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Thermal and hydrostatic structure of the protoplanetary nebula exposed to
stellar radiation and stellar wind from the central star
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A model for a nebula exposed to the radiation and stellar wind from the central star has been examined. T Tauri
stars commonly have disks and stellar wind, though we have no theoretical model on nebular thermal structure
under the wind. The aims of this paper are to propose a theoretical nebula model, and to perform mathematical
analysis on the geometrical structure and temperature distribution of a passive nebula. Its geometrical surface is
determined by the dynamical pressure of the stellar wind. The nebular surface is assumed to be a black body
surface, heated by the incident stellar photon flux. We obtain temperature from the equation of energy balance
between the stellar radiation upon this nebular surface and the black body radiation from it. The temperature
distribution in passive disks is insensitive to the wind strength and is almost identical even if the wind strength
changes by five orders of magnitude. The nebula temperature is not expressed by a simple power law function of
the distance from the central star. This is an important difference between our results and those of previous works.
Since the nebula surrounding a T Tauri star is influenced by stellar wind, our model may be more appropriate
than any other simple single power law temperature for passive protoplanetary nebulae.
Key words: Protoplanetary nebula, stellar wind, passive nebula.

1. Introduction
According to the standard model of planetary formation

(Safronov, 1969; Hayashi et al., 1985), planets were formed
in a disk-like nebula surrounding the Sun in the pre-main-
sequence stage. Nebulae surrounding pre-main-sequence
stars have been studied through astronomical observations
of IR emission excess from T Tauri stars (e.g., Adams et
al., 1987; Rydgren and Zak, 1987; Beckwith et al., 1990).
From observational data, it has already become clear that
nebulae have two different phases, namely, an active phase
and a passive phase.
Nebulae in an active phase emit energy on their own and

show characteristic features in their spectral energy dis-
tribution (Lynden-Bell and Pringle, 1974; Adams et al.,
1987, 1988). In order to reproduce observational features,
a number of researchers have studied disk accretion models
(e.g., Lin and Papaloizou, 1985; Papaloizou and Lin, 1995)
in which the emitted energy is supplied from the gravita-
tional energy released by mass accretion toward the cen-
tral star. These studies tell us that the mass accretion rates
in active nebulae are in the range of 1 × 10−8M� yr−1 to
1 × 10−5M� yr−1 (e.g., Carr, 1989; Hartigan et al., 1995;
Boss, 1996; Kenyon et al., 1996; Calvet, 1997). Such
strong mass flow toward the central star continues for a few
million years (e.g., Hartmann et al., 1998). Nebulae cease
the emission and only reflect radiation from the central star.
This means that disk nebula comes into a passive phase and
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settles in a hydrostatic equilibrium state. In such a passive
nebula, the planetary formation process starts (Hayashi et
al., 1985).
In the passive phase, the nebular temperature is essen-

tially determined by the irradiation from the central T Tauri
star. Kusaka et al. (1970, which is called K70 hereafter)
first studied the temperature distribution of the passive neb-
ula assuming the following situations :

1) The nebula is optically thick and hydrostatic;
2) The nebula is isothermal vertically;
3) The height of a nebular black body surface coincides

with the scale height of the nebula;
4) The temperature is determined by the energy balance

between irradiation from the central star and black
body radiation from the nebular surface.

Another temperature model of the passive nebula disk
was presented by Chiang and Goldreich (1997, called CG97
hereafter). Although CG97 considered the energy balance
on a surface to be the same as K70, they took into account
an optically thin, slightly high-temperature region on the
top of the nebula in order to reproduce double peak features
in SED (e.g., Rydgren and Zak, 1987; Beckwith et al.,
1990). Furthermore, they supposed that exactly half of the
radiation reprocessed by the surface layer escapes directly
into space, with the remaining half being transfered towards
the disk interior. After CG97, Chiang et al. (2001, called
C01 hereafter) refines the model of CG97 improving the
numerical procedure.
One of characteristics observed for pre-mainsequence

stars is stellar wind. Most classical T Tauri stars have ex-
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tremely strong winds (Kuhi, 1964; Carr, 1989; Storm et al.,
1989; Greene and Mayer, 1995; McCaughrean and O’Dell,
1996). This strong wind is closely related with disk ac-
cretion. As a protoplanetary nebula evolves from an active
phase to a passive phase, the stellar wind from the central
star may change from a strong accretion-driven wind to a
weak spherically wind, which resembles the stellar wind
from the sun. Unfortunately, we have few observations of
stellar wind from solar-like stars (Wood et al., 2002).
The observations for the stellar wind from solar-like stars

tell us that the mass loss rates among them distribute in the
range between almost equal to the rate of the present solar
wind and about thirty fold larger than it. It is accepted that
the origin of these wind is surface activities of the central
star; for example sun’s hot corona. Because these surface
activities may exist on the surface of the T Tauri stars, we
believe that there is some kind of stellar wind flow from the
central stars which have the passive protoplanetary nebula.
However, we can not find any observational information of
the stellar wind from T Tauri stars with passive phase disk.
The stellar wind from the central star with passive nebula

is different from the wind of active accretion disk. It may
be a wind-like present solar wind. So the mass loss rate of
the wind from a star with a passive disk is almost equal to
or greater than that of wind from solar-like stars, because
T Tauri stars even in the weakline stage present stronger
surface activities; for example, line emissions, than stars
in the mainsequence stage (e.g., Walter et al., 1988; Basri
and Bertout, 1989; Bertout, 1989). Based on the stellar
wind from solar-like stars (e.g., Hartmann, 1985; Woods
et al., 2002), it is plausible that the mass loss rates for
the T Tauri star with a passive disk is in the range of the
larger than present solar wind by about two or three orders
of magnitude. If the nebula is exposed to the stellar wind,
what kind of effect is brought to the nebula? In this paper
we cencentrate on this question. The mass loss rates of
the wind, however, remain unclear owing to the lack of
observations.
Owing to this uncertainty in mass loss rates, we consider

that it is more important now to make clear the physical—
in some cases mathamatical—behavior of the solution ex-
pressing temperature distribution of a passive nebula rather
than to specify a model under suspicious estimates on the
mass loss rates. So we change the mass loss rates in a range
that seems nonsense if we adopt it as a rate of T Tauri star
without any active accretion disk. It should be noted that
the mass loss rates chosen in this study are not adequate for
real T Tauri stars with a passive disk. It is very important
to enlarge the range of mass loss rate because an important
behavior of basic equations was found in this wide range
parameter study.
Hereafter we will reconstruct the passive nebula model

exposed to both of the stellar radiation and the stella wind.
Specifically, the aims of our this paper are

