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Effects of the site distribution and the prior information on the inverted
geomagnetic field model:

a case study applying the ABIC method to the synthetic datasets
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When we use stochastic inversion and Bayesian modelling in order to obtain geomagnetic field models from
paleomagnetic data, there are two major factors controlling the solution: determination of the hyperparameter and
the type of the smoothing constraint on the model. To investigate contributions of the factors, we calculated some
patterns of inversions from synthetic datasets from ideal and real site distributions. The ABIC (Akaike’s Bayesian
Information Criteria) minimization method was used to determine the hyperparameter, and then the relationship
between the hyperparameter and the ABIC index was demonstrated. Using results of an inversion of synthetic
datasets with errors, the most suitable hyperparameters were found for each site distribution, and the good and
stable solutions were obtained. However, when number of the sites is few or coverage of the site distribution is
not uniform, it is found that the solution is not clearly determined. Moreover, it seems that the solution does not
significantly depend on the type of the model constraint.
Key words: Geomagnetic field, inversion, ABIC.

1. Introduction
In geophysics inverse problems are solved for models.

It is quite difficult to solve the geomagnetic, especially
paleomagnetic field models. The difficulty is mainly due
to restricted acquisition of samples and large errors. Fur-
thermore, paleodirections such as inclination (I ) and dec-
lination (D) are often obtained in paleomagnetic measure-
ments. Directions without intensity are non-linear functions
of the model parameters such as the Gauss coefficients,
so that the calculation procedure of the inversion becomes
more complicated than the inversion from linear paleomag-
netic orthogonal components such as X , Y , and Z .
Stochastic inversion or Bayesian modelling (e.g., Jack-

son, 1979; Jackson and Matsu’ura, 1985) is one of the most
effective ways for a problem to find a geomagnetic field
model from geomagnetic data (Gubbins, 1983, 1984; Gub-
bins and Bloxham, 1985). Stochastic inversion has been
used not only for the historical observed field dataset but
also for paleomagnetic data.
One of the main targets solved in this way is the time-

averaged geomagnetic field, TAF (Gubbins and Kelly,
1993; Kelly and Gubbins, 1997; Johnson and Constable,
1995, 1997; Hatakeyama and Kono, 2002). In the TAF
problem, global mean magnetic field models are calculated
from the long-term averages of paleomagnetic observations
at each site.
Another main target of inversion is the continuous mag-

netic field model which is calculated from paleomagnetic
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dataset of sediments and archeomagnetic datasets and his-
torical records. Time-depending global field models are
smoothly connected with constraint of spline functions.
This is much more difficult than solving for TAFs for sev-
eral reasons: sparse site distribution, less reliable data. Nev-
ertheless, some field models for the past hundreds to thou-
sands years have been obtained by recent development of
the reliable historical, sediments, lavas and archeo datasets
(Bloxham and Gubbins, 1985; Bloxham and Jackson, 1992;
Jackson et al., 2000; Constable et al., 2000; Korte and Con-
stable, 2003, 2005). However we do not yet have enough
data to investigate fluctuating fields for long periods as ten
thousands or more (Jonson et al., 2003).
The evaluation function to be minimized in the stochas-

tic approaches is different from that in simple least-square
method. There is an additional term added to the sum of
squares of residual to be minimized. For example, the like-
lihood function, S(x) is,

S(x) = (
yo − f(x)

)T
C−1

e

(
yo − f(x)

)
+α2

(
x − x#

)T
C−1

m

(
x − x#

)
, (1)

where x is the vector of the model parameters, e.g. the
Gauss coefficients adopted in the global field models, f is
the vector function of observation equation, components
of yo are the real observations, and Ce is their covariance
matrix.
If we assume that there is no correlation among every ob-

servations and every components of the model parameters
are independent of each other, two matrices, Ce and Cm,
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become diagonal and Eq. (1) is simplified as following,

S(x) =
N∑
i=1

(
yoi − fi (x)

�i

)2

+ α2
M∑
j=1

(
x j − x#j

σ j

)2

(2)

where �2
i and σ 2

j are respectively diagonal terms of matri-
ces Ce and Cm. M is number of the model parameters, that
means number of rows of Cm. Actually, we cannot evaluate
the function with infinite spherical harmonic degree, �, so
that the calculation should be truncated at � = �max. The
number of the model parameters is M = �max(�max + 2) in
scaled linear model or M = �max(�max+2) in non-scale and
nonlinear model.
The second term of Eq. (1) gives the constraint condition

on the model, the so-called ‘a priori information’. There
are two interpretations of x# and Cm: (i) probability den-
sity: x# and Cm represent mean and variance of the proba-
bility of model parameters (e.g. Jackson, 1979; Yabuki and
Matsu’ura, 1992; Hatakeyama and Kono, 2002), and (ii)
physical constraints on the model: e.g. restriction of the
field on the core-mantle boundary (CMB) (e.g. Gubbins,
1983; see section 3). Nevertheless, this term shows the
penalty on the distance between the solution and the prob-
able model. The first term shows the least-squares resid-
ual and α2(≤ 0) is the weight of the second to the first
term. The problem reduce to the usual least-squares prob-
lem when α2 = 0 and the solution approaches a priori
value, x# when α → ∞.

