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The Multiband Imager (MI) is one of the 14 instruments for the Japanese SELENE (KAGUYA) mission. Goal
of the SELENE (KAGUYA) mission is to understand origin and evolution of the Moon by obtaining global
element and mineral compositions, topological structure, gravity field of the whole Moon, and electromagnetic
and particle environment of the Moon. MI is designed to be a high-resolution multiband imaging camera with a
spatial resolution in visible bands of 20 m and a spatial resolution in near-infrared bands of 62 m from the 100 km
SELENE (KAGUYA) orbit altitude. The MI flight model has been manufactured and integrated. MTF, viewing
vector, over-all sensibility, sensor linearity and electrical noise level (S/N estimation test) were measured, and the
results indicate that the MI will provide sufficient MTF and low-noise data, just as estimated in the MI design
phase. Operation and data analyses plans have been established, and related tools and algorithms have been
developed and checked. One of MI scientific objectives is to investigate small but scientifically very important
areas such as crater central peaks and crater walls and to investigate magnesian anorthosites.
Key words: Moon, SELENE, KAGUYA, Multiband Imager.

1. Introduction
Japanese SELenological and ENgineering Explorer (SE-

LENE; it is also named “KAGUYA” after a Japanese folk-
lore) mission launched in September 2007 (Kato et al., in
print). Goal of the SELENE (KAGUYA) mission is to
understand origin and evolution of the Moon by obtain-
ing global element and mineral compositions, topological
structure, gravity field of the whole Moon, and electro-
magnetic and particle environment of the Moon. SELENE
(KAGUYA) satellite arrived at the Moon about one month
after its launch and will continue its observation during
nominal one-year mission.

The Lunar Imager/SpectroMeter (LISM) instrument is
being developed for the SELENE (KAGUYA) mission and
will provide us much higher spatial resolution, wavelength
resolution and signal to noise ratio than that of past lu-
nar missions. LISM consists of the three subsystems, the
Terrain Camera (TC), the Multiband Imager (MI), and the
Spectral Profiler (SP). The subsystems share some compo-
nents and electronics including the Data Processing Unit
(DPU), Data Processing and Control Unit (SDPCU) and
Power Control and Distribution Unit (PCDU). Figure 1
schematically illustrates the LISM radiometer units. MI and
TC sensors share a unit structure.

TC is a push-broom imaging camera with a spatial res-
olution of 10 m from the 100 km SELENE (KAGUYA)
orbit altitude. It has two slant telescopes for stereo imag-
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ing. TC stereoscopic observation and also single-eyed ob-
servation are planned for detailed investigation of surface
features of the Moon. TC will cover the whole Moon dur-
ing nominal one-year operation of SELENE (KAGUYA).
Global, detailed investigation of the topography and geo-
graphical features of the Moon will be derived through TC
data (Haruyama et al., 2008, this issue).

MI is a high-resolution multiband imaging camera con-
sisting of visible and near-infrared sensors which have 5
visible and 4 near-infrared bands. MI takes push-broom
imaging data by using selected 5 lines for MI-VIS and 4
lines for MI-NIR which are selected before launch. The
spatial resolution of visible bands is 20 m, and that of
near-infrared bands is 62 m from the 100 km SELENE
(KAGUYA) orbital altitude. We are going to observe the
global mineral distribution of the lunar surface in nine band
images of MI.

SP is a visible to near-infrared line-profiling spectrome-
ter. Its primary scientific goal is to map the rock type and the
mineral abundance/composition on the lunar surface glob-
ally through reflectance spectroscopy in the 500–2600 nm
region with high spectral resolution (300 bands) and S/N.
SP has a Cassegrain-type foreoptics and three detectors.
Reflected light is separated into three spectral ranges (VIS,
NIR1, and NIR2) by plane gratings and a dichroic filter. Its
spectral resolution is 6–8 nm, and its S/N equal to or bet-
ter than 2000 around pyroxene absorption band of 1000 nm
(Matsunaga et al., 2000).

This paper presents the performance, objectives and other
characteristics of the MI that will observe the mineral dis-
tribution on the lunar surface.
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Fig. 1. LISM Radiometer Unit (LRU) of MI/TC and SP on the SELENE
(KAGUYA) mission module.