1) to develop basic equations which describe the thermal
and hydrostatic structure of the passive nebula exposed
to the stellar wind and stellar radiation;

2) to determine a characteristic behavior of solutions de-
scribed by the basic equations;

3) to investigate the geometrical structure and the temper-
ature distribution of the passive nebula exposed to the
wind.

In Section 2, we will describe the assumptions adopted
in this paper (including the stellar wind model and the neb-
ula model) as well as the basic equations that describe the
thermal structure and the geometrical figure of the nebula.
We will then present the characteristic behavior of solutions
for the basic equations in Section 3. On the basis of the re-
sults presented Section 3, we will present in Section 4 the
thermal structure and geometry of the nebula surface ex-
posed to stellar wind with various strengths. We will see
that the temperature distribution and the geometrical figure
of the nebula depend very weakly on the strength of the stel-
lar wind as long as the wind strength is weaker than critical
strength. In Section 5, the validity of the adopted assump-
tions and simplifications will be checked with positive re-
sults. Finally, conclusions and discussion will be described
in Section 6.

2. Basic Equations
We suppose that a protoplanetary nebula, surrounding a

T Tauri star, is exposed to the stellar wind from the central
star. The nebula is in a passive phase, namely, it has no
energy source within it. The temperature of the nebula is
determined essentially by the irradiation of photons from
the central star. In order to see the geometric figure and
the temperature distribution of the nebula, we make, for
simplicity, the following assumptions on the passive nebula
and the stellar wind:

1) The nebula is axi-symmetric and mirror-symmetric
with respect to the midplane of the nebula (here-
after, we use cylindrical coordinates (r, z) the origin of
which is at the center of the central star (see Fig. 1)).
Furthermore, the nebula is geometrically very thin.

2) The nebula is in a hydrostatic equilibrium state and
isothermal in the z-direction (i.e., in the direction per-
pendicular to the midplane of the nebula).

3) The nebula is composed of an ideal gas with the mean
molecular weight, μ (= 2.34).

4) The radial distribution of the nebular mass is described
by a power law of r before a part of it is blown off by
the stellar wind, i.e.,

� = �0

( r

1AU

)γ

, (1)

where � is the surface density of the nebula and �0 is
that at r=1 AU. We consider a protoplanetary nebula
after the minimum-mass solar nebula model (Hayashi,
1981), in which �0 and γ are equal to 1.7×103 g/cm2

and −3/2, respectively.
5) The nebula is optically thick (i.e., the nebula catches

the photon irradiation from the central star just at the
surface) and has no heat source inside it.

6) The wind is steady and spherically symmetric and the
wind velocity is constant both spatially.

7) On the contact surface between the nebula and the stel-
lar wind, the dynamical pressure of the wind balances
with hydrostatic pressure in the nebula.
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Fig. 1. Schematic figure of the contact surface between the stellar
wind and the nebula gas. Two angles φ and � are tan−1(zs/r) and
tan−1(dzs/dr), respectively, where zs is the nebular height. P and Pw
are the hydrostatic pressure in the nebula and the dynamical pressure of
the wind, respectively.

From assumptions (1), (2), and (3), we obtain the hydro-
static pressure of the nebula at height z as

P = kT

μmH

�√
2π H

exp

(
− z2

2H 2

)
(2)

(e.g., Hayashi et al., 1985), where T is the nebula tempera-
ture at the distance r , k is the Boltzmann constant, and mH is
the mass of hydrogen atom. Furthermore, H is the pressure
scale height of the nebula given by

H = r

(
kT r

μmHG M∗

) 1
2

, (3)

where G is gravitational constant, and M∗ is the mass of the
central star.
According to assumption (6), physical properties of the

stellar wind are characterized completely by two parame-
ters, the wind velocity, vw, and the mass loss rate, Ṁ∗. For
later use, we write these in the following forms:

vw = β

(
2GM∗

R∗

) 1
2

(4)

Ṁ∗ = M∗
t∗

(5)

In the former equation, β is ratio of the wind velocity to the
escape velocity, R∗ is the radius of the central star, and t∗
is a typical mass loss time of the central star. By the use
of Ṁ∗ and vw, the mass density of the wind, ρw, is readily
described by

ρw = Ṁ∗
4πr2vw

. (6)

Furthermore, the dynamical pressure of the wind, Pw, is
given by

Pw = M∗
4πr2

β

t∗

(
2GM∗

R∗

) 1
2

. (7)

Note that the dynamical pressure is determined by only one
parameter t∗/β. It is generally accepted that the stellar
wind has a velocity comparable to or slightly larger than
the escape velocity from the stellar surface (Parker, 1960,
1964). So it may safely be said that β is almost equal to
unity.
As mentioned, the mass loss rate of T Tauri stars with a

passive disk is still unknown. In this study we choose an

extreme wide range for the parameter t∗ as the values of
t∗/β, 1 × 108, 1 × 109, 1 × 1010 yrs, and 1 × 1012 yrs.