In fact, the solution of the inverse problem strongly de-
pends on the magnitude of α2. It is very difficult to ob-
tain the most suitable value of α2 (Menke, 1989; Parker,
1994). For example, it has been determined with watching
the “knee” of the trade-off curve between the data misfit and
the model norm (e.g. Gubbins and Bloxham, 1985). The
ABIC minimization method (Akaike, 1980) is a powerful
tool for determining the best α2 in a mathematically objec-
tive way. In this study, we test the validity of use of this
method in stochastic approaches using synthetic datasets
with sparse distribution of sites.

2. Typical Features of Relationship between α2

and ABIC
In the ABICminimization method (Akaike, 1980) the hy-

perparameter, α2, will be determined maximizing the infor-
mation entropy in a Bayesian formulation (stochastic pro-
cess). The hyperparameter is similar to the damping param-
eter often used in inversion as both show the weight of the
model norm term to the data misfit term and they appear to
be the same form in the equation. However, its philosophy
is different from that of the damping parameter since the
hyperparameter is caused by a multiplication of the proba-
bility density functions of the data and the model using the
Bayes’ theorem (Yabuki and Matsu’ura, 1992). In the case
of an inverse problem in this study, α2 is determined with
minimizing a function, ABIC, as following,

ABIC(α2) ≡ N ln(S(x̂; α2)) − M ln(α2)

+ ln
∣∣∣∣∣∣J(x̂; α2)TCe

−1J(x̂; α2) + α2Cm
−1

∣∣∣∣∣∣(3)
(detailed derivation of the formula documented in sec-
tion 2.5 of Yabuki and Matsu’ura, 1992; Appendix of

Fig. 1. Typical schematic of α2 − ABIC diagram. The upper graph shows
the terms of ABIC, and the lower graph shows the total ABIC. The right
and left sides of the diagram correspond to the limits of controlled solu-
tion by a priori information and the least-square solution, respectively.
The arrow in the diagrams represents the total ABIC minimum point
where α2 should be regarded as the best one.

Hatakeyama and Kono, 2002; Fukahata et al., 2003). In
this equation J is a Jacobian matrix (Ji j = ∂ fi/∂x j ), and a
hat (ˆ) on x indicates the converged solution with fixed α2.
The most suitable α2 minimizing ABIC will be calculated
in numerical process.
The right hand of Eq. (3) has three terms; ABIC1 =

N ln(S(x̂; α2)), ABIC2 = −M ln(α2) and ABIC3 =
ln

∣∣∣∣∣∣J(x̂; α2)TCe
−1J(x̂; α2) + α2Cm

−1
∣∣∣∣∣∣ (Hatakeyama and

Kono, 2002). Figure 1 shows typical features of each term
and total ABIC. ABIC1 is a term derived from the resid-
ual. This becomes asymptotically constant at lower and
upper limits of logα2, where Eq. (1) approaches the first
(the least-square term) and the second (the constraint term),
respectively. ABIC2 shows a negative straight line on a
semi-logarithmic graph. ABIC3 is also asymptotic to lines
at both limits. When α2 → ∞, the curve is close to a
positive straight line whose slope is same as the absolute
value of ABIC2’s slope. On the other hand, when α2 → 0
ABIC3 nears a constant value of ln

∣∣∣∣JTC−1
e J

∣∣∣∣. Therefore,
ABIC2+ABIC3 draws a curve which changes from a down-
side line to a flat line when α2 increases.
The value of α2 minimizing ABIC depends on a po-

sitional relationship between two curves, ABIC1 (shaded
region A in Fig. 1) and ABIC2 + ABIC3 (shaded region
B). Parameter determination methods using only the resid-
ual curve such as ABIC1 or the least-square misfit (e.g.
Parker 1994) are different from the ABIC method. In the
ABIC method, the term associated with the first deriva-
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Fig. 2. Maps of site distributions used in this study. (a) random 100
sites (synthetic), (b) random 30 sites (synthetic) and (c) real 24 sites in
PSVMOD 1.0 database (Constable et al., 2000).

tion, ABIC3, is used as well as the residual curve, ABIC1.
Structure of the ABIC3 term strongly depends on the com-
plexity of the curved surface of S(x). This difference may
be significant in nonlinear inversions when datasets with
large errors are used. For example, if the curved section
of ABIC2 + ABIC3 is located in the right side of (higher
α2) the right shoulder of the ABIC1 curve, there is no lo-
cal minimum in the total ABIC. The ABIC minimization
method can find such bad case that the quality and quantity
of the dataset is insufficient for responsible analysis. If a
value of α2 locally minimizing ABIC exists it is easy to find
numerically.