2. Performance and Design
MI is a high-resolution multiband imaging camera con-

sisting of visible and near-infrared sensors which have 5
visible and 4 near-infrared bands respectively. Each sen-
sor has the same type of nadir-directed telescope of 65 mm
in focal length but different two-dimension detectors. The
spatial resolution of visible bands is 20 m, and that of
near-infrared bands is 62 m from the 100 km SELENE
(KAGUYA) orbital altitude. The swaths of visible and near-
infrared bands are designed to be the same (19.3 km from
SELENE’s 100 km altitude). MI uses a frame-transfer Si-
CCD for visible bands and an uncooled InGaAs sensor for
near-infrared bands. MI acquires push-broom imaging data
by downloading selected lines (962 pixels × 5 lines for vis-
ible and 320 pixels × 4 lines for near infrared) of area ar-
rays. The signal resolutions after A/D conversion (and be-
fore compression of visible bands) are 10 bits for visible
and 12 bits for near-infrared bands. The volume of gener-
ated MI images is about 50 Gbit/day (about 6 Gbyte/day)
after data compression of visible bands. The spectral band
assignments are 415, 750, 900, 950 and 1000 nm for vis-
ible wavelengths and 1000, 1050, 1250 and 1550 nm for
near-infrared wavelengths. The total transmittance of MI,
which is calculated as the product of the transmittance of
MI optics, transmittance and bandwidth of band-pass fil-
ters (BPFs) for each wavelength, and quantum efficiency
of used detectors, is controlled to achieve a uniform out-
put signal within each detector. Output uniformity within
one detector is important for MI because only one elec-
trical gain can be applied for one detector. The radiation
resistance of MI is achieved using CeO2 doped radiation
resistant lenses and also selecting radiation-resistant detec-
tors by performing radiation tests. Table 1 summarizes MI’s
specifications. Figure 2 depicts MI’s observation bands, and
Fig. 3, its physical band arrangement. To develop small,

simple and light weight multiband imaging systems, we de-
signed a visible detector in which five BPFs are directly at-
tached on the CCD pixel surface and four BPFs are attached
on the detector windows for the near-infrared detector. To
minimize the smear signal (“smear signal” is a term used
for additional exposure during CCD read out), most visi-
ble sensor surfaces are shaded by coating except for several
window lines for each band (the surface of the near-infrared
sensor does not need a shade coating because it is not ex-
posed to light during read out). Additionally, shade coat-
ings, Chromium for visible wavelength and Ti + SiO2 for
near-infrared wavelength are applied to the surfaces of each
band-pass filter to avoid stray light and cross-talk between
bands except window area for observation. Because MI ac-
quires push-broom imaging data by downloading selected
lines of area arrays and use them as if they are multiple
line arrays as described above, the observed band images
derived from one area array contain parallax between them-
selves. The area observed by each band at each exposure is
different for visible bands because an exposure takes place
simultaneously within the visible area array according to
the electrical driving algorithm of our CCD. In contrast, the
observed area of each near-infrared band is ideally the same
if satellite vibration is excluded because the exact timing of
each exposure needs to be slightly different for each band
according to the electrical driving algorithm of our near-
infrared sensor and we set the difference as the observed
area of each band to be same by considering satellite fly-
ing speed. In data analyses of MI visible bands, we need to
rearrange each band image to the same observed area and
perform frame transfer correction (which is caused by ex-
posure under non-shaded window lines). MI does not have
an onboard calibration mechanism because of resource lim-
itations. Therefore, cross calibration with SP and multiple
observations of well known standard sites are required to
achieve reliable data analyses.

3. Scientific Objectives of the MI
One of the most important scientific goals of MI is to in-

vestigate small but scientifically very important areas such
as crater central peaks and crater walls by utilizing MI’s
high-spatial resolution and high S/N, combining full spec-
tral coverage data of SP. Tompkins and Pieters (1999)
demonstrated the possibility of olivine-rich thin layers (less
than 1 km) at the crater central peaks of Tsiolkovsky crater.
They also demonstrate that, by studying central peaks of
major craters of the entire lunar surface, we can extract in-
formation about the horizontal and vertical structure of the
lunar crustal chemical composition. Therefore, investiga-
tions of such small areas will help answer current questions
about the existence, chemical composition and source of
olivine at the central peaks of some craters and facilitate
understanding of the chemical composition within the lu-
nar crust. MI’s high spatial resolution will be a most pow-
erful tool for observing the distribution and detailed struc-
tures of such thin layers. In addition to its high resolution,
MI has the advantage that we can remove topographic ef-
fects that cause false reflectance values seen in the crater
wall and crater central peak by photometric correction with
detailed topography. For example, Robinson and Jolliff
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Table 1. Instrument specification of LISM/MI.

