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The Lunar Radar Sounder (LRS) on-board the SELENE lunar orbiter is currently being equipped to provide
the data of subsurface stratification and tectonic features in the shallow part (several km deep) of the lunar crust,
by using an FM/CW radar technique in HF (~5 MHz) frequency range. Knowledge of the subsurface structure
is crucial to better understanding, not only of the geologic history of the Moon, but also of the Moon’s regional
and global thermal history of the Moon and of the origin of the Earth-Moon system. In addition to the subsurface
radar experiment, LRS will provide the spectrum of plasma waves and solar and planetary radio waves in a wide
frequency range from 10 Hz to 30 MHz. This paper provides the basic function parameter of the LRS system
based on the final function test and proposes observation targets and data analysis that will provide important
information leading to a greater understanding of the tectonics and thermal history of the Moon.
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waves.

1. Introduction

For the purpose of studying the origin and evolution pro-
cesses of the Moon, the SELENE mission will use remote
sensing techniques from a polar orbit with an altitude of
100 km. Knowledge of topographical features of the sub-
surface to a depth of several km below the surface, with
a horizontal scale of several tens of km, is necessary to
understand the origin and evolution of the Moon because
the topographical and geological features of the subsurface
features are directly related to the history of lunar geology
(Yamaji et al., 1998). Based on the results of the Apollo
radar experiments carried out within two orbital tracks near
the equatorial regions and other studies on lunar rocks and
soils, it has been ascertained that the surface layer of the
Moon consists of material with a median loss tangent of
0.008 (Olhoeft and Strangway, 1975; Strangway and Ol-
hoeft, 1977). Therefore, electromagnetic waves in the HF
range can penetrate into the lunar subsurface to a depth
of several km. When propagating radio waves encounter
geological interfaces with sharp boundaries of permittiv-
ity, a partial reflection of the electromagnetic waves take
place, generating subsurface echoes. Based on this concept,
a radar sounder experiment ALSE (Apollo Lunar Sounder
Experiment) on-board the Command and Service Module
of the Apollo 17 was tested during several orbits (Phillips et
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al., 1973). The ALSE experiment verified that radar sound-
ing using HF range electromagnetic waves can be used to
explore the subsurface structure of the Moon, and these re-
sults provide important information for investigation of lu-
nar tectonics within a depth of several km (Porcello ef al.,
1974; Sharpton and Head, 1982; Cooper et al., 1994). Since
the termination of the Apollo missions, there have been no
additional experiments using the radar sounder technique
for the lunar subsurface exploration. A recent Mars Express
mission was carried out for ice exploration on Mars using
the HF radar sounder method (Picardi et al., 2005; Gurnett
et al., 2005). Therefore, the Lunar Radar Sounder (LRS)
is now being equipped to conduct a full mapping of lunar
subsurface.

During the Apollo missions, there were technical limi-
tations in space borne radar sounder techniques, especially
due to the usage of a voltage controlled oscillator (VCO)
and the low S/N ratio of the data stored by the analog (op-
tical) data recording methods (Phillips et al., 1973; Peeples
et al., 1978). In the present LRS system, a full digital
controlled system makes it possible to generate waveforms
of the transmitter and local signals for each transmission
and reception of RF echoes. Generation of the transmit-
ted RF pulse signal as well as the swept frequency local
signal of the receiver is controlled by an identical clock
generator within an accuracy of 10 nsec and generated by
using an A/D converter with 12 bit resolution. An opti-
cal recording on photo-film used by the ALSE had a limit
of the dynamic range of about 25 dB. In the LRS sys-
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Fig. 1.

A block diagram (a) and a view of the main electrical circuit unit of the LRS system (b). The LRS system consists of antennas (A1-A4),

pre-amplifiers (P1-P4), and the main unit which contains the transmitter and the receiver of the sounder system, receivers of the natural plasma waves
in high frequency range (NPW) and the wave form capture (WFC). The photo is taken during the EMC test of the LRS system in the electromagnetic

shielded room of the Tsukuba Space Center.