3. Settings of Test Calculations
Inverse calculations of synthetic datasets from three

kinds of site distributions and two model constraints are
examined in order to investigate the validity of stochastic
inversion with the ABIC minimization method and to esti-
mate the effective lower limit of the number of the sites for
solving inverse problems of paleomagnetic field models. It
seems that the inverse method is successfully performed if
the most suitable α2 with making ABIC minimum is de-
termined and the solution with the best α2 is found, even

Fig. 3. α2 − ABIC diagram to determine the best α2 in the ABIC mini-
mization method for the three cases of site distributions, (a) random 100
sites (synthetic), (b) random 30 sites (synthetic) and (c) real 24 sites in
PSVMOD database. Values of total ABIC and ABIC1 are shown in the
left side axis, and values of ABIC2 + ABIC3 are in the right side axis.
Arrows in the diagrams represent the ABIC minima, where the ABIC
method certifies that this value of α2 is the most suitable. In the shadow
regions of (b) and (c), the regularity of the matrices used in the iterative
procedures is quite low. Therefore, the solution might be unstable and
not unique. a priori information in the calculation used is the type (i).

though the number of sites is quite small.
Reference model and making synthetic dataset
The International Geomagnetic Reference Field of 2005

(IGRF 10th; Maus et al., 2005) was used as the reference
model. This can be thought an example of a snapshot of
the time-dependent field, which is far from a smooth TAF.
We regard this as the “correct” answer and made synthetic
datasets for three site distribution patterns and two model
constraint conditions below.
First, three orthogonal components (X, Y and Z ) at each

site were calculated from the reference field model. Next,
normal random errors with 1σ amplitude of 1000 [nT]
were added to each component before calculating direc-
tional components, I and D, as “direction data with errors”.
The combination of 1000 [nT] errors in the Cartesian com-
ponents corresponds to a directional error of 1.5 ∼ 3 de-
grees.
Common calculation settings
In all calculations we set the truncation degree of spher-

ical harmonics to 10. This is likely high enough to solve
inverse problems from observations on the Earth’s sur-
face (Johnson and Constable, 1995; Hatakeyama and Kono,
2002). All calculations were computed in double precision.
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Fig. 4. Solutions in the cases of choice of α2, (center) the best value
determined by the ABIC minimization method, (left: P in Fig. 3(b))
100 times small and (right: Q in Fig. 3(c)) 100 times large as the best
value. It is likely that the best solution of the inversion can be sought
with the hyperparameter, α2, around the ABIC minimizing. How to see
these color maps is documented in Fig. 5.

Iteration is necessary to solve this nonlinear problem and
we start from a geocentric axial dipole field, xstart = g01.
It is likely that nonlinearity of the calculation is not strong
and the correct minima were always found when the itera-
tion started from this starting model.
Site distributions
Three site distribution patterns were considered (Fig. 2).

(1) random 100 sites
(2) random 30 sites
(3) real 24 sites from the paleomagnetic database PSV-

MOD 1.0

In cases (1) and (2), sites are randomly distributed on the
Earth’s surface, which is ideal for spherical harmonic anal-

Fig. 5. Solutions with the ABIC minimization method. (a) reference model, the expected one, (b) ∼ (d) are from the synthetic datasets for three type of
site distributions given in Fig. 2. Color maps show the radial component of the magnetic field, Br , on the core surface in order to clearly discriminate
a trivial difference between the models. Radius ratio of the core to the Earth is Rcore/Rearth = 0.544. For calculations (b), (c) and (d) the type (i) of
prior information is used.

ysis (Mochizuki et al., 1997). The site distribution in case
(3) was used by Constable et al. (2000) in their study of the
past 3000 years field model. This database includes 17 sites
from the north hemisphere, 6 sites from the south hemi-
sphere and a site from the equatorial area. These three site
patterns (1), (2) and (3) are examples assuming cases that
(1) sites are densely located on surface, (2) sites are sparse
but not biased and (3) sites are sparse and biased, which is
realistic for paleomagnetic problems.
Constraints on model (a priori information)
Two conditions as a priori information on the model were

dealt with.