VIS NIR

Focal length 65 mm 65 mm

F number 3.7 3.7

Field of view 11 deg 11 deg

Spatial resolution 20 m 62 m

Swath width on ground 19.3 km 19.3 km

Detector 2D CCD (1024×1024 pixel) 2D InGaAs (320×240 pixel)

Pixel size 13×13 μm 40×40 μm

Detector cooler N/A N/A

Number of band 5 4

Band assignment 415±10 nm 1000±15 nm

750±5 nm 1050±15 nm

900±10 nm 1250±15 nm

950±15 nm 1550±25 nm

1000±20 nm —

Quantization 10 bit 12 bit

S/N >100 >300

MTF >0.2 @ Nyquist >0.2 @ Nyquist

Integration times 5.3, 2.7 and 1.3 msec 26.4, 13.2 and 6.4 msec

Data compression DPCM (loss-less) N/A

Compression rate <80% —

Solar elevation angle in operation 30–90 deg

Data amount 49.0 Gbit/day

Mass 10.2 kg (as total MI/TC radiometer unit)

Power 3 W (as MI radiometer unit and excluding heater)
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Fig. 2. MI observation bands with examples of mineral reflectance (terrestrial samples) of major lunar surface mineral species. MI’s observation bands
are shown as a transmittance curve for each band-pass filter.

(2002) demonstrated that FeO and TiO2 abundances cal-
culated using methods described by Blewett et al. (1997),
Lucey et al. (1998), Jolliff (1999), and Lucey et al. (2000a,
b) can change as much as 5 wt% (FeO; absolute) and 4 wt%
(TiO2; absolute) on 30-degree slopes even though the aver-
age slope of the crater central peak may not be so steep.
Digital terrain models (DTMs) for topographic correction
are derived from TC stereoscopic images or MI band sets
that have 11.2 degree maximum parallax (parallax between
nearest band sets are about 3–4 degree).

MI’s low stray light (both spatial and spectral) is also

very useful for investigating dark areas within bright re-
gions such as dark mantling material and highland mare,
although it may be better to investigate these areas with op-
timized exposure settings. One more important objective of
MI is to search for previously unidentified lunar crustal rock
similar to the magnesian anorthosites recently found in lu-
nar meteorite Dho489 by Takeda et al. (2003, 2006). They
found that Dho489 contains clasts in which there are more
Mg-rich mafic minerals (both olivine and pyroxene) than
Ferroan Anorthosites (FAN), which is widely considered as
a typical highland material, and the clasts are not mixture of



260 M. OHTAKE et al.: SCIENTIFIC OBJECTIVES OF THE MULTIBAND IMAGER

Fig. 3. Physical band arrangement of MI. Arrangement is shown as viewed from the Moon direction.

two components (Mg-suite and FAN). It is also suggested
that Dho489 comes from the lunar far side. This finding
suggests the possible existence of magnesian anorthosites
on the lunar far side. If this is true, the understanding of
its distribution and chemical composition is very important
for acquiring new constraints for the lunar crustal growth
model.

4. Manufacturing and Pre-flight Test
The MI flight model has been manufactured and in-

tegrated (Fig. 4), and preflight testing of the SELENE
(KAGUYA) satellite is underway. The MTF, viewing vec-
tor, over-all sensibility, sensor linearity and electrical noise
level (S/N estimation) were measured after the MI integra-
tion. Results of the MI preflight testing will be discussed in
more detail in a paper by Kodama and Ohtake (in prepara-
tion), but measured data indicate that MI will provide suffi-
cient MTF and low-noise data, just as estimated in the MI
design phase. Furthermore, as a result of continuous effort,
cross talk among spectral bands has been kept especially
low.

