable night-to-night variability in
the structure of measured mean sodium profiles. Figure 5
shows the average profiles for three subsequent nights 13,
15, 16 January 2006. The profiles show a single peak at
95 km, with a gradual decrease in number density above
and below this height. The peak sodium number densities
for these profiles appear between 2000 and 2500 cm™3.
The profiles show a variation in the peak position of the
layer. These profiles were obtained during the time intervals
1903-0600, 2115-0553 and 1957-0555 LT on 13, 15 and
16 January, respectively. It may be mentioned here that
the atmospheric waves can cause distortions on the mean
sodium layer structure (Gardner and Voelz, 1987; Clemesha
et al., 2001). It appears that the structural changes in these
profiles may be partly due to perturbations by atmospheric
waves such as tides and gravity waves.

3.2 Na layer properties

The structure of the mesospheric Na layer can be charac-
terized by the column abundance (C,), Centroid height (z,),
and rms layer width (0,). The layer parameters are cal-
culated from the different moments of the mesospheric Na
layer as given by Gardner et al. (1986). Figure 6 shows the
average column abundance, centroid position and width of
the Na layer for the entire observational period. Figure 6(a)
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Fig. 6. Time evolution of Mean Na layer parameters derived from sodium
measurements at Gadanki during January 2005. (a) Column abundance
(Cop), (b) Centroid position (zp), and (c) rms layer width (o¢).

depicts the temporal variation of C, for January. The total
Na content is found to vary between 2x10° and 8.9x 10’
atoms cm 2. It shows a variation of more than 400 percent.
Simonich et al. (1979) found an average nocturnal variation
by a factor of 2 in the sodium column abundance at 23°S.
Gardner et al. (1986) reported more than 200 percent vari-
ation in abundance over a midlatitude site. The best part of
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the lidar measurements at Gadanki site shows a steady fall
in mean column abundance after sunset and a slow raise to-
wards early hours of the day. This means that the total Na
content decreases during the night and reaches minimum
value during midnight and increases towards sunrise at early
hours. The observed nighttime variation could be the mani-
festation of semidiurnal variation in the sodium layer. This
could be perhaps the existence of solar-atmospheric tides
in the layer. It is well known that atmospheric tides play
an important role in the mesopause region (Chapman and
Lindzen, 1970). A number of studies from a low latitude
location (Clemesha ef al., 1982; Batista et al., 1985; Cleme-
sha et al., 2002) reported the presence of 12-hour oscillation
in the sodium layer. Photochemistry in nighttime, dynam-
ics or both may be responsible for the observed variations
in the total Na content. Variations in the atomic oxygen
number density could be the probable cause for such vari-
ations in the sodium content. However, dynamics associ-
ated with the layer through horizontal transport may also
play a role in the observed variations. Batista ez al. (1985)
concluded that the semi-diurnal oscillations observed in the
atmospheric sodium layer at 23°S were mainly induced by
atmospheric tides. They were unable to identify any def-
inite chemical effects responsible for such oscillations in
the sodium layer. However, States and Gardner (1999) re-
ported from midlatitudes that the variations observed in the
sodium layer by them are forced by photochemical effects
and not by tidal influenced. The detailed study of these os-
cillations, from the present data is restricted by the fact that
sodium measurements with our lidar were obtained only
during nighttime, for which the length of data possible is
always less than 11 hours. Hence, it is too early for us to
identify the cause for such observed variation in the total
Na content. Figure 6(b) presents the mean variation of the
centroid (z,) position of the layer for January. The move-
ment of the sodium layer centroid is a very important pa-
rameter to consider for understanding the layer dynamics.
The layer mean centroid position alters between 92.9 and
95.2 km. The amplitude of the centroid movement is 2.3
km over the average period of measurement of the night in
January. The average rate of variation is around 10 cm s},
which is typical amplitude of semidiurnal wind reported in
the layer (Batista et al., 1985). Figure 6(c) shows the mean
variation of rms width of the layer (o,) over the mean pe-
riod for the six nights on which observations were made.
The mean rms widths of the layer vary between 4.3 and
4.9 km. The mean layer width has a peak-to-peak variation
of about 600 m. It appears that the layer width has an in-
phase relation with the sodium column abundance, but an
anti-phase relation with the centroid height (Gardner et al.,
1986). However, there is a significant wave nature appeared
in mean layer width variation. Due to short and long period
wave activity such as gravity waves and tides, the structure
of the nocturnal layer changes substantially throughout the
night. Variations of over 400 percent in abundance, more
than 2 km in centroid height, and about 600 m in rms width
have been observed within the time span of nocturnal ob-
servation.
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Fig. 7. Time series of sodium density profiles for 10 January 2005.

