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High-resolution evidence for dynamic transitional geomagnetic field behaviour
from a Miocene reversal, McMurdo Sound, Ross Sea, Antarctica
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We report a high-resolution record of a Miocene polarity transition (probably the Chron C6r-C6n transition)
from glacimarine sediments in McMurdo Sound, Ross Sea, Antarctica, which is the first transition record reported
from high southern latitudes. The transition is recorded in two parallel cores through a 10.7 m stratigraphic
thickness. The sediments are interpreted as having been deposited in a marine environment under the influence of
floating ice or seaward of a glacier terminus from which a large sediment load was delivered to the drill site. The
core was recovered using rotary drilling, which precludes azimuthal orientation of the core and determination
of a vector record of the field during the transition. However, constraints on transitional field behaviour are
provided by the exceptional resolution of this record. Large-scale paleomagnetic inclination fluctuations in the
two cores can be independently correlated with each other using magnetic susceptibility data, which suggests
that the sediments are reliable recorders of geomagnetic field variations. Agreement between the two parallel
transition records provides evidence for highly dynamic field behaviour, as suggested by numerous large-scale
inclination changes (∼90◦) throughout the transition. These large-scale changes occur across stratigraphically
narrow intervals, which is consistent with the suggestion of rapid field changes during transitions. In one
intact portion of the core, where there is no apparent relative core rotation between samples, declinations and
inclinations are consistent with the presence of a stable cluster of virtual geomagnetic poles within the transition
(although the possibility that this cluster represents a rapid depositional event cannot be precluded). These
observations are consistent with those from other high-resolution records and provide a rare detailed view of
transitional field behaviour compared to most sedimentary records, which are not as thick and which appear to
have been smoothed by sedimentary remanence acquisition processes.
Key words: Paleomagnetism, geomagnetic field behaviour, polarity reversal, glacial processes, Antarctica.

1. Introduction
Despite the fact that the geomagnetic field is known to

have reversed polarity hundreds of times during earth his-
tory, the behaviour and geometry of the field while it re-
verses between stable polarity states is still not well known
(Roberts, 1995). Over the last 15 years, debate concerning
transitional field geometries has centered around interpre-
tations of patterns observed in transitional virtual geomag-
netic pole (VGP) paths. It has been suggested that tran-
sitional VGPs fall along two preferred longitudinal bands
(Clement, 1991; Clement and Kent, 1991; Tric et al., 1991;
Laj et al., 1991) or in clusters along these bands (Hoffman,
1991, 1992; Brown et al., 1994). These interpretations im-
ply that dipolar fields were dominant during polarity transi-
tions, and the persistence of these inferred patterns of tran-
sitional VGP paths for many reversals over the last 10 mil-
lion years might suggest deep-mantle control of the reversal
process (e.g., Laj et al., 1991).
A significant component of the debate concerning the
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nature of the transitional geomagnetic field has involved
the reliability of transition records. For example, direc-
tional bias imposed by smoothing during remanence acqui-
sition could have a significant effect on sedimentary transi-
tion records (e.g., Rochette, 1990; Langereis et al., 1992;
Løvlie, 1994; Quidelleur and Valet, 1994; Quidelleur et
al., 1995). The primary shortcoming of transition studies,
however, is a lack of a robust global distribution of sites
from which detailed records are available (McFadden et al.,
1993). In order to advance the state of knowledge concern-
ing transitional geomagnetic field behaviour, it is important
to obtain records from a wider distribution of sites, and, for
sedimentary records, to provide evidence that sedimentary
processes have not biased the paleomagnetic records.
In this study, we present a high-resolution early Miocene

polarity transition record from glacimarine sediments de-
posited in McMurdo Sound, Antarctica. The transition
record spans a stratigraphic thickness of 10.7 m, which
should provide a detailed record of field behaviour with-
out smoothing by sedimentary remanence acquisition pro-
cesses. In addition, the fact that the transition is recorded
in two immediately adjacent cores (see below) provides
an important test of the fidelity of the paleomagnetic sig-
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Fig. 1. Location map of the McMurdo Sound area of the Ross Sea with distribution of sea ice in November, 1999, and location of the Cape Roberts
Project (CRP) drill sites, including the site studied here (CRP-2/2A).

nal for this transition. Finally, this record represents the
first from high southern latitudes, which helps to broaden
the geographic distribution of sites with available transition
records.