We now consider the geometry of a contact surface
(which hereafter is called simply a surface) between the
protoplanetary nebula and the wind. We show an edge-on-
view of the nebula in Fig. 1, in which two angles � and φ

are introduced to describe the geometry of the surface. The
angle � is between the midplane and the tangential line of
the surface and φ is defined as tan−1(zs/r) where zs is a
height of the surface. Using this two angles we introduce a
new variable, f , defined by

f = sin(� − φ). (8)

As seen from Fig. 1, f represents the r -component of a unit
vector perpendicular to the surface of the nebula. In this
study, f is called a flaring index hereafter. Note that we can
impose a geometrical relation between zs and f , i.e.,

dzs

dr
= r f + zs

√
1 − f 2

r
√
1 − f 2 − zs f

. (9)

On the surface of the protoplanetary nebula, we have
two equations describing dynamical and thermal balances.
The wind dynamical pressure on the surface must balance
with the hydrostatic pressure, P , of the nebula. Taking into
account that the surface and velocity of wind takes an angle
(� − φ), we formulate the equation as

P = f Pw at z = zs, (10)

to express this dynamical balance, where P and Pw are
given by Eqs. (2) and (7), respectively. On the other hand,
the nebular temperature is determined by a balance of ra-
diative equilibrium. With the help of assumption (5), a ra-
diative equilibrium condition is given by

σ T 4 = σ T 4
∗

π

R2
∗

r2

{
π

2
f

1 + zs/r√
1 + (zs/r)2

+2R∗
3r

[
8 f

zs/r

1 + (zs/r)2

+ 1 − dz2s /dr2√
1 + (dzs/dr)2

√
1 + (zs/r)2

]}
, (11)

where T∗ is the temperature of the stellar photosphere and
σ is the Stefan-Boltzmann constant (see K70). On the
right-hand side of this equation, the first term in the large
parenthesis represents the heating due to disk flaring and
the second term represents the heating from the finite size of
the central star. The assumption that the contact surface of
the nebula is black body surface for absorption of radiation
from central star will be confirmed in Section 5.
As seen later, the flaring index, f , is very small compared

to unity and also zs/r � 1 after assumption (1). So, we
can neglect terms of (zs/r)2, (dzs/dr)2, dz2s/dr2, f 2, and
f (zs/r) in Eqs. (9) to (11). Furthermore, to simplify the
expression of the equations, we introduce dimensionless
variables, η, ν, u, non-dimensional numbers M , and N :

η =
(

r

R∗

)
, ν =

( zs

r

)
, u =

(
T

T∗

) (
2η2

) 1
4 , N = 2

1
4

(
Tg

T∗

)
,
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M = 2
7
8
√

πG�0

√
R∗

2GM∗

t∗
β

(
T∗
Tg

) 1
2
(

R∗
1AU

)γ

(12)

In the above, Tg is the temperature corresponding to the
gravitational potential energy at the stellar surface, given
by (CG97)

Tg = GM∗μmH

2k R∗
. (13)

Using these dimensionless variables and neglecting small
quantities mentioned above, we can rewrite Eqs. (9) to (11)
into the following simple forms:

dν

dη
= f

η
(14)

f = Mηγ+ 1
4
√

u exp

(
−N

ν2

√
ηu

)
(15)

u4 = f + 4

3π

1

η
(16)

Combining Eqs. (14), (15), and (16), we obtain an equation
for the flaring index, f , which is given by

Ld ln f

d ln η
= R, (17)

where

L( f, η) = 1 − f

8u4
(1 + 2s), (18)

R( f, η) =
(

γ + 1

4

)
− 1

6π

1 + 2s

ηu4
+ s

2

(
1 − 4

f

ν

)
, (19)

and

s ≡ N
ν2

√
ηu

. (20)

Equation (17) is the basic equation to be solved. In our
present study, supposing a nebula around typical T Tauri
stars we choose parameters on the central star as T∗ = 4000
K, M∗ = 1M�, and R∗ = 2R� (e.g., Beckwith et al., 1990).

3. Choice of a Solution
Prior to the description of numerical results, we will dis-

cuss in short the behavior of solutions to Eq. (17). As
seen later, such a discussion gives us useful insight on de-
manding conditions to obtain proper solutions for the neb-
ula models.
Usually we have to impose an appropriate boundary con-

dition on f at the outer (or inner) boundary of the nebula
in order to solve Eq. (17). However, it is difficult to de-
termine the position of the outer and/or inner boundaries
of the nebula, because the nebula may extend in a radial
direction continuously to the ambient molecular cloud sur-
rounding the protoplanetary nebula. In this study, we deter-
mine, by an artificial manner, the inner boundary at η = 3
(= 0.03 AU), which corresponds to three fold larger as the
radius of the central star, i.e., r = 3R∗. As will be seen later,
the temperature at η = 3 is equal to 1200 K, independent
of the choice of the wind parameter t∗/β and to the value
of f . This temperature is almost equal to the vaporization

0.0001

0.001

0.01

0.1
0.01 0.1 1 10 50

f

r [AU]

(a)
(+)

(+)

=0

0.0001

0.001

0.01

0.1

f

(b)

0.0001

0.001

0.01

0.1

1 10 100 1000

f

(c)

5000

Fig. 2. (a) The null-L (dashed line) and the null-R (dotted line) lines
for the case of t∗/β = 1 × 108 yrs. The critical point, in which both
L and R vanish simultaneously, is shown by black square. The two
curves divide the log f -log η plane into four regions; In regions denoted
by (+) (or (−)), solution curves have positive (or negative) gradients.
(b) Solution curves which cross the null-L curve at points other than the
critical points. (c) Solution curves which pass through the critical point
with a certain appropriate gradient, (d ln f/d ln η)c.

temperature of typical silicates. So, no dust grain can exist
in a region inside this boundary. This is the reason why we
choose the inner boundary as mentioned above. As for the
outer boundary, we choose η = 5 × 103 (i.e., r = 50 AU).
Although we determine the inner and outer boundaries, we
cannot find physical conditions at the boundaries. So, we
have to overcome this difficulty from a completely different
point of view.
It should be noted that there are two characteristic curves

corresponding to L = 0 and to R = 0 on log η-log f plane
(see Eq. (17)) and that there is a critical point on which both
L and R vanish simultaneously (hereafter, η and f at the
critical point are denoted by ηc and fc, respectively).
They are plotted in Fig. 2(a), as an example, for the case

of t∗/β = 1 × 108 yrs. On the lines of R = 0 and L = 0,
solution curves run horizontally and vertically, respectively,
in the log η-log f plane. The log η-log f plane is divided
into four regions by the two curves. In two regions denoted
by (−) in Fig. 2(a), solution curves have a negative gradient,
i.e., d ln f/d ln η < 0, whereas in two regions denoted by
(+), d ln f/d ln η becomes positive. We can readily see
from Fig. 2(b) that if a solution crosses the null-L curve at
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Fig. 3. Flaring index f as a function of η for the four different val-
ues of t∗/β. In the figure, fn denotes the result for the case of
t∗/β = 1 × 10n yrs. For the later use, we also plot the line 4/3πη

which is the second term of Eq. (16).