5. Operation Plan
MI take nine-band images of the entire surface of the

Moon during the one-year SELENE (KAGUYA) nominal
mission. Visible images are compressed using a lossless
algorithm by an onboard compression chip, while near-
infrared images are not compressed. Figure 5 presents an
example of an annual MI operation plan during a nominal
SELENE (KAGUYA) mission. The annual operation plan

MI-VIS MI-NIRMI-VIS MI-NIR

Fig. 4. Flight model of LISM Radiometer Unit (LRU) of MI/TC attached
to the dummy satellite panel. MI and TC sensors share a unit struc-
ture. An optical hood is attached above the sensors in the actual flight
configuration.

changes according to the β angle of the starting point of
the nominal observation phase. During its nominal mission
period, MI image 1/3 of the Sun-illuminated area of each
orbit in the standard observation mode (observation using
the nominal lossless compression algorithm) and image the
remaining 2/3 of each orbit in the SP support mode (obser-
vation using lossy and high-compression algorithm) to con-
trol the data volume to be down linked and also to provide
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Fig. 5. Example of annual MI operation plan during SELENE (KAGUYA) nominal mission. The annual operation plan changes according to the β

angle of the start point of the nominal observation phase. MI will make observations at solar elevation angles from 30◦ to 90◦. MI uses six cycles to
cover the entire Moon because its swath is narrower than each orbit gap and the down-linkable data volume is limitted.

images for SP to determine its observation profile. For this
reason, MI will observe low (0 to 30 degrees), middle (30 to
60 degrees) and high (60 to 90 degrees) latitudes in different
observation sequences. MI’s swath width (19.9 km from the
nominal 100 km SELENE orbital altitude) is narrower than
the nominal interval of SELENE’s orbit, and therefore SE-
LENE’s orbit plane will be changed three times (twice for
low latitudes and once for middle latitudes) to cover the en-
tire lunar surface while maintaining overlap between each
strip by MI. To cover the entire surface of the Moon, MI
needs six observation sequences in total. TC and MI will
make complementary observations to optimize the solar el-
evation angle (30 to 90 for MI) for each instrument and
to minimize electric power consumption. During nominal
observation sequences, an exposure time will be selected
according to the surface reflectance and phase angle from
three exposure modes (short, middle and long; their expo-
sure time ratio is 4:2:1) to achieve sufficient signal count
and also to prevent signal saturation.

In addition to the nominal observation plan designed to
achieve unsaturated images of the entire lunar surface, we
are going to take some shaded area images for on-board
dark-current correction throughout the mission period to
obtain data under a wide range of temperatures. Also, ad-
ditional data can be obtained depending on the excess data
transmission capacity. The possibility of obtaining detailed
images of permanently shadowed and illuminated areas in
the polar region and obtaining basic data to investigate op-
position effects are being investigated.

We are also planning to take several images of our stan-
dard site, which is located near the Apollo 16 landing site

and has been used as the standard site for many previous
Earth-based telescopic observations as well as the Clemen-
tine UVVIS camera (Nozette et al., 1994), throughout the
mission period to check (and if necessary, calibrate) sen-
sor sensitivity. Such multiple observations of the standard
site are very important for MI data analyses because MI
has only limitted opportunities to observe the same area un-
der different phase angle conditions. Studies to select the
best optical standard site for MI and to derive accurate re-
flectances of selected standard sites using the standard site
data are in progress as described in Ohtake et al. (2005).

6. Data Analyses Plan
On-ground LISM data processing systems have been es-

tablished as a subsystem of the SELENE Operation and
Analyses Center (SOAC) on JAXA’s Sagamihara Campus.
Most of the interface tests between other systems and end-
to-end tests (from generation of an instrument operation
plan to LISM data analyses) have been finished and have
confirmed the system efficiency. The data storage and dis-
tribution system for all SELENE (KAGUYA) mission data
is also installed in SOAC.

Figure 6 depicts MI’s ground data processing flow. Each
step of the data processing flow will be discussed be-
low. LISM data will be down-linked from the SELENE
(KAGUYA) satellite to the Earth in real time or stored in an
onboard mission data recording system. For our data analy-
ses, we use SPICE kernels and the NAIF toolkit developed
in JPL.

We are going to produce Level 2A, Level 2B, Level 2C
and MAP products using our data processing systems.
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Fig. 6. Overview of MI’s ground data processing flow.

These products will be distributed first to the LISM and SE-
LENE (KAGUYA) team and then to the public according to
the SELENE (KAGUYA) data distribution plan. Distribu-
tion of SELENE (KAGUYA) data will start one year after
nominal one-year mission. Level 2A and Level 2B products
that cover the entire Moon will be produced, and Level 2C
and higher processed products will first be produced to sat-
isfy the needs of each science topic proposed by LISM sci-
ence members. Table 2 lists products created from MI data.
All LISM products will be distributed in a PDS-like format.

a-1) Radiometric correction: Radiometric correction of
MI will be carried out according to the equation shown
below.