2. Geological Setting
The polarity transition discussed in this study was re-

covered from cores drilled for the Cape Roberts Project
(CRP) in Victoria Land Basin, McMurdo Sound, western
Ross Sea, Antarctica (Fig. 1). A primary aim of the Cape
Roberts Project was to drill a series of holes through land-
ward dipping seismic reflectors on the Antarctic continental
margin to study fluctuations of the East Antarctic Ice Sheet
through its early history prior to 30 Ma (Cape Roberts Sci-
ence Team, 1999). An additional goal was to elucidate the
history of rifting in the western Ross Sea in association with
the break-up of Gondwana. Three holes were drilled off-
shore of Cape Roberts from 1997 to 1999 (Fig. 1), with
drilling technology that uses a seasonal sea-ice platform. In
the austral spring of 1998, a 624-m early Oligocene to Qua-
ternary sequence was cored from the second of three sites
(CRP-2). In the uppermost part of the hole, difficulties with
drilling required the CRP-2 hole to be offset, and the re-
mainder of the core was recovered from the CRP-2A hole.
Parts of the upper 60 m of the composite CRP-2/2A record
were recovered in both the CRP-2 and CRP-2A holes.
Below 27 metres below sea floor (mbsf), the CRP-2/2A

drill hole contains a sedimentary record that spans the
early Oligocene to the early Miocene, and which largely
represents cyclic glacimarine nearshore to offshore sedi-
mentation. Sequence stratigraphic analysis indicates that
22 unconformity-bounded, vertically stacked depositional
packages were recovered between 27 and 624 mbsf (Cape
Roberts Science Team, 1999; Fielding et al., 2000; Pow-

ell et al., 2000). When completely preserved (i.e., not
top-truncated by erosion at the overlying sequence bound-
ary), these sediment packages typically comprise a four-
part architecture involving, in ascending order: 1) a sharp-
based, coarse-grained unit, 2) a fining-upward succession
of sandstones, 3) a mudstone interval, which in some cases
coarsens upward to muddy sandstones, and 4) a sharp-
based, sandstone-dominated succession (Cape Roberts Sci-
ence Team, 1999; Fielding et al., 2000). The sedimentary
cyclicity is interpreted in terms of retreat and advance of a
glacier terminus to the west (Fig. 1), with concomitant rises
and falls in relative sea level (Cape Roberts Science Team,
1999; Fielding et al., 2000; Naish et al., 2001).
Magnetostratigraphic studies were conducted for all CRP

cores in order to constrain the chronology of the recovered
sequences (Roberts et al., 1998; Wilson et al., 2000a, 2002;
Florindo et al., 2001), a summary of which is provided by
Florindo et al. (2005). Thick intervals of the recovered se-
quences comprise coarse-grained lithologies, which would
not normally be considered to be well suited to paleomag-
netic investigations because they are more likely to con-
tain coarse magnetic particles that are incapable of carry-
ing a long-term paleomagnetic record. In the Cape Roberts
Project cores, however, these intervals have proved suitable
for paleomagnetic analysis because they have polymodal
particle-size distributions with a significant mud compo-
nent. Paleomagnetic sampling of the CRP cores was re-
stricted to the fine-grained sedimentary matrix and pebbly
and deformed intervals were avoided. Based on our investi-
gations of a number of cores from the Victoria Land Basin,
it is evident that the paleomagnetic signal is carried by
fine-grained (pseudo-single domain) magnetite in the sed-
iment matrix even in dominantly coarse-grained lithologies
(Roberts et al., 1998; Wilson et al., 1998, 2000a; Verosub
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et al., 2000; Florindo et al., 2001; Sagnotti et al., 1998a,
b, 2001). The characteristic remanence directions identified
in these studies have consistently steep inclinations with bi-
modal normal and reversed polarity distributions that pass
paleomagnetic field tests for stability, including a conglom-
erate test and an inclination-only reversal test. It is therefore
possible to sample the fine-grained sedimentary matrix and
identify reliable paleomagnetic directions even in diamic-
tites.
Wilson et al. (2000a) recognised an interval with a sig-

nificant thickness of intermediate paleomagnetic directions
that separates underlying reversed polarity strata from over-
lying normal polarity strata in an interval within lithostrati-
graphic units 4.1 and 3.1 in the CRP-2/2A core (see Fig. 2
for lithostratigraphy). The age of this interval is constrained
by diatom biostratigraphy as well as by 87Sr/86Sr dates
on calcareous macrofossils (Lavelle, 2000) and 40Ar/39Ar
dates (McIntosh, 2000) from volcanic ashes and clasts (Wil-
son et al., 2000a, b; Florindo et al., 2005). The polar-
ity transition studied here most likely represents the early
Miocene reversed-normal polarity transition from C6r to
C6n (Florindo et al., 2005), which corresponds to an age
of 20.13 Ma on the timescale of Cande and Kent (1995).
The upper part of lithostratigraphic unit 5.1 (Fig. 2)