η larger (or smaller) than ηc, it cannot extend to an outer
(or inner) direction any further. On the other hand, as
discussed in detail in Appendix A, only when solutions pass
through the critical point with certain appropriate gradients
(d ln f/d ln η)c is there a possibility that we have solutions
which describe models of the nebula extending infinitely.
Taking account of the above discussion about the behav-

ior of solutions, we demand, a priori, the following two con-
ditions to choose an appropriate solution. That is,

1) A solution curve should pass through the critical point
continuously;

2) Flaring index f should be always an increasing func-
tion of η in the whole region between 0.03 AU and
50 AU.

Even if we impose the conditions, we cannot specify a so-
lution because many solutions satisfy the above two condi-
tions. So, for the practical treatment, we impose the con-
dition, R = 0, on the outer boundary, which is determined
rather artificially at 50 AU from the central star as illustrated
in Fig. 2(c). We discuss in detail our choice of the boundary
conditions in Appendix B.

4. Results
By solving Eq. (17) numerically, the nebular models are

obtained for four cases of the wind parameter, t∗/β =
1 × 108, 1 × 109, 1 × 1010, and 1 × 1012 yrs. The flaring
indices, f , of the nebula are plotted in Fig. 3 for the four
cases. From this figure we can readily see the following
three results. One is that f does not depend so strongly on
the wind parameter t∗/β ; the difference in f is confined
within a level of only a factor of 5 or less although the
wind parameter changes over four orders of magnitude, i.e.,
from 1 × 108 yrs to 1 × 1012 yrs. Secondly, the flaring
index becomes large when the wind parameter is large.
This is a natural result because the wind pressure, which
suppresses the nebular gas, increases with a decrease in
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Fig. 4. Temperature distributions of the nebula for the four cases of t∗/β
from 1×108 to 1×1012 yrs (Panel (a)). We also show the corresponding
power-law index p defined as p = −d ln T/d ln r in Panel (b).

t∗/β (i.e., with an increase in the wind strength). Finally,
owing to the suppression by the wind pressure, the flaring
index is confined within a very low level throughout the
region even in the case of the weak wind i.e., the case of
t∗/β = 1 × 1012 yrs.
Corresponding temperature distributions of the nebula

are plotted in Fig. 4(a) for the four cases of the wind pa-
rameter t∗/β. In the inner region of the nebula, where
r ≤ 0.1 AU, the temperatures of the nebula for the four dif-
ferent wind parameters coincide with each other perfectly.
This is due to the fact that the temperature in this region
is determined by radiation from the finite size of the cen-
tral star since the flaring index f is very small compared to
4/3πη (see Fig. 3 as well as Eq. (16)). In the outer region
(r ≥ 1 AU), on the other hand, the temperature distribu-
tion depends slightly on the wind parameter t∗/β. In this
region, the temperature is determined by the flaring index
f ; in other words, the first term on the right hand side of
Eq. (16) is larger than the second term (see Fig. 3).
The temperature of the nebula behaves in the same man-

ner as the flaring index f , because it is nearly proportional
to f 1/4. So, the temperature becomes lower when the stellar
wind is stronger as long as we compare the temperatures at
the same position in the nebula.
In order to study the temperature distribution of the neb-

ula in detail, we plot the power-law index p in Fig. 4(b),
which is defined as

p = −d ln T

d ln r
. (21)

In the inner region where r ≤ 0.1 AU, p is confined within a
narrow range between 0.75 and 0.65. This is readily under-
stood in the following manner. Noting that, as mentioned
before, f is very small compared to 4/3πη (see Fig. 3) and
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Fig. 5. The nebular heights zs for the four cases of t∗/β (Panel (a)) and
the power-law index q, i.e., d ln z/d ln r (Panel (b)).

rewriting Eq. (16), we have an approximate formula

p 	 3

4
− 3π

16
f η

(
1 + d ln f

d ln η

)
. (22)

Because the second term on the right hand side of the above
equation is smaller than 0.1 (see Fig. 3), we have p in the
range mentioned above. On other hand, in the outer region
(r ≥ 1 AU), p is almost constant but depends slightly on
the adopted wind parameter t∗/β. Since η f 
 1 in this
region, u is expressed as f 1/4 from Eq. (16). So the power
index p is given as

p 	 1

2
− 1

4

d ln f

d ln η
(23)

According to Fig. 3, d ln f/d ln η increases slightly with
an increase in t∗/β and, hence, p is smaller in the case of
t∗/β = 1 × 1012 yrs than that in the case of 1 × 108 yrs. In
the intermediate region between 0.1 AU and 1 AU the two
terms on the right hand side of Eq. (16) switch the dominant
role from the 4/3πη term to the f term. The power-law
index p changes greatly owing to this transition of heating
sources in this region.
Using the results above, we can express the nebular tem-

perature in an analytical but approximate manner. In the
innermost (r ≤ 0.1 AU) and the outer regions (r ≥ 1 AU),
the power-law index, p, is, as a first approximation, 3/4 and
1/2, respectively. So, we have for the nebular temperature
as a power-law function of the radial distance r

T (r) = 455
( r

0.1AU

)−3/4
K for r ≤ 0.1AU (24)

and

T (r) = 145
( r

1AU

)−1/2
K for r ≥ 1AU. (25)

Table 1. The mean power-law index q̄ and the nebular height coefficient
z0.