Inclined lines represent apparent phase propagation.

3.3 Wave parameters

It is generally accepted that the mesospheric Na layer is
an excellent tracer of the atmospheric wave motion. The
distortions of meteor trails, variations in mesospheric den-
sity and temperature profiles, and the study of upper atmo-
spheric disturbances led to the identification of atmospheric
buoyancy waves or internal gravity waves (IGWs) as an im-
portant feature of dynamics in the upper mesosphere and
lower thermosphere (Hines, 1974). These waves are re-
ferred to as internal gravity waves because the dominant
restoring force on a displaced parcel of air is gravity and
the vertical density gradient of the atmosphere allows them
to propagate vertically through the medium. Distortions
characteristic of the influence of IGWs on winds, density,
and temperature give a reliable set of criteria from which
to identify their presence. The observed features of meteor
trail distortions outlined by Hines (1974) are specific to al-
titudes between 80 and 110 km. A time series of 2-hour
continuous observation of mesospheric Na layer on 10 Jan-
uary 2005 is shown in Fig. 7.

The time resolution of the measurement shown in Fig. 7
is 120 s. The time evolution of perturbations of sodium
layer due to gravity wave activity is evident. These pertur-
bations are caused primarily by the vertical displacement
of the layer due to vertical component of the gravity wave.
Planetary and gravity waves generated in the troposphere
propagate into the mesosphere, creating spatial modulations
of sodium density profiles as well as temporal variations
in sodium column density of the short time periods (Gard-
ner and Shelton, 1985). To identify IGW signatures in the
measured Na density, we subtracted the background den-
sity from each Na profile. It has been shown that a rea-
sonably accurate model for the unperturbed Na layer (back-
ground density) is a Gaussian profile (Gardner and Voelz,
1987). Figure 8 shows the Na density perturbation pro-
files, which were obtained by background subtraction and
normalization. The wave number, period, and amplitude of
IGWs can be inferred from Na perturbation profiles (Gard-
ner and Voelz, 1987). A simple Fourier transform of the
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Fig. 8. Perturbation profiles derived from Na profiles for 10 January 2005
averaged for 20 min. during the time interval between 0100 and 0200
LT.

perturbation produces a power spectrum that averaged over
a time period. The power spectrum comprised of three
terms: the first one indicates a low-frequency lobe in the
spectrum. The second term represents the spectral signa-
ture of the interactive gravity wave, which is proportional to
the square of the wave amplitude. This is shown as a local
minimum between two peaks (Gardner and Voelz, 1987).
The last term represents the second harmonic component of
the gravity wave in action (i.e. generated due to non-linear
interaction).