consists of poorly sorted fine sandy mudstone and muddy
very fine sandstone, which is interpreted to have been de-
posited in an inner shelf environment with iceberg influ-
ence (Cape Roberts Science Team, 1999). The contact be-
tween units 5.1 and 4.1 is interpreted to represent an ero-
sional sequence-bounding unconformity, with unit 4.1 be-
ing a massive, poorly sorted sandy diamicton deposited in
an ice proximal environment (possibly subglacial, but pos-
sibly resulting from rain-out processes below floating ice)
(Cape Roberts Science Team, 1999). The overlying sand of
unit 3.1, up to the next sequence-bounding unconformity at
37.8 mbsf, was probably deposited near a stream discharge
from a glacier terminus into a shallow marine environment.
From the perspective of using glacimarine deposits as

a high-resolution archive of geomagnetic field behaviour,
the possibility of subglacial deformation is an obvious con-
cern. Identifying the glacial environment can be difficult
because the physical characteristics of a diamictite usually
provide insufficient information to allow clear interpretation
of the precise mode of glacial deposition (e.g., Domack and
Lawson, 1985; Dowdeswell et al., 1985). Passchier (2000)
reported brecciation between 44 and 46 mbsf in CRP-2A
and concluded that the lower part of unit 3.1 (Fig. 2) was
deformed in a proglacial ice-push environment. However,
brecciation observed in the CRP-2 core (Passchier, 2000)
was not observed in the same stratigraphic interval in the
immediately adjacent CRP-2A core (the two cores are esti-
mated to lie within 1 m of each other). It is therefore possi-
ble that the observed brecciation resulted from core recov-
ery and handling. Microfabric evidence from unit 4.1 may
be indicative of subglacial deposition (Van der Meer, 2000);
however, this inference is inconsistent with clast macrofab-
ric data (Cape Roberts Science Team, 1999). On the basis of
sedimentary grading, stratification and lamination in units
4.1 and 3.1, sedimentary facies analysis (Cape Roberts Sci-
ence Team, 1999; Powell et al., 2000) suggests that these

Fig. 2. Lithological column of the CRP-2/2A core in the stratigraphic
interval studied in this paper, with lithostratigraphic subdivision, and
clast counts for different parent lithologies. The sequence stratigraphic
subdivision is that of Fielding et al. (2000): RST=regressive systems
tract; HST is high-stand systems tract; TST is transgressive systems
tract; LST is low-stand systems tract; SB is sequence boundary.

units probably represent both waterlain ice-proximal rain-
out and sediment gravity flow deposits, most likely near a
glacier terminus ending in the sea. Thus, the fine-grained
matrix of these rocks should be capable of carrying a pale-
omagnetic record that has not been mechanically disturbed
by glacial processes. These units were therefore sampled in
detail for the present study to provide a detailed record of
the polarity transition, with the exception of the interval of
brecciation described by Passchier (2000).

3. Methods
Two hundred fifty five samples were collected in 6.6 cm3

plastic boxes from the working half of the two cores, either
during initial sampling at the Crary Science and Engineer-
ing Center, McMurdo Station, Antarctica, or at the Alfred
Wegener Institute for Polar Research, Bremerhaven, Ger-
many, where the core is now curated. All of the samples
are from the stratigraphic interval containing and bounding
the polarity transition. One hundred sixty seven samples
were taken from the CRP-2 core between 31.03 and 56.28
mbsf, and 88 samples were taken from the CRP-2A core
between 39.09 and 55.60 mbsf. For both cores, lithostrati-
graphic units 5.1 through 3.1 were sampled at 10-cm inter-
vals, where possible, while avoiding pebbles and intervals
where the core was deformed (see Fig. 2). In particular, it
should be noted that the lithological log shown in Fig. 2 is
based on a description of the CRP-2A core and the interval
of brecciation shown between 44 and 46 mbsf (Passchier,
2000) was not sampled. This interval is not brecciated in
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Fig. 3. Vector component diagrams (with normalized intensity decay plots) for selected samples from the CRP-2/2A cores. Class A: (a) a normal
polarity sample from above the polarity transition (31.60 mbsf), (b) a sample from within the polarity transition (49.14 mbsf), (c) a reversed polarity
sample from below the polarity transition (57.78 mbsf). Class B: (d) a normal polarity sample from above the polarity transition (32.22 mbsf), (e) a
sample from within the polarity transition (47.15 mbsf), (f) a reversed polarity sample from below the polarity transition (53.23 mbsf). Class C: (g) a
stable, but noisy, normal polarity sample from above the polarity transition (31.74 mbsf), Class D: (h) a sample with behaviour that is impossible to
interpret (48.34 mbsf). Illustration of a sample with (i) a dominant drilling-induced overprint (50.73 mbsf). All samples are from CRP-2, except (h),
which is from CRP-2A.