t∗/β(yrs) 1 × 108 1 × 109 1 × 1010 1 × 1012

q̄ 1.19 1.21 1.22 1.23

z0(AU) 0.11 0.12 0.13 0.15

These expressions can be shown in another way: noting that
u4 = 4/3πη for r ≤ 0.1 AU and using Eq. (12) we find
T = T∗(2/3πη3)1/4, i.e.,

T (r) = 0.68T∗

(
r

R∗

)−3/4

for r < 10R∗. (26)

Similarly, in the outer region where u4 = f 	 0.04 (see
Fig. 3) we have for T

T (r) = 0.38T∗

(
r

R∗

)−1/2

for r > 100R∗. (27)

The heights of the nebula surface are shown in Fig. 5
for the four cases of t∗/β from 1 × 108 yrs to 1 × 1012 yrs.
As seen from Fig. 5(a) they depend very weakly on the
wind parameter t∗/β. As the wind parameter t∗/β becomes
larger, the height of the nebula becomes slightly larger. The
reason is the same as that for the flaring index and the
nebular temperature (see Figs. 3 and 4). In Fig. 5(b), we
show the plot of the power index for the nebular height, q,
defined as

q = d ln zs/d ln r. (28)

Although the power-law index q varies with the radial dis-
tance r , the change is not so large and is always confined
within the range 1.1 and 1.3. As in the case of zs itself, q be-
comes small when the wind is strong because the flaring is
suppressed by the strong wind pressure in this case. As long
as we consider the nebula in the region r ≥ 1 AU, q does not
depend appreciably on the radial distance. Thus, the nebu-
lar height zs(r) is approximated by power-law function:

zs(r) = z0
( r

1AU

)q̄
for r ≥ 1AU. (29)

The mean power law index q̄ and the nebular height coeffi-
cient z0, which are evaluated by our numerical simulations,
are shown in Table 1.
Let us compare the nebular temperature obtained in the

present study with those of the previous works by K70,
CG97, and C01, in which they did not consider the effect of
the stellar wind at all. To compare precisely, the quantities
specifying the central star are set to be equal to those of
CG97, that is, M∗ = 0.5M�, R∗ = 2.5R�, and T∗ = 4000
K. In our model, t∗/β is put to be 1×108 yrs. As mentioned
before, the nebular height, zs, is approximated well by the
power-law function of the radial distance in the region r ≥
1 AU. The expressions predicted by our present model and
other models are given by

zs =

⎧⎪⎨
⎪⎩
0.11

(
r

1AU

)1.19
AU for ours

0.17
(

r
1AU

)9/7
AU for CG97

0.04
(

r
1AU

)9/7
AU for K70

(30)
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Fig. 6. The nebular heights zs normalized by the scale height, H . In the
models of K70 and CG97, zs/H is fitted to be constant, namely 1 and
4, respectively.

where we show our result for the case of t∗/β = 1×108 yrs
as an example. The difference in Eq. (30) becomes more
clear by comparing zs/H among the models where H is the
scale height given by Eq. (3). As seen from Fig. 6, the ratio
between zs and the scale height H changes from 2.5 to 5 in
the nebula, contrary to CG97 and K70. They assumed that
the nebular surface is always equal to or five fold taller than
H .
The nebula temperature predicted by the four models in-

cluding ours are shown in Fig. 7. We see from this figure
that all results are almost similar. For example, the temper-
atures at r = 1 AU are 120 K, 150 K, and 160 K, respec-
tively, for K70, CG97, and our model. The small difference
comes from the difference in f ; noting that f � 1 and
using Eqs. (9) and (26), we find f = (q − 1)zs/r . Further-
more, the temperature T is proportional to f 1/4 in the outer
region where r ≥ 1 AU. By the use of Eq. (30), the results
shown in Fig. 7 can be reconfirmed reasonably.

5. Validity Check of the Adopted Assumptions
In our present study, we have introduced some simplifi-

cations to avoid a mathematical complexity. Among these
simplifications, the following two assumptions are of im-
portance.

1) The surface, which is determined by a balance between
the normal component of the wind pressure and the
hydrostatic pressure, is assumed to coincide with the
blackbody surface to absorb photons from the central
star.

2) The wind velocity is assumed to be constant spatially
over the range of the whole disk, namely from 0.03 AU
to 50 AU.

First, we consider assumption (1). In order to see the
validity of assumption (1), we evaluate the optical depth,
τ , measured along ray paths from the central star to points
inside the nebula. The depth is expressed as

τ = κ

∫ s

0
ρ (s cos λ, s sin λ) ds, (31)

where ρ is the nebula density, s is the distance from the
central star along a ray path, and λ is an angle between

10
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T
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Fig. 7. Nebular temperatures predicted by various models. Solid line
denotes our result for the case of t∗/β = 1×108 yrs. Dashed line, dotted
line, and squares are temperature profiles of models of K70, CG97, and
C01, respectively. To compare the models with the same condition, the
temperature of our model and that of K70 are recalculated by using the
stellar parameters, M∗ = 0.5M�, R∗ = 2.5R�, and T∗ = 4000 K, after
CG97.
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Fig. 8. Comparison between the dynamical surface and the optical sur-
faces of the nebula. Solid line denoted the height of the dynamical sur-
face. Dashed and dotted lines correspond to the surface where optical
depth (τ ) to the stellar radiation is equal to 1 and 10, respectively.

the ray path and the midplane of the nebula. As for the
opacity κ , we use the opacity model proposed by Miyake
and Nakagawa (1993), i.e., κ = 10 cm2 g−1 for radiation
with a 1 μm wave length. The results are shown in Fig. 8.
We show the nebula height zs (solid line) and lines of τ = 1
(dashed line) and τ = 10 (dotted line) that are evaluated
from Eq. (31) for the cases of t∗/β = 1 × 109 yrs and
1 × 1010 yrs.
As seen from Fig. 8(a), the line of the nebular surface and

the lines corresponding to τ = 1 and τ = 10 fit each other
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Fig. 9. Fraction of absorbed energy along the seven ray paths in the
nebula (see text). We use the nebular density obtained for the case of
t∗/β = 1 × 1012 yrs.

completely for the case of t∗/β = 1 × 109 yrs. For the case
of t∗/β = 1×1010 yrs, the line of τ = 1 coincides with that
of the surface (see in Fig. 8(b)), although the line of τ = 10
is separated slightly from the surface in the outer region
(r ≥ 30 AU). From these results, we find that assumption
1) is valid when the wind parameter t∗/β is smaller than
1 × 1010 yrs.