We have applied this analysis in a 20 min. time window,
between 0100 LT and 0200 LT, of the 10 January observa-
tions. The width of the Na layer sets the maximum vertical
wavelength of the wave interacting with the Na layer. In the
present study, the maximum vertical wavelength is about
15 km. The altitude resolution decides the minimum wave-
length detectable. In this study, the altitude resolution is
300 m. The calculated mean power spectrum is shown in
Fig. 9. The feature of the principal wave interacting with
the Na layer is evident as the local minimum between the
first two peaks on the side of the low frequency part of the
spectrum, which indicates the characteristic vertical grav-
ity wave number ( m, = 0.31 km~!"). This corresponds
to approximately 3.2 km wavelength. This wavelength is
characteristic wavelength (A, = 2m/m,). The other notch
between weaker peaks is at about twice the value of the in-
teractive gravity wave number, which corresponds to 0.62
km™!, generated due to non-linear process. The observa-
tions of vertical wavelengths of order 3 km have been ob-
served using lidars, radars and rockets at the mesopause re-
gion (Blood et al., 1988; Williams et al., 2006). Usually
long period waves such as tides are associated with shorter
wavelengths (Williams et al., 2006). The phase velocity of
the wave is estimated by dividing the vertical distance the
individual wave fronts travel by time between successive
observations. The vertical velocity of the wave can be esti-
mated by looking at the motion of the successive peaks, as
shown by the inclined lines in Fig. 7. The apparent phase
velocity is about 1.0 km h™! or 30 cm s~!, which is consis-
tent with the reported values of the semidiurnal tide in Na
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Fig. 9. Power spectrum for the perturbation profiles shown in Fig. 8.

layer (Simonich et al., 1979; Kwon et al., 1987).
3.4 Observation of Sporadic Na layer

An interesting and current topic of interest with the meso-
spheric Na layer is the sporadic occurrence of thin layers of
enhanced number density superposed on the regular back-
ground layer. These sporadic layers generate sharp sodium
abundance peaks of full width at half maximum (FWHM)
typically between several hundred meters and less than a
few km thick with number density equal to or greater than
twice that of the background Na layer. These layers persist
for periods a few minutes to several hours. These sporadic
layers appear to be related to the ion layers known as spo-
radic E, or Es, and for this reason are sometimes referred
to as Na, layers. We have followed the objective method
and the criteria given by Miyagawa et al. (1999) for identi-
fication of Nay layers in the mesospheric Na layer. Accord-
ingly, in the initial 6 nights of observation, during 54 hours
of Na measurements, a total of 4 Na, layers were observed.
The statistical details of the observed Nas layers are listed
in Table 3.

On the night of January 10, a sporadic layer was seen
between 2200 and 0000 LT and was persisted for about an
hour. The altitude of peak number density of the layer was
seen at 96.4 km with a strength factor of about 4.5. von
Zahn and Hansen (1988) defined a parameter called strength
factor to classify the intensity of the sporadic layer. It is
the ratio of maximum peak number density of the sporadic
layer to the number density of the normal layer at the alti-
tude of the peak of the sporadic layer. Figure 10 shows the
altitude/temporal variation of the Na layer during the night
of January 11, 2005. On this night, a regular Na layer was
seen at the beginning of the experiment as a broad layer ex-
tended from 80 to 100 km. At 0232 LT a sporadic layer
was formed at about 93 km. Subsequently this sporadic
Na layer was observed continuously for almost 2 hours till
early morning hours. The peak number density of the spo-
radic sodium layer is plotted versus time in Fig. 11. The
peak of Na layer moved downward from about 96 km to
90 km, with a constant velocity of 24 cm s~!. The altitude
of this layer is plotted versus time in Fig. 12.
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Table 3. Details of sporadic sodium layer observation.
Slno  Night observation  Period of Nag layer ~ Duration Of  Time of Max.  Alt. of Max. FWHM (km) Max.peak Strength
in January 2005 Observation (LT) SSL (hh:mm)  Density (LT)  Density (km) Density (cm™3) factor
1 10-11 22.21-23.38 01.17 22.35 96.77 2.1 10296 4.5
2 11-12 02.32-04.32 02.00 03.39 91.68 1.5 29909 7.4
3 15-16 21.15-22.24 01.09 22.00 95.28 1.0 14447 11.9
4 16-17 21.16-00.37 03.21 23.40 95.87 3.0 4466 6.1
Na density 98
Date : 11 January 2005 (cm--”, | Date : 11/12.01.2005
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Fig. 10. Altitude/Temporal variation of Na density observed on the night
of 11 January 2005.
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Fig. 11. Temporal variation of the density at the peak of the dominant
sporadic Na layer observed on the night of January 11, 2005, at Gadanki
site.