the CRP-2 core and was therefore sampled. The samples
were oriented only with respect to vertical. Although parts
of the core were azimuthally oriented using borehole tele-
viewer (BHTV) imagery (Paulsen et al., 2000), it was not
possible to scan the interval studied here with the BHTV
tool, therefore absolute paleomagnetic declinations could
not be recovered for the polarity transition. This prevents
us from calculating VGP positions for the studied polarity
transition; however, a high-resolution record of this type is
unusual and inclination data alone can provide useful in-
sights into transitional field behaviour.
Paleomagnetic measurements were made using a 2-G En-

terprises cryogenic magnetometer in the paleomagnetic lab-
oratory at the National Oceanography Centre, Southamp-
ton (NOCS), UK. After measurement of the natural rema-
nent magnetization, the samples were routinely subjected to
alternating field (AF) demagnetization at successive peak
fields of 5, 10, 15, 20, 25, 30, 40, 50 and 60 mT. In
some cases, it was necessary to apply higher peak fields

of 70 and 80 mT. AF demagnetization was conducted us-
ing a Molspin tumbling AF demagnetizer. Bulk low-field
magnetic susceptibility was measured using a Kappabridge
KLY-2 magnetic susceptibility meter. Rock magnetic mea-
surements were made using a Princeton Measurements Cor-
poration vibrating sample magnetometer at NOCS. First-
order reversal curve (FORC) diagrams (Pike et al., 1999;
Roberts et al., 2000) were measured for selected 1-cm3 sub-
samples. For such samples, 140 FORCs were measured us-
ing an averaging time of 250 ms. All FORC diagrams were
calculated using a smoothing factor (SF) of 5 (see Roberts
et al., 2000).

4. Results
4.1 Paleomagnetic behaviour
During polarity transitions, field intensities generally de-

cay to between one-fifth and one-tenth of pre-transitional
intensities (Bogue and Coe, 1984; Prévot et al., 1985a;
Roperch et al., 1988; Lin et al., 1994). As a result, rema-
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nence intensities are generally weaker within a transition
than before or after a transition, and the quality of paleo-
magnetic data can vary throughout a transition. We have
therefore classified samples according to their paleomag-
netic behaviour in order to take into account any variations
in data quality. The magnetizations from about two-thirds
of the samples analysed in this study are stable and are
characterized by univectorial decay to the origin of vector
component plots after removal of a low-coercivity overprint
(Fig. 3).
Many samples (29%) have a clearly defined, linear

characteristic remanent magnetization (ChRM) component,
for which the maximum angular deviation (MAD; see
Kirschvink (1980)) is less than 3◦ (Category A; Fig. 3(a)–
(c)). A similar proportion of samples (32%) have unam-
biguous paleomagnetic vectors, which are not as clearly de-
fined (3◦<MAD<10◦) as those from Category A and are
designated as Category B samples (Fig. 3(d)-(f)). A few
samples (6%) have noisier demagnetization trajectories for
which the ChRM direction can still be identified (Category
C; Fig. 3(g)); these samples are included in our analysis. By
contrast, the demagnetization data for 33% of samples give
no coherent signal (Category D) due to the dominance of
low coercivity overprints (Fig. 3(h)), or to noisy behaviour
on demagnetization. Also included in this category are a
small percentage of samples that are dominated by a steep
remanence component (Fig. 3(i)) without the low-coercivity
overprint that is observed in the majority of samples. Such
samples are interpreted as being dominated by a drilling-
induced overprint and are observed throughout our studies
of sediments from the Victoria Land Basin (Roberts et al.,
1998; Wilson et al., 2000a; Florindo et al., 2001, 2005);
these samples are not included in our analysis.
4.2 Magnetostratigraphy through the polarity transi-

tion
Paleomagnetic directions are shown in Fig. 4 for all Cate-

gory A, B and C samples throughout the transitional interval
for the CRP-2 and CRP-2A cores. As mentioned above, the
cores are not azimuthally oriented, and, because of the use
of rotary drilling, parts of the core have rotated with respect
to others. The declinations are therefore not rigorously use-
ful for interpreting transitional field behaviour. The transi-
tional interval, defined on the basis of inclinations shallower
than ±45◦, appears to be 10.7 m in thickness (shaded in
Fig. 4). The majority of samples (61%) have unambigu-
ous paleomagnetic directions (Category A and B; closed
and open circles, respectively) and most Category C sam-
ples (open squares) have directions that are similar to those
of adjacent higher quality samples (Fig. 4). There does not,
therefore, seem to be any objective reason to exclude the
somewhat lower quality Category C samples.
The non-transitional paleomagnetic inclinations are gen-

erally shallower than expected for a geocentric axial dipole
field (±83.4◦) at the latitude of the drill site (77◦S). The
mean non-transitional inclinations in Fig. 4 are ±57.8◦,
which is indistinguishable from the mean inclinations for
normal and reversed polarity data for the entire CRP-2/2A
core (Wilson et al., 2000a). This inclination shallowing
can be largely attributed to stratal tilt (Wilson et al., 2000a;
Paulsen et al., 2000). When cores are matched across core