However, as an increase in t∗/β (i.e., as a decrease in
the wind strength) and also as an increase in the distance
from the central star, the validity of the assumption be-
comes doubtful because the nebula density near the sur-
face dilutes under the weak exposure of the wind. So, we
have to study in the radiative absorption for the case of
t∗/β = 1 × 1012 yrs in detail. First we calculate the op-
tical depth τ along seven different ray paths which connect
the central star with points on the surface of the nebula at
r = 5, 10, 15, 20, 25, 30, and 35 AU. Next, we evaluate the
fraction of radiative energy absorbed by the nebular gas,
1 − exp(−τ), along each ray path. The result is shown in
Fig. 9. From this figure, we find that the fraction of ab-
sorbed energy increases very steeply after each radial path
intersects the surface of the nebula. This is particularly ev-
ident on the ray paths which intersect the nebula surface at
5 AU and 10 AU—all radiative energy from the central star
is absorbed within a very thin region below the nebular sur-
face. On the other hand, in the case of the ray path intersect-
ing at 25 AU, the fraction reaches unity when the radial po-
sition takes 28 AU or so. Even in this case, however, we can
say that the black body assumption on the nebular surface
is almost valid because 80% of radiative energy is absorbed
within a thin layer just below the surface. Thus, we can con-
clude that the assumption (1) is valid almost all of the cases
considered in our present study and, hence, that the nebular
temperature shown in Fig. 4(a) does not need to change ap-
preciably except the outer region (r ≥ 30 AU) of the nebula
irradiated by a weak wind (with t∗/β ≥ 1 × 1011 yrs).
Now, we go on the next problem, the check of the pro-

priety of assumption (2) that the wind velocity is constant.
Though the velocity distribution of the stellar wind is not

0.1

1

10
0.01 0.1 1 10

V
P/

V
c

r [AU]

(a)

50

10

100

1000

1 10 100 1000
T

 [K
]

TP

Tc

(b)3000

5000

 
 

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000

0 10 20 30 40 50

z s
 [A

U
]

r [AU]

zs,P
zs,c

(c)

      
      

Fig. 10. The velocity, temperature and nebular height by Parker’s so-
lution. Panel (a) shows the velocity distribution, (b) the temperature
distributions, and (c) the nebular height for the case of t∗ = 1× 109 yrs.
Postscripts P and c denote the results calculated by Parker’s solution and
the constant velocity model, respectively.

detected observationally, it is natural to consider that the
wind velocity varies as a function of the distance from the
central star. In fact, a number of researchers proposed stel-
lar wind models with various types of the velocity distribu-
tion (e.g., Parker, 1960; Hartmann et al., 1990; Kiguchi et
al., 1998; Lamers and Cassinelli, 1999). So, we try to re-
calculate the temperature and the height of the nebula, as an
example, using the velocity distribution proposed by Parker
(1964).
The velocity distribution of Parker’s solution is illustrated

in Fig. 10; the wind velocity increases exponentially in
the innermost region (r ≤ 0.1 AU) with the radial dis-
tance, but in outer region (r > 0.1 AU) it grows rather
gradually. As a typical example, we show the results in
Figs. 10(b) and 10(c) for the case of t∗ = 1 × 109 yrs.
In these figures we overwrite our previous results for the
case of t∗/β = 1 × 109 yrs. So, it is obvious that the two
models give the similar results as long as we compare the
models with the same wind parameter t∗. The reason is
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as follows: the vertical distribution of the nebular density
changes rapidly with height z, because it is proportional to
exp(−z2/H 2) (see Eq. (1)) and, hence, the difference in the
velocity distribution does not affect appreciably the nebu-
lar structure as long as the difference is not so serious. We
also confirm that we have similar results for the other cases
of t∗. Thus, the conclusion can be made that our result in
the present study is plausible irrelevant to the adopted wind
model as long as the mass loss rate is equal.

6. Conclusions and Discussion
In the this study we obtained the thermal and hydrostat-

ical structure of the protoplanetary nebula exposed to radi-
ation as well as the stellar wind from the central star. We
have introduced the wind parameter t∗/β in order to see the
influence of the dynamical pressure put on the nebula by the
stellar wind. This represents, strictly speaking with β equal
to unity, mass loss time. We change the parameter from
1×108 yrs to 1×1012 yrs. After numerical calculations we
arrive at the following conclusions.

1) The flaring index, f , of the nebula does not depend
so strongly on the wind parameter t∗/β and becomes
large when the wind parameter is large. Owing to the
suppression due to the wind pressure, the flaring index
is confined within a very low level (i.e., f < 0.1) in
all regions.

2) The height of geometrical surface of the nebula, zs,
is 2.5- to five fold as large as the scale height of the
nebula. Furthermore, zs depends very weakly on the
wind parameter t∗/β. As the wind parameter becomes
larger, the nebular height becomes slightly larger.

3) The temperature of the nebula is insensitive to the
adopted wind parameter. In the inner region (r ≤
0.1 AU), the nebular temperature does not depend en-
tirely on the wind parameter t∗/β because the temper-
ature in this region is determined by irradiation from
the finite size of the central star. In the outer region
(r ≥ 0.1 AU), on the other hand, the temperature is
determined by the flaring index, f , but it still depends
on the wind parameter t∗/β very weakly.

4) The nebular temperature obtained in the present study
is almost similar to those of the previous works (K70,
CG97, and C01).

5) In the case where the wind parameter is smaller than
t∗/β = 1 × 107 yrs we have no solution to any equi-
librium model of the solar nebula (see Appendix A).