When the layer descended to an altitude of 91.6 km at
0345 LT, the peak number density reached a maximum
of about 29,900 cm™—3. In the entire measurement period,
the observed Nay layer has the remarkable peak sodium
distribution. Figure 13 shows the peak sporadic sodium
layer occurrence on the background Na layer observed on
the night of 11 January, 2005 at 0339 LT. On the night
of January 15, a strong sporadic layer occurrence at 95 km
altitude was observed between 2100 and 2300 LT with a
strength factor of about 12 and was observed for about one

LOCAL TIME (hrs)

Fig. 12. Temporal variation of the altitude of the dominant sporadic Na
layer observed on the night of January 11, 2005, at Gadanki site.
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Fig. 13. Peak sporadic layer formation on the background Na layer

observed on the night of 11 January, 2005 at 0339 LT.

hour time period.

The peak number density of the sporadic sodium layer is
plotted versus time in Fig. 14. Figure 14 shows a narrow
and concentrated sodium distribution in to a layer of a few
hundred meters thick. On the night of January 16, a rela-
tively long-lived sporadic layer was observed at an altitude
of about 96 km. The layer was observed between 2100 and
0100 LT for about 3 hours. The strength factor of the layer
was about 6.
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Table 4. Details of meteor induced enhanced sodium observation.
Slno  Night observation Period of enhanced Duration  Time of Max  Alt. of Max. FWHM (km) Max peak Density
in January 2005 Na layer observation (LT)  (hh.mm) Density (LT)  Density(km) Density (cm™3) ratio
1 1213 02.34-02.38 00.04 02.38 95.87 2.50 2680 2.8
2 12-13 03.34-03.38 00.04 03.38 95.58 2.75 2641 2.8
3 1213 04.05-04.09 00.04 04.09 94.98 2.75 2606 32
4 1213 04.49-04.55 00.06 04.51 93.78 3.00 2469 3.0
110 12-13 JANUARY, 2005
15-16 JANUARY, 2005 110 0238 LT (95.87 km)
oo, —=—02: . m
105 22:00 LT (95.28 km) — o -03:38 (95.58 km)
105 - 04:09  (94.68 km)
100 4 (93.78 km)
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Fig. 14. A narrow sporadic layer formation on the background Na layer
observed on the night of 15 January, 2005 at 2200 LT.

Lidar observations at low latitudes indicated that the oc-
currences of sporadic Na layers were usually in the upper
part of the normal sodium layers and they often showed a
downward motion with time (Batista et al., 1991). Dynam-
ical effects associated with tides, gravity waves and turbu-
lence may also contribute to the formation of sporadic Na
layers (Clemesha et al., 1988; Zhou and Mathews, 1995).
The sporadic layers in mesospheric Na have been observed
at other locations, but their occurrence characteristics seem
to vary significantly between the places. Kwon et al. (1988)
reported at Mauna Kea (20°N) that 16 Na, layers were seen
in 30 h of observations. However, Clemesha et al. (1998)
observed only 1 layer in 27 h measurements at Alcantara
(2°S). The reported observations suggest that the occur-
rence frequency of Na; layers decreases as we move from
the northern hemisphere low-latitudes towards the southern
hemisphere low latitudes. Our observations seem to support
the above conclusion, because the observed 8 Na; layers
during nearly 54 h of measurements at Gadanki (13.5°N)
fall between the reported observations at Mauna Kea (20°N)
and Alcantara (2°S). However, recently Nagasawa and Abo
(1995) suggested that the occurrence rate of Nas layers at
any location might be related to its magnetic rather than
to geographic latitude. Studies on sporadic Na layers have
also shown that there is considerable experimental correla-
tion for the occurrences of the mesospheric sporadic Na and
sporadic E layers (von Zahn and Hansen, 1988; Cox and
Plane, 1998; Clemesha et al., 1999). It is suggested that the

Na CONCENTRATION (cm™)