Fig. 4. Paleomagnetic declinations and inclinations for the polarity tran-
sition recorded in the (a) CRP-2 and (b) CRP-2A cores. The cores were
not azimuthally oriented, therefore declinations are relative to labora-
tory coordinates only. Closed and open circles and open squares indi-
cate data from categories A, B, and C, respectively. The interval with
transitional inclinations (less than ±45◦) is shaded and bold lines indi-
cate the major lithostratigraphic boundaries in the cores (see Fig. 2 for
a more detailed lithostratigraphic description).

breaks and reoriented using BHTV imagery (for intervals
of the core below the studied polarity transition where such
data are available), and reoriented back to horizontal using
estimates of bedding tilt from Jarrard et al. (2000), the mean
paleomagnetic inclination is ±81.6◦ (Paulsen et al., 2000).
This mean inclination is statistically indistinguishable from
the expected inclination for a geocentric axial dipole field
at the site latitude and provides evidence that pre- and post-
transitional paleomagnetic data reliably record geomagnetic
information and therefore that the studied polarity transition
can be used for constraining transitional geomagnetic field
behaviour.
4.3 Correlation of polarity transition records from

CRP-2 and CRP-2A
Inspection of the paleomagnetic inclinations in Fig. 4 in-

dicates that the two records are highly similar. To enable di-
rect comparison of the records, an appropriate physical pa-
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Fig. 5. Low-field magnetic susceptibility data for the CRP-2 and CRP-2A
holes, with the CRP-2A data correlated to the CRP-2 depth scale (which
is labelled as the metres common depth, or mcd, scale) in order to
facilitate direct comparison of data between the two holes. This mcd
scale for CRP-2A is used in Fig. 6 to directly compare paleomagnetic
data for the two holes.

rameter, such as the low-field magnetic susceptibility, can
be used to independently correlate the records and to plot
the data onto the same depth scale. A common depth scale
was derived for the two cores by matching magnetic suscep-
tibility features using the software package “Analyseries”
(Paillard et al., 1996). The CRP-2 record is far more com-
plete than the CRP-2A record through this interval, there-
fore data from the CRP-2A record were correlated to equiv-
alent depths in CRP-2 to produce a common depth scale.
Results of the magnetic susceptibility correlation are shown
in Fig. 5. At some depths, there are spikes (e.g., 47.81 and
52.02 mbsf in CRP-2) or troughs (e.g., 50.17 mbsf in CRP-
2 and 49.54 mbsf in CRP-2A) in the susceptibility curves
that probably result from the presence of either highly mag-
netic or weakly magnetic clasts within the samples. If these
features are ignored, the fit between the two susceptibility
records is acceptable. The depth adjustment of correlative
points from CRP-2A to CRP-2 is usually <0.5 m, with a
maximum of ∼2 m. The necessity of depth adjustments
within this range is visually evident when comparing the
depths associated with the shaded transitional regions for
the two cores in Fig. 4.
When comparing the inclination records using this com-

mon depth scale (or metres common depth, mcd), the agree-
ment is also good (Fig. 6). The main features are repro-
duced at equivalent depths in both records. The largest
discrepancies between the records occur for single sam-
ples at depths of about 40, 48, 52.5 and 54 mcd. In many
of these cases, there are significant gaps between adjacent
samples with stable magnetizations. Correlation between
the records is dependent on matching equivalent depths in
the cores and does not take into account aliasing of the sig-
nal due to incomplete sampling. Thus, the apparent discrep-
ancies between the records may simply result from aliasing
rather than real disagreement.