It should be noted, here, that the nebular temperature ob-
tained in our present study should be regarded as a mini-
mum one, at least in the outer region (say, r ≥ 30 AU).
T Tauri star and the surrounding disk nebula must be em-
bedded in the extended diffuse gas and, hence, the nebula
would also receive radiative energy emitted from the dif-
fuse gas. In the outer region where the nebular temperature
is very low, we cannot neglect such an additional radiative
flux (Kikuchi et al., 2002).
In this study we did not carry out any analysis on the

stability of the equilibrium model. It should be noted that
we will meet a type of instability, the Kelvin-Helmholtz
(which hereafter is called K-H) instability, near the nebular

surface. It should grow more or less under the condition
that large velocity discontinuities exist between the nebula
and high speed wind flow. If the K-H instability is excited
efficiently, the nebula may be subjected to the extensive
and continuous mass loss. Furthermore, the stellar wind
must change its strength with time (the wind parameter,
t∗/β, is assumed to be constant temporarily in our present
study). The time variation of the wind strength might cause
other instabilities than K-H instability. These are the further
problems to be solved.
We found that we have no solution describing the neb-

ula when the stellar wind is so strong (see conclusion (5)).
Although the parameter that brings non-existence of sta-
tional solution corresponds to extremely large mass loss
rates, such as 10−7M� per year, we are greatly interested
in the mathematical behavior of the basic equations. After
this study we will adopt some additional processes to the
basic equations, for example, to the sedimentation and rise
of dusts (Ishitsu and Sekiya, 2003). Before carrying out
studies based on exact models, we have better to seize the
essence of the matter brought by a simple basic equations.
We as yet cannot understand the physical meaning of why
we have no equilibrium nebula exposed to the strong wind.
As seen from the discussion in the Appendices, the con-
dition for the non-existence of a suitable solution depends
on the physical properties of the central star and the sur-
rounding nebula, such as the stellar mass, the photospheric
temperature, and the surface density of the nebula. We will
investigate in detail these problems in the next paper.

Appendix A.
In this Appendix, we will study in detail the behavior

of the solutions to Eq. (17) near the critical point (ηc, fc),
where both L and R in Eq. (17) are equal to zero. Noted
that fc and ηc depend on the adopted value of the wind
parameter t∗/β, as illustrated in Fig. 11.
Near the critical point (ηc, fc), L and R can be written,

respectively, as

L(η, f ) = Lη(ln η − ln ηc) + L f (ln f − ln fc) (A.1)

and

R(η, f ) = Rη(ln η − ln ηc) + R f (ln f − ln fc). (A.2)

In the above, L f , Lη, R f , and Rη are the partial deriva-
tives of L and R at the critical point; for example, L f =
(∂L/∂ ln f )c. These are given by

Lη = −2ζ 2
c −

(
2γ − 31

4

)
ζc − 1, (A.3)

L f = −2ζ 2
c + 10ζc − 1, (A.4)

Rη = 1

64ζc (1 − ζc)
{ − 128ζ 4

c − 32 (8γ − 15) ζ 3
c

−2
(
32γ 2 − 48γ + 257

)
ζ 2
c + 16 (γ + 5) ζc

+1 } (A.5)

and

R f = 2ζ 2
c +

(
2γ − 31

4

)
ζc − γ − 1

8ζc
. (A.6)
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Fig. 11. Position of the critical point, ηc and fc, as a function of the wind
parameter t∗/β.

where ζc is a new symbol defined as

ζc = 1

8

(
3πηc fc

3πηc fc + 4

)
(A.7)

Here we introduce a new variable, θ , which is useful to
the analysis of solutions to Eq. (17) near the critical point,
defined by

tan θ ≡ ln f − ln fc
ln η − ln ηc

. (A.8)

Using θ , we can rewrite Eq. (17) in the vicinity of the
critical point as

d ln f

d ln η
= Rη + R f tan θ

Lη + L f tan θ
. (A.9)

As seen in Section 3, we have two peculiar angles, θ0 and
θ∞ which are given, respectively, by

tan θ0 = −Rη/R f and tan θ∞ = −Lη/L f . (A.10)

Note that when θ becomes equal to θ∞ (or θ0), the derivative
d ln f/d ln η should be equal to infinity (or zero). Eliminat-
ing ln f from Eqs. (A.8) and (A.9), we have

(ln η − ln ηc)
d

d ln η
tan θ

= −L f (tan θ)2 + (R f − Lη) tan θ + Rη

Lη + L f tan θ
. (A.11)

As is well known, a solution to Eq. (A.11) changes a func-
tional form depending on the sign of D, which is defined
as

D = (Lη + R f
)2 + 4

(L f Rη − LηR f
)
. (A.12)

First, we consider the case whereD > 0. In this case, the
solution to Eq. (A.11) can be readily found as

| ln η − ln ηc |2 | tan θ − tan θ2 |1−k

| tan θ − tan θ1 |−1−k
= C, (A.13)
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Fig. 12. Four characteristic angles θ0, θ∞, θ1 and θ2 as functions of t∗/β.

Fig. 13. Typical two solution curves near the critical point for the case of
D > 0. Line L∞ and L0 denote the null-L(that is, d ln f/d ln η = ∞)
and the null-R(that is, d ln f/d ln η = 0), namely the lines with the
angle θ∞ and θ0, respectively. Line L1 and L2 show the lines with the
angle θ1 and θ2, respectively. In the regions denoted by (+) and (−),
d ln f/d ln η is positive and negative, respectively.

where C is a positive constant. Furthermore, tan θ1 and
tan θ2 (tan θ2 > tan θ1) are given by

tan θ1,2 = R f − Lη ± √D
2L f

, (A.14)

and

k = Lη + R f√D . (A.15)