Fig. 15. Observation of narrow sodium layer formations on the night of
12-13 January 2005 due to meteorite ablation.

neutralization of the Na ion reservoir in the Es layers is the
source of the neutral Na atoms. However, the origin of spo-
radic sodium layers is still uncertain and involves a more
dynamical process (Clemesha, 1995).
3.5 Observation of meteoric induced enhanced Na
layer

It is generally believed that the ablation of meteoroids
is the only source of metal atoms at the mesopause alti-
tude region. The invention of resonance lidars has made it
possible to measure the densities of different metal atoms
quantitatively with high vertical and temporal resolution,
even inside the trail of an individual meteoroid (Kane and
Gardner, 1993; Grime et al., 1999; von Zahn et al., 1999;
Drummond et al., 2001, 2002). In our observations, on the
night of January 12, four narrow layers of atomic sodium
enhancement observed with in a time interval of 3 hours,
between 0200 and 0500 LT, as shown in Fig. 15. These lay-
ers strength factors appeared in the range between 2 and 3.
However, short lifetime, about 4 to 6 minute, is found as the
characteristic of these layers. The altitudes of peak number
density are appeared between 93 and 96 km. The observa-
tional details of the enhanced Na layers are listed in Table 4.
We understood that the formation of these narrow layers in
short period, such as a few seconds to a few minutes, prob-
ably due to advection of meteor trails across the lidar field
of view (FOV). In particular, observations during meteor
showers such as the prominent Leonids have widely been
used to demonstrate the influence of single meteors on the
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local metal layer (Hoffner et al., 1999, 2000; Kruschwitz
et al., 2001). From such experiments it has become clear
that single meteoroids can, in many instances, have large
impacts for a short period on the local metal layers.

4. Conclusion

The first broadband resonance lidar observations of the
nighttime sodium layer made on six nights between 10 and
16 January 2005 at Gadanki, a low latitude site, in India
have been reported in this paper. During the 6 nights of the
initial observational period, nearly 54 hours of Na measure-
ments were obtained. The sodium profile starts to appear
around 80 km and rises to a peak close to 95 km and then
falls to near zero around 105 km. The topside scale height
is always less than 2 km. On three occasions out of a total
of six nights of measurements a secondary peak in sodium
number density was observed at heights between 87 and
92 km. The mean sodium column abundances were in the
range of 2-8.9x10° cm~2. The measurements also show
the effects of strong tidal perturbations, presumably with a
dominant downward propagating semidiurnal tide, but the
detailed analysis is not possible due to limited local time
coverage. We have seen wave like structures in the sodium
layer with typical wavelength of 3.1 km and with downward
phase velocities of about 1 km h~!. We have also seen the
occurrence of sporadic Na layer over the background meso-
spheric sodium. A total of 4 sporadic layers were observed
during the 54 h of measurement period. Formation and de-
cay of a sporadic layer observed on the night of January 11,
2005, which persisted for a period of about 2 hours, was
discussed. The formation of sporadic Na layer developed
during downward motion of mesospheric Na layer. Our ob-
servations of sporadic Na layer are similar to that reported
over other low latitudes. Meteorite induced Na enhance-
ment, which was observed on 12 January 2005, was also
discussed.

5. Future plans

The paper presents the first results from the broadband
Na lidar setup at NARL, Gadanki, India. The system has
successfully demonstrated the capability to detect waves
and other dynamical phenomena such as sporadic layers in
the mesopause region. At present, the lidar system con-
figuration allows laser operation in resonant scatter mode
only, due to constraints in the laser power distribution. In
future, it is planned to operate both the Rayleigh and res-
onance modes simultaneously. This augmentation helps to
understand the wave dynamics in the nocturnal atmosphere
covering 30 to 105 km altitude range. Moreover, the exten-
sion of Na lidar operation to daytime enables the study of
tides in the mesopause region. By narrowing the linewidth
of laser, it is also possible to scan the Na D, spectrum, from
which mesospheric temperatures can be obtained.
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