5. Discussion
5.1 Sedimentation rates in an ice-proximal environ-

ment
Based on astronomically calibrated paleomagnetic time

series, Channell and Kleiven (2000) estimated the duration
of the last few geomagnetic reversals to be about 5 k.y.,
where the polarity transition is defined as the interval where
VGP latitudes are <45◦. Clement (2004) estimated an aver-
age duration of about 7 k.y. for sedimentary records of the

Fig. 6. Paleomagnetic inclination data for the CRP-2 and CRP-2A holes
after the depths for samples from CRP-2A have been converted to
depths in the CRP-2 hole (mcd scale), through correlation of magnetic
susceptibility data from the two holes (see Fig. 5). Agreement between
the two data sets indicates that the paleomagnetic data are reliable and
that the dynamic variations in paleomagnetic directions result from field
behaviour rather than noise in either data set. The shaded area represents
the transitional interval defined in Fig. 4.

last 4 reversals, while Singer and Pringle (1996) estimated a
12 k.y. duration for the Matuyama-Brunhes transition based
on 40Ar/39Ar dating of transitional lava flows. Both of these
studies defined the transitional interval in the same way as
Channell and Kleiven (2000). Based on an inclination cut-
off of 45◦, shown as the shaded interval in Fig. 6, the polar-
ity transition in the CRP-2/2A record is 10.7 m in thickness.
This is equivalent to the thickest reported polarity transi-
tion record, the 10-m-thick Po Valley record (upper Olduvai
transition) of Tric et al. (1991). It should be noted that the
magnetic signal for the record of Tric et al. (1991) is car-
ried by several generations of the authigenic magnetic iron
sulphide mineral, greigite, which grew during early diage-
nesis and which will have smoothed the Po Valley polarity
transition record (Roberts et al., 2005). Based on an esti-
mated range of durations of 5–12 k.y. for a polarity transi-
tion, sedimentation rates in this part of the CRP-2/2A record
must have ranged between about 0.8 and 2 m/k.y. This rate
is a minimum estimate because the probable presence of
two minor hiatuses, at sedimentary contacts spanned by the
transition, suggests that the full transition was not recorded
(see below). Furthermore, sedimentation rates in glacima-
rine environments are likely to be highly variable, so this is
a minimum estimate of the mean sedimentation rate. This
rate is higher than the average longer-term sedimentation
rates recorded in the CRP-2/2A core, which seem to have
fluctuated between 0.025 m/k.y. and 1 m/k.y., depending on
lithology, sediment accommodation space and depositional
environment (Wilson et al., 2000a, b).
Quantitative estimates of sedimentation rates in such

glacimarine environments are relatively sparse, which
makes the CRP-2/2A polarity transition record useful for
comparison. Powell et al. (1998, 2000) suggested that the
Miocene glacimarine deposits recovered in the CRP-1 and
CRP-2/2A cores are similar to modern polythermal glacial
sequences, such as in parts of the Antarctic Peninsula or
Svalbard today. In Svalbard, average rates of sediment ac-
cumulation during deglaciation in basinal settings within
fjords were about 0.5 to 1 m/k.y. (Elverhøi et al., 1983).
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Fig. 7. FORC diagrams for selected samples through the studied polarity transition in CRP-2. The numbered scale in the middle represents the
down-hole depth scale, for comparison with lithological variations shown in Fig. 2 and other magnetic variations in Figs. 5 and 6. The shading
denotes the polarity transition interval. All FORC diagrams were calculated with SF=5. The FORC diagrams indicate relatively uniform magnetic
grain size assemblages within the polarity transition interval despite significant variations in sediment grain size.

During the last glacial, average glacimarine accumulation
rates on the continental shelf are estimated at 1.24 m/k.y.
(Laberg and Vorren, 1996). This value overlaps with the
lower end of the range of values estimated here. The high
sedimentation rate preserved throughout the studied po-
larity transition supports the interpretation that lithostrati-
graphic units 3.1 and 4.1 were deposited near a meltwater
stream discharge from a glacier terminus into the sea. This
interpretation provides a mechanism for delivering large
quantities of sediment to the drill site over a short period
of time, which would be more difficult to achieve in a more
distal marine depositional environment.
5.2 Are recording artefacts likely to have compro-

mised the paleomagnetic record?
The question of directional bias imposed by smooth-

ing during remanence acquisition is important when con-
sidering short-duration features within sedimentary transi-
tion records (e.g., Rochette, 1990; Langereis et al., 1992;
Løvlie, 1994; Quidelleur and Valet, 1994; Quidelleur et al.,
1995). The effects of remanence smoothing on paleomag-
netic records can be constrained by numerical modelling of
post-depositional remanent magnetization (PDRM) acqui-
sition (e.g., Bleil and von Dobeneck, 1999; Roberts and
Winklhofer, 2004). The PDRM lock-in depth would have
to be unrealistically large to cause significant smoothing
of paleomagnetic records at estimated sedimentation rates
in the range from 0.8 to 2 m/k.y. (e.g., Roberts and Win-
klhofer, 2004). PDRM smoothing is therefore extremely
unlikely in the present record. A more serious concern
is that variations in sediment grain size or lithology could
have also led to large variations in magnetic grain size,
which can cause variable lock-in efficiency (e.g., Bleil and