RCOR = fNLT(SVAL − FT)

FLAT ∗ EFFIC
(1)

SVAL: SVAL = RAW − DARK (RAW is a raw signal
of MI, and DARK is a dark-current correction coefficient
generated for each pixel of each band. DARK will be
derived using observation data of shaded areas.)

RCOR: Value after radiometric correction.
fNLT: Function for on-linearity correction of detector.

fNLT is determined from MI data under different (known)
input radiance using an integrated sphere which was taken
during the pre-flight optical testing.

FLAT: Correction coefficient for flat fields. FLAT will
be created using on board data by adding and normalizing
significant amounts of images taken randomly.

EFFIC: Correction coefficient of transmittance tempera-
ture dependency. EFFIC is determined from MI data under
different temperature condition which was taken during the
pre-flight optical testing.

FT: Correction values of frame transfer (only visible
bands need this correction). FT will be created using on
board imaging data by calculating additional signal during
frame transfer under non-shaded window lines of each ex-
posure from calculated ratio of intended exposure time and
additional exposure time during frame transfer.

a-2) Conversion to radiance: After the radiometric cor-
rection radiance of each pixel data is calculated after nor-
malization in time according to the exposure setting of each
image using the conversion coefficient of each band from
our pre-flight optical testing. Conversion coefficient of each
band is determined from MI data observing a known radi-
ance target (integrated sphere) which was taken during the
pre-flight optical testing. Calculated radiance data with its
attached header is called Level 2B.

b-1) Photometric function normalization and conversion
to reflectance: After solar distance normalization, the data
is normalized to a standard geometry (i = 30 and e = 0)
using a photometric function adapted according to the ob-
servation geometry, which is calculated for each image
pixel. We are going to adopt the photometric function and
its parameters for each band used in McEwen (1996) and
McEwen et al. (1998) during our initial data processing
period to compare MI data to Clementine UV/VIS cam-
era images. Photometric function parameters for longer
than 1000 nm (1050, 1250 and 1550 nm) are not available
in McEwen (1996) and McEwen et al. (1998). Therefore
we are going to determine the parameters in our ongoing
study. MI can adapt topographic correction to do photo-
metric function normalization based on the three different
geometric calibration options calculated in step b-3.

b-2) Conversion to reflectance: Reflectance of each pixel
data is calculated using conversion coefficients derived by
either our pre-flight optical test or by comparison of the re-
flectance of standard sample(s) measured in a laboratory
and values observed at the standard site. We use MOD-
TRAN.thkur (Thuillier et al., 1997, 1998) as the incom-
ing solar flux to calculate conversion coefficients derived
by pre-flight optical testing. We are preparing laboratory
measured reflectance for standard samples as discussed in
Ohtake et al. (2005).

b-3) Geometric data attachment: Our geometric correc-
tion algorithm has three options, and we can select one of
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Table 2. MI product list. Each product listed below is going to be produced and stored in L2DB in SOAC.

Process
Product name Resolution Unit Product detail

level

L2A

MI-VIS Level2A 20 m/pxl raw [DN]

MI-VIS 5 band images in nominal observation mode. After depacket,

sort by time and scene cutting. No correction and calibration were

applied. Compressed as 12 bit JPG file.

MI-NIR Level2A 60 m/pxl raw [DN]

MI-NIR 4 band images in nominal observation mode. After depacket,

sort by time and scene cutting. No correction and calibration were

applied. Uncompressed data.

MI-VIS SPsupport Level2A 160 m/pxl raw [DN]

MI-VIS 1 band images in SP support observation mode. After depacket,

sort by time and scene cutting. No correction and calibration were

applied. Compressed as 12 bit JPG file.

MI-NIR SPsupport Level2A 480 m/pxl raw [DN]

MI-NIR 1 band images in SP support observation mode. After depacket,

sort by time and scene cutting. No correction and calibration were

applied. Compressed as 12 bit JPG file.

L2B MI-VIS Level2B2 20 m/pxl
radiance

MI-VIS 5 band images in nominal observation mode. After radiometric

[w/m2/μm/sr]

correction, conversion to radiance, rubber seating of non-base images

to the base images, scene cutting as same observation area and cube

generation.

L2B MI-NIR Level2B2 60 m/pxl
radiance

MI-NIR 4 band images in nominal observation mode. After radiometric

correction, conversion to radiance, rubber seating of non-base images

[w/m2/μm/sr] to the base images, scene cutting as same observation area and cube

generation. Data values are shown in radiance.