(i) Paleosecular variation (PSV) model: Each Gauss
coefficient has normal distribution with mean x#j and
variance σ j (Hatakeyama and Kono, 2002). This PSV
model was based on the Giant Gaussian Process (Con-
stable and Parker, 1988), that the field becomes smooth
on the CMB. This attitude follows the original philos-
ophy of Bayesian modeling and stochastic inversion
(Jackson, 1979; Jackson and Matsu’ura, 1985).

(ii) Physical condition that the ohmic heating on the
CMB is to be minimized (Gubbins, 1983; Korte and
Constable, 2003; etc.): From this point of view, the
second term is not regarded as the probability density.
It is not necessary that this term is not in a quadratic
form of model parameters. In this case the constrains
high degree components slightly stronger than the con-
dition of (i).

Anyway, the constraint must be selected as high de-
gree components of the solution converge, so that it
is a representation of conditions at the CMB (Gub-
bins, 1983). Orders of magnitude of σ 2

j in Eq. (2)
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Table 1. The Gauss coefficients of the reference model and the solutions. “Sol” columns mean the values of the solution. “Std” columns are the square
root of the diagonal terms of the model covariance matrices which shows the model accuracy. Here values of the degree � ≤ 3 are demonstrated, but
they were � ≤ 10 in all calculations. The geocentric axial dipole component, g01 , is fixed in all calculations. Unit of field is [nT].

IGRF Random 100 sites Random 30 sites PSVMOD 24 sites

(Model) Sol Std Sol Std Sol Std

g01 −29556.8 −29556.8 — −29556.8 — −29556.8 —

g11 −1671.8 −1649.0 (109.3) −1237.3 (218.3) −1263.8 (461.4)

h1
1 5080.0 4825.4 (114.6) 5224.8 (272.6) 5354.1 (359.4)

g02 −2340.5 −2245.0 (110.0) −2066.9 (288.6) −1401.0 (484.4)

g12 3047.0 2994.6 (140.7) 2686.6 (250.0) 1755.9 (544.0)

h1
2 −2594.9 −2622.4 (150.9) −2376.9 (290.1) −3102.5 (417.0)

g22 1656.9 1602.9 (80.6) 1757.9 (234.4) 1207.2 (244.6)

h2
2 −516.7 −624.7 (80.8) −793.0 (184.5) 366.3 (322.7)

g03 1335.7 973.1 (113.7) 1286.2 (235.8) 1075.1 (319.8)

g13 −2305.3 −2241.4 (104.8) −2468.6 (187.7) −691.4 (449.9)

h1
3 −200.4 −315.9 (111.0) −456.2 (202.7) −565.4 (332.2)

g23 1246.8 1214.8 (100.4) 1267.7 (235.4) 954.5 (220.1)

h2
3 269.3 358.1 (103.5) 455.9 (221.6) −409.4 (281.3)

g33 674.4 580.9 (65.2) 562.1 (188.4) 382.9 (198.9)

h3
3 −524.5 −521.2 (65.5) −579.8 (161.9) 191.2 (277.2)

are (i) σ 2
j ∼ O(�−2(Rcore/Rearth)

2�) and (ii) σ 2
j ∼

O(�−3(Rcore/Rearth)
2�), respectively. It is expected that

in case (ii) high degree components of the solution are
much suppressed and smoother than those in case (i), as
[σ10/σ1](ii)/[σ10/σ1)(i)] ∼ 2.

4. Results and Discussions
4.1 Stability of calculation and choice of the best α2

Here we show the results of determination of the “best”
values for the hyperparameter, α2 using the ABIC method.
Figure 3 shows the typical relationship between α2 and

ABIC by scanning α2 and solving the stochastic inversion
at each point. The ABIC minimization method could deter-
mine a suitable hyperparameter and a good field model was
solved in each case. Actually, when we adopted smaller
or larger α2 than the “best value”, rougher (error overesti-
mated) or smoother (error underestimated) solutions were
obtained (Fig. 4).
In case (1) (100 random sites) the solutions were found

in the whole range of α2, because the dataset has sufficient
information and the matrix to be inverted keeps regularity
even if α2 becomes small. Therefore, we can easily find a
local minimum of ABIC.
On the other hand, even in the scarce sites cases of (2) and

(3), local minima of ABIC could be determined. However
when we seek the minimum value of the likelihood func-
tion, Eq. (1), with using somewhat smaller α2, regularity of
the inverse matrix collapses and stable solution cannot be
found even in double precision calculations (shaded regions
in Fig. 3(b) and (c)).
It is supposed that the most suitable α2 determined by

the ABIC method would enter in this region when the data
are worse or the number of sites is less. In those cases,
we should not choose the parameter just above the collapse
of the calculation with our subjective view. We have to