von Dobeneck, 1999). This possibility can be investigated
with rock magnetic data, such as the FORC diagrams that
are shown for the studied transition interval from CRP-2
in Fig. 7. Magnetite is consistently the dominant magnetic
mineral in sediments from the Victoria Land Basin, which
are partially sourced from basic igneous and metamorphic
rocks that crop out in the nearby Transantarctic Mountains
(Fig. 1) as well as volcanic rocks from the McMurdo Vol-
canic Province (Roberts et al., 1998; Sagnotti et al., 1998a,
b, 2000; Wilson et al., 1998, 2000a; Verosub et al., 2000;
Florindo et al., 2001, 2005). Verosub et al. (2000) demon-
strated that the magnetic mineralogy of the uppermost 270
m of the CRP-2/2A core, which includes the interval stud-
ied here, is dominated by magnetite sourced from volcanic
glass from the McMurdo Volcanic Group. The FORC di-
agrams from throughout the studied interval are striking in
their near-uniformity. They are indicative of coarse pseudo-
single domain (PSD) magnetite (cf. Roberts et al., 2000),
except for the sample from 51.80 mbsf, which has a slightly
finer-grained magnetic assemblage. Thus, despite signifi-
cant variation in the overall sediment grain size, it is appar-
ent that the detrital magnetite particles that carry the paleo-
magnetic signal are relatively homogeneous throughout the
studied polarity transition. This provides strong evidence
against the possibility of variable lock-in efficiency result-
ing from lithological variations.
Another possible concern is the apparent similarity be-

tween the low-field magnetic susceptibility profile (Fig. 5)
for the studied interval compared to the paleomagnetic in-
clinations (Fig. 6). As shown in Fig. 7, there is no rock mag-
netic indication that this pattern is related to variations in
magnetic mineralogy or grain size, and it is difficult to con-
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ceive of mechanisms whereby the geomagnetic field could
cause such a pattern. The most likely explanation for this
is simply a fortuitous variation in magnetic mineral con-
centration from high concentrations at the beginning of the
polarity transition to low concentrations at the end of the
transition. This variation in magnetic mineral concentra-
tion is consistent with the lithological variations indicated
in Fig. 2. Overall, the rock magnetic evidence does not
support the possibility that recording artefacts might have
compromised the paleomagnetic record.
5.3 Geomagnetic field behaviour during a polarity

transition
Overall, the consistency between the CRP-2 and CRP-

2A polarity transition records (Fig. 6) indicates that the
observed large-scale fluctuations are due to dynamic be-
haviour of the geomagnetic field during the transition rather
than to noisy data or to recording artefacts associated with
remanence acquisition processes in the sediments. Good se-
rial correlation between the two records suggests that there
is no significant problem with efficiency of sedimentary re-
manence lock-in at low transitional field intensities. The
thickness of the studied transition therefore provides excep-
tional resolution of transitional field behaviour. The field
appears to have undergone large-scale fluctuations during
three periods between 52 and 47 mcd, a more gradual, but
less well resolved, change from reversed to normal polarity
between 47 and 41 mcd, and a period of post-transitional
stability between 40 and 39 mcd. It should be noted that
there are significant inclination changes across two litholog-
ical contacts at about 52 and 48 mcd, respectively. The low-
ermost boundary between lithostratigraphic units 5.1 and
4.1 is recognised as a sequence stratigraphic boundary that
represents a disconformity surface where the sedimentary
facies was dislocated toward a nearer-shore depositional en-
vironment or a more ice-proximal glacimarine environment.
The early part of the transition record is therefore likely
to be missing across this disconformity. The boundary be-
tween lithostratigraphic units 4.1 and 3.1 at about 48 mcd is
not considered to represent a significant disconformity be-
cause it represents the gradual fining of grain size during a
transgressive phase of sea level, rather than an abrupt facies
change. Regardless, the paleomagnetic inclination shifts by
about 60◦ across this contact, which makes it likely that a
relatively small amount of time is also missing across this
boundary. An additional sequence stratigraphic boundary is
recognized at about 37.8 mcd (Fig. 2), which is considered
to be a current-scoured surface in an ice-proximal, but fully
marine, environment (Cape Roberts Science Team, 1999).
In contrast to the two lithological changes discussed above
(48 and 52 mcd), no significant inclination change is evident
across this sequence boundary. We interpret the upper part
of the polarity transition to occur just above the inclination
anomaly at ∼41.3–42 mcd (Fig. 6). The directional fluctu-
ations between 37 and 39 mcd, which span the sequence-
bounding unconformity at 37.8 mcd, are interpreted to rep-
resent short-term fluctuations of the field (i.e., a geomag-
netic excursion) that are not associated with the studied po-
larity transition.
High-resolution records of transitional geomagnetic field