L2C MI-VIS Level2C2 20 m/pxl

MI-VIS 5 band images in nominal observation mode. After photometric

reflectance correction, conversion to reflectance and attachment of systematic

[non-dimension] geometric correction data (latitude and longitude derived by geometric

correction).

L2C MI-NIR Level2C2 60 m/pxl

MI-NIR 4 band images in nominal observation mode. After photometric

reflectance correction, conversion to reflectance and attachment of systematic

[non-dimension] geometric correction data (latitude and longitude derived by geometric

correction).

MAP MI MAP
211 pixel/degree reflectance

Mosaic data after 9 band cube generation and map projection (simple

27 pixel/degree [non-dimension]
cylindrical). For mosaicing image matching are applied to overlapping

area of the original images.

them to suit the requirements for each scientific purpose and
time available for data analyses. To normalize the pho-
tometric function and perform geometric calibration and
map-projection, we need the following geometric param-
eters for each pixel: 1) Latitude and either altitude or three-
dimensional position of each pixel in the lunar centric co-
ordinate system, 2) Illumination angle, emission angle and
phase angle of each pixel, 3) Moon-Sun distance. To deter-
mine these parameters four different options of geometric
calibrations are possible. Options of geometric calibration
are as follows.

Option 1

- Calculate geometric parameters by estimating a spher-
ical lunar surface, and apply systematic geometric cal-
ibration (calculated from the measured orbit and alti-
tude of the satellite, viewing vector of each pixel, and
time of each exposure) for all images. In this option
registration within band images does not achieve and
local topographic features are neglected and therefore
reflectance is calculated without topographic correc-
tion.

Option 2

- Calculate geometric parameters by estimating a spher-
ical lunar surface, perform rubber seating (rubber seat-
ing means deforming several band images to match
one selected base image), and then apply systematic
geometric calibration for the base image. This op-
tion achieves registration within band images, but lo-
cal topographic features are neglected and therefore re-
flectance is calculated without topographic correction.

Option 3

- Calculate geometric parameters by using both TC or-
tho image mosaics and DTMs created from TC stereo
images. In this option, reflectance is calculated with
topographic correction.

Option 4

- Calculate geometric parameters by image matching
within MI cubed bands and using topographic data
from MI images. In this option, reflectance is calcu-
lated with topographic correction.

Calculated reflectance data with attached geometric data



264 M. OHTAKE et al.: SCIENTIFIC OBJECTIVES OF THE MULTIBAND IMAGER

(latitude and longitude of each pixel) and header is called
as Level 2C2/3/4. The number attached after “C” indicates
the option number used for geometric parameter calcula-
tion. We are going to use option 2 in the first stage of MI
data analyses and provide it to the public because it can be
applied uniformly for the entire data set of MI observations
and it shortens the time required for data analyses (option 1
is applied only for TC).

7. Preflight Evaluation of Geometric Calibration
We evaluated the accuracy of our geometric and topo-

graphic calibration by comparing modeled topographic fea-
tures (used as “real values” of the lunar surface generated
by adding small crater features to base DEM data, to de-
rive geometric data (latitude and longitude of each pixel)
and topographic features (calculated “slope” at each pixel)
from simulated MI band images of different geologic set-
tings (mare, highland and central peak), solar altitude, and
solar angle conditions. In this evaluation, the effects of var-
ious errors are considered such as hardware characteristics
(S/N, flat-field and viewing vector with their measurement
errors), number of added small craters, errors of satellite po-
sitioning, attitude determination, and errors caused by high-
frequency vibration. Our evaluation results indicate that the
accuracy of geometric calibration (except for local topo-
graphic features) using any option is sufficiently high and
errors of the slope after geometric correction is less than 5
degree for options 3 and 4 except for extremely low solar
altitudes. Our evaluation may not completely simulate all
possible observation conditions and real reflectance varia-
tions of the lunar surface, but it clearly demonstrates the
efficiency of the topographic correction.

8. Summary
MI is designed to be a high-resolution multiband imaging

camera with a spatial resolution in visible bands of 20 m,
and the resolution of near-infrared bands is 62 m from the
100 km SELENE (KAGUYA) orbital altitude. Optical tests
were conducted, and the results indicate that MI will pro-
vide sufficient MTF and low-noise data. Tools and algo-
rithms for operation and data analyses have been developed
and checked. An example of MI scientific goals is to in-
vestigate small but scientifically very important areas such
as crater central peaks and crater walls and to investigate
magnesian anorthosites.
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