Fig. 6. Diagonal terms of the resolution matrix, R, which shows the model
resolution of the components, x j . The larger R j j is, the better model
resolution and reproductivity is.

conclude ‘it is impossible to calculate because the dataset
is either bad or insufficient. a model is not found’.
4.2 Solutions
Here we compare solutions of calculations with different

types of site distribution and prior information.
Figure 5 shows the reference model and solutions of the

inverse problems on the core surface. The main characteris-
tics of the field are similar to each other. However, details of
the field structures are different, which is caused by differ-
ences in the degree components. Br components of fields
(b), (c) and (d) are smoother than that of (a), where high
degree components of the solutions are much suppressed
by the prior information on the model in the stochastic in-
version. The solution becomes smooth as much as site dis-
tribution is sparse. The reason is likely that restricted in-
formation depending on the number and location of sites
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Fig. 7. Solution with using the other type of constraints (ii) on the model
to compare with Fig. 5(b).

is redistributed to the components of spherical harmonics.
The second term in the right hand of Eq. (1) cuts down the
high degree components.
However, higher degree components of the magnetic

field are not significantly seen on the Earth’s surface, be-
cause small structures of the magnetic field on the CMB at-
tenuates according to the order of (Rcore/Rearth)

�+1 (Langel
and Estes, 1982). Therefore, paleomagnetic observations
are not sensitive to the high degree components of the field
and it is supposed that there is no significant difference in
characteristics between these field models.
Inverse calculations for (1) random 100 sites and (2) ran-

dom 30 sites cases could successfully determine compo-
nents of degree � ≤ 6 and � ≤ 4, respectively (Table 1).
The values of those components lie in the range defined by
the covariance matrix and the reference values. In case (3)
of 24 real sites, on the other hand, some components, e.g.
g02, g

1
2 and g13, even in low degree of � = 2 or 3 are not well

solved. This may indicate that not only enough data (sites)
but also a good distribution of sites is necessary to obtain
a good solution. It is suggested that these components in
spherical harmonics are almost in the shadow of the obser-
vation function, f(x).
The model resolution matrix, R = (

JTCe
−1J +

α2Cm
−1)−1

ĴTCe
−1Ĵ, also indicates that there are some un-

certain components in the inversion procedure (Fig. 6). The
diagonal terms of R show reproductivity and reliability of
the model parameters (Bloxham et al., 1989). It is gener-
ally supposed that a higher order, m, component has better
resolution than lower order components in each degree �

(Kelly and Gubbins, 1997; Hatakeyama and Kono, 2002).
This characteristic can be seen in the results of widely dis-
tributed sites case (1) and (2). Nevertheless, in the case of
(3) real 24 sites, some low degree components such as g13
have very low resolution. It is indicated that a sparse and
irregular distribution (Fig. 1(c)) causes ill-determined ele-
ments in the inversion with spherical harmonic expansion.
Figure 7 shows the solution using another prior informa-

tion (ii) on the model parameters. Its main feature is not sig-
nificantly different from that of the calculation using condi-
tion (i). It is likely that such difference of condition does
not influence a solution very much.
The results in this study indicate that the ABICminimiza-

tion method in stochastic inversion for paleomagnetic field

models determines the hyperparameter, α2 for a good solu-
tion.
However, when the number of site and data is small, we

face difficulty in seeking the best α2 to minimize ABIC.
Moreover, regions where no data exists have negative ef-
fects even on the low spherical harmonic degree compo-
nents in the solution. There is little difference of solutions
for the two types of a priori information used in this paper.
At least 30 sites in the world is necessary to obtain a good

geomagnetic model derived by the stochastic inversion even
if the quality of the data is same as that in this study (the er-
ror used in this study is thought to be moderately low for
sediment data). Otherwise, even low degree components
are smooth and indistinct as specified by the prior infor-
mation. It is also important that data should come from
sites widely covered the world. In reality, we have a se-
rious problem that there are very few data from southern
hemisphere. However, it is expected that good samples of
deep-sea sediments from southern hemisphere sites will be
provided by future drilling programs.
There is another critical problem that declination is un-

reliable in many paleomagnetic data because of rotation of
the core samples and other reasons. If we use a dataset in
which only inclination is available many sites are neces-
sary for analysis (Kono, 1976). Unfortunately, the present
number of paleomagnetic sites is probably insufficient for
analysis over the past ten thousand years.
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