behaviour are rare. Some published high-resolution stud-

ies, such as those of Valet et al. (1986, 1988), where the
transitions span stratigraphic intervals of ∼1.5 m, indicate
a fairly smooth transition from one polarity to the other,
whereas other high-resolution studies indicate that the field
was more variable during polarity transitions (Laj et al.,
1988; Holt and Kirschvink, 1995). Channell and Lehman
(1997) reported multiple transition records for the last few
reversals from North Atlantic drift deposits with mean sed-
imentation rates of ∼12 cm/k.y., which are much higher
than normal deep-sea rates that are pertinent to many stud-
ies of polarity transitions. These high-resolution records in-
dicate complex VGP paths, rather than longitudinally con-
fined trajectories (Clement, 1991; Clement and Kent, 1991;
Tric et al., 1991; Laj et al., 1991), with two VGP clus-
ters similar to those suggested from volcanic records (Hoff-
man, 1991, 1992; Brown et al., 1994). This suggests
that the longitudinally constrained VGP paths are highly
smoothed representations of the transitional field. Chan-
nell and Lehman (1997) suggested that the marked changes
in VGP position that punctuate their records may represent
abrupt field changes similar to the stop-go impulses evi-
dent in the Miocene transition record from volcanic rocks
on Steen’s Mountain, Oregon (Prévot et al., 1985a, b; Coe
et al., 1995).
Our high-resolution transition record from McMurdo

Sound, Antarctica, also suggests that the overall trend from
reversed to normal polarity is punctuated by several large-
scale directional fluctuations. These fluctuations clearly do
not represent noisy data because they are recorded by more
than one data point and are present in both of the studied
cores. The effects of differential core rotation on differ-
ent parts of the core makes it difficult to assess whether the
record contains VGP clusters. However, lack of variabil-
ity in the declination data between 49.5 and 50.5 mbsf from
CRP-2A (Fig. 4) indicates that this interval represents an in-
tact piece of core. Both the declinations and inclinations are
clustered with consistently similar directions at this point
of the transition, which might indicate a relatively stable
intermediate VGP cluster. Alternatively, the lack of paleo-
magnetic variability in this part of the record could repre-
sent a rapid pulse of sedimentation rather than a prolonged
phase of stable transitional field behaviour. This possibil-
ity is supported by the coarser grain size and abundance
of clasts with diameter >2 mm (Fig. 2), which would be
consistent with greater depositional energy and more rapid
sedimentation. This ambiguity reflects one disadvantage of
ice-proximal environments for studying geomagnetic field
behaviour.
Sedimentation rates are likely to have been variable in

this ice-proximal depositional environment and the pres-
ence of two probable hiatuses within the transition record
also means that the record is incomplete, which makes it
difficult to make inferences about the speed at which the
field changed. In each of the large-scale directional fluc-
tuations between 47 and 52 mcd, however, the directional
change appears to have been abrupt, which might be consis-
tent with the suggestion of rapid impulses during a polarity
transition (Prévot et al., 1985a, b; Coe et al., 1995). Re-
gardless, the large-scale geomagnetic fluctuations observed
in our record indicate that the transitional field is highly
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dynamic, which supports the conclusions of Channell and
Lehman (1997) concerning the complexity of transitional
field behaviour. Together, these studies indicate that lower
resolution sedimentary polarity transition records must be
substantially affected by smoothing during remanence ac-
quisition, which is consistent with the modelling results of
Roberts and Winklhofer (2004).

6. Conclusions
Paleomagnetic data from a Miocene polarity transition

in the CRP-2/2A core, McMurdo Sound, Antarctica, pro-
vide the thickest (10.7-m) transition record ever obtained.
This record is also the first from high southern latitudes
and extends the global distribution of polarity transition
records. Good serial correlation between transition data
in the parallel CRP-2 and CRP-2A cores indicates that the
sediments provide a reliable record of geomagnetic infor-
mation. The presence of several large-scale directional
fluctuations within the transition indicates highly dynamic
transitional field behaviour; the narrowness of the strati-
graphic intervals across which these large-scale changes
are recorded suggests that they represent abrupt geomag-
netic directional changes. This interpretation is consis-
tent with observations from other high-resolution records.
The exceptional resolution of the CRP-2/2A polarity tran-
sition, in conjunction with data from other high-resolution
records, indicates a much more dynamic transitional field
compared to most sedimentary transition records, which
suggests that many lower resolution sedimentary polarity
transition records may have been substantially smoothed.
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