Noting that Lη,L f ,R f < 0 and Rη > 0, we readily
see that k is smaller than −1. In Fig. 12 we present the
characteristic four angles θ∞, θ0, θ1 and θ2 as functions of
t∗/β. Note that we have no real values of θ1 and θ2 when
t∗/β < 1×107 yrs (as long as we adopt the minimum-mass
nebula model (see Eq. (1)) because D, given by Eq. (A.12),
becomes negative. As seen from this figure, θ0 is positive
and θ∞ is negative in all cases, and, θ2 and θ1 are both larger
than θ0.
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In the limit of | ln η − ln ηc |� 1, we can find an
approximate, but, explicit form of Eq. (A.13). We first
consider a solution passing through, for example, point B
in Fig. 13, at which tan θ2 > tan θB > tan θ0. In this case,
we have for a limiting form of Eq. (A.13)

| tan θ − tan θ1 |= C ′ | ln η − ln ηc |− 2
k+1 , (A.16)

where C ′ = {
C (tan θ2 − tan θ1)

k−1
} 1

k+1 . From this equa-
tion, we can readily see that such a solution passes through
the critical point with a derivative, (d ln f/d ln η)c = tan θ1,
and escapes continuously to the region of negative ln η −
ln ηc. An alternative solution which passes through, say
point D in Fig. 13 at which tan θD > tan θ2, behaves, in
a region of | ln η − ln ηc |� 1, as

tan θ (ln η − ln ηc) = ln f − ln fc

= 1

2
{(1 − k) tan θ2 + (1 + k) tan θ1}

× (ln η − ln ηc) +
√

C . (A.17)

Solution (A.17) cuts the ln f -axis with a finite f .
From the above results, we can find that there are two

different types of solutions to Eq. (A.11) when D > 0,
as illustrated in Fig. 13. In this figure, we overwrite the
four characteristic lines, L∞, L0, L1, and L2, with slopes of
tan θ∞, tan θ0, tan θ1, and tan θ2, respectively. As discussed
in Section 3, the solution curve has a positive gradient in
the shaded regions bounded by L∞ and L0, whereas it has
a negative gradient in the other two regions.
A typical example of the first type solution is presented

in Fig. 13 as curve A to B. This solution passes through the
critical point along asymptoticly line L1 with angle θ1. It
should be noted that a solution of this type never crosses
line L2 because of Eq. (A.13). This means that such a
solution is confined within regions bounded by lines L1 and
L2 where d ln f/d ln η is always positive. So the solution is
a monotonically increasing function of ln η.
Another type of solution is displayed schematically in

Fig. 13 as curve C to D. Since the derivative is positive
at point C, the solution curve goes upward in the ln η-ln f
plane as η increases and crosses line L∞ vertically. There-
after, the solution curve enters the region where the deriva-
tive is negative and continues to increase in f but decrease
in η. After the solution line crosses line L0 horizontally, it
runs toward the critical point according to Eq. (A.16). As
mentioned before, Eq. (A.9) has a point symmetry to the
critical point. We can draw the solution curve after it passes
through the critical point by rotating the solution curve from
C around the critical point by 180◦. It is worthwhile say-
ing that the above solution is a multivalue function of η, at
least in a region around the critical point, and that we can-
not adopt it as a suitable solution because such a solution
can never describe the nebula model.
We next consider another case where D, given by

Eq. (A.12), is negative. In this case, the solution to
Eq. (A.11) is given by the parametric equations:

ln η − ln ηc = C exp(−kϕ) cosϕ (A.18)

Fig. 14. Schematic picture of the solution near the critical point for the
case of D < 0 (see also the caption of Fig. 13).

and

ln f − ln fc = C

2L f k
exp(−kϕ){(Lη + R f ) sinϕ

−k(Lη − R f ) cosϕ}, (A.19)

where C is an integral constant and dϕ/dθ is a negative for
0 < θ < ∞. The schematical view of the solution given
by Eqs. (A.18) and (A.19) is shown in Fig. 14. The solution
curve spirals around the critical point getting closer to the
critical point. Owing to the exponential factor, when the
parameter ϕ decreases, the solution curve terminates rapidly
at the critical point. By the same reason as mentioned
earlier, we cannot accept any of the solutions for the case
of D < 0 as those describing the physical model of the
solar nebula.
From our analysis on the behavior of solutions to

Eq. (A.9) near the critical point, we reach the following im-
portant conclusions.

1) In order to look for a solution describing the nebula
model which extends from the inside of the critical
point to the outside, we should choose a solution from
solutions which passes through the critical point and
which runs in regions bounded by the two lines L1 and
L2.

2) When the wind parameter is small (i.e., when the wind
is strong), we have no solution describing the nebula
model. In the present study in which the surface den-
sity of the nebula distributes according to the minimum
solar nebula model (see Eq. (1)), we have no solution
when t∗/β < 1 × 107 yrs.

Appendix B.
We have to impose an appropriate boundary condition

on f at outer (or inner) boundary of the nebula to solve
Eq. (17), though it is difficult to do it. So we impose bound-
ary conditions on f . We then choose an appropriate solu-
tion imposing two conditions. In Fig. 15(a) we present eight
solution curves with different outer boundary conditions.
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As easily seen from this figure, solution curves extending
from outer boundary converge to one curve smoothly as the
coordinate r decrease. The converged curve approaches the
critical point as an asymptote line with angle θ1 explained in
Appendix A. In Fig. 15(b) we present eight solutions with
different inner boundary conditions. As in the case of in-
tegration from the outer boundary, the solution curves con-
verge to one curve smoothly before they reach the critical
point.
The value of f depends on outer and inner boundary con-

ditions near each boundary position, though temperature
distribution does not. In Fig. 15(c) we show nebula tem-
perature given from the 16 solutions. In the inner region, f
is much smaller than the second term in right hand side of
Eq. (16). So temperature in this inner region does not de-
pend on f (see Fig. 3). As the radius r increases, the tem-
perature gradually depends on f , then at the outer boundary
the temperature for eight different conditions differs greatly.
These differences correspond to outer boundary conditions
of f directly. From Fig. 15(c) we consider that as long as
we need the temperature profile of the nebula only at the
inner part, namely more than about 10 AU inner, we can
use the converged curve independently from outer bound-
ary conditions. So we concentrated on the converged curve.
For practical treatment, we impose the condition, R = 0,
on the outer boundary.
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