tem the echo data has sufficient 12 bit resolution to be
transmitted to the ground. Throughout the LRS system,
we made improvements to the instrumentation by adopt-
ing new technology developed during plasma sounder ex-
periments which were conducted on the Earth’s magneto-
sphere, plasmasphere and ionosphere (Ono, 2005). The
concept of the plasma sounder originates from the top-
side sounder satellites of Alouette and ISIS (Franklin and
MacLean, 1969; Jackson et al., 1969); namely, the plasma
sounder has capability of transmission of high power RF
pulses into plasma through long dipole antennas. Detection
of plasma sounder echo signals makes it possible to mea-
sure the plasma density profiles along the propagation path
of sounder RF pulses. In addition to the sounder operation,
the plasma sounder system has the additional function of
observing the detailed features of natural plasma waves and
planetary radio waves. The plasma sounder system was fur-
ther developed for sounding of Martian ionosphere and land
shape using the sounder experiment on-board the Planet-
B (Nozomi) spacecraft (Ono et al., 1998; Oya and Ono,
1998). The present LRS system on-board the SELENE
is also capable of sounder operation detecting subsurface
echoes, and will also be able to observe the plasma waves
generated near the Moon and radio wave emissions from
Jupiter, the Sun, Earth, and other planets without intense
man-made noise from the Earth. In April 2007, the SE-
LENE spacecraft had already passed the system integration
testing and had been transferred to the pre launch operation
at the launch site. The SELENE spacecraft was launched on
September 14, 2007. In this paper, instrumentation and cal-

ibration of the sounder and observation mode for the LRS
system are introduced in Sections 2 and 3, respectively, and
the proposed set up for lunar observation is provided in Sec-
tion 4. The limit and possible extension for the LRS data are
discussed in Section 5.

2. Instrumentation of LRS
2.1 Subsystem of the LRS instrument

The Lunar Radar Sounder (LRS) has been designed to
obtain subsurface structure information by using an HF
radar sounding technique and spectra of natural emissions
of radio and plasma waves in a wide frequency range from
10 Hz to 30 MHz along the lunar orbit. As discussed by
Ono and Oya (2000), the primary observation frequency
for radar sounding selected was 5 MHz with a frequency
band width of 2 MHz. The usage of wide frequency band-
width has become possible because there is no dispersion
effect from propagating radio waves within this frequency
range for the lunar observation compared with planetary
sounding which is possibly affected by ionosphere plasma
(Kobayashi and Ono, 2006). The natural radio and plasma
waves are observed by using 2 receiver systems, NPW (Nat-
ural Plasma Waves) and WFC (Wave Form Capture: Kasa-
hara et al., 2008), which cover from 20 kHz to 30 MHz
and from 10 Hz to 1 MHz, respectively. As illustrated
in Fig. 1(a), the LRS system consists of 4 sets of anten-
nas (A1(X1), A2(Y1), A3(X2), A4(Y2)), 4 sets of pre-
amplifiers (P1, P2, P3, P4) and the main unit (LRS-E)
which contains the transmitter and receiver of the sounder
experiment, receivers for natural plasma and radio waves
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Fig. 2. The orientation of LRS antenna on-board the SELENE (a) and
an out view of antenna driver unit when the unit is under the vibration
test (b). In the standard observation period, the Z-axis of the SELENE
coordinate is directed to the Moon. Four sets of the LRS antennas will
be deployed from the Z-panel of the upper module of SELENE satellite.

in two frequency regions (NPW and WFC) and a data han-
dling unit which controls operation of the LRS system. Fig-
ure 1(b) provides a view of the LRS units taken during the
sounder system tests in an electro-magnetic shielded room.
2.2 The Antenna system

As shown in Fig. 2, X- and Y-antenna are defined to
make a rectangular coordinate whose Z-axis is directed to
the Moon surface. Table 1 summarizes the electrical and
mechanical properties of the LRS system. The antenna
pairs of X1-X2 and Y1-Y2 form an X- and Y-dipole an-
tenna system, respectively. Four units of LRS antennas are
designed to have identical electrical and mechanical charac-
teristics. The interlocked BiStem antenna element on-board
the SELENE is made of 2 sheets of BeCu alloy material
with a thickness and length of 51 um and 15 m, respec-
tively. When the antenna is deployed, 2 pieces of thin metal
sheets automatically form a very stiff column of more than
155 kgf/cm?, with a diameter of 12.5 mm and a length of
15 m. To avoid any damage to the elements due to accelera-
tion during maneuvering of the SELENE, whose maximum
level after operation of antenna deployment was estimated
to be about 0.01 g, a guiding extension roller is located at
the end of the driver unit with an allowable bending mo-
ment of 1.4 N m. Performance of the antenna system has
been verified through a functional and environmental test of
the antenna for all anticipated conditions, such as vibration
and shock at the launch time, thermal vacuum condition at
the antenna deployment, and acceleration due to the thruster
operation for maneuvering of the spacecraft. Figure 2(b)
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Table 1. Physical and electrical properties of the LRS system on-board
the SELENE satellite.

Antenna 2 Sets of 30 m tip-to-tip Dipole Antenna (for Tx and Rx)
(usage of 15 m BiStem Antenna Elements)
Total Mass = 7.816kg (4 units)
Electronics
Mass 1424kg (LRS'E)
1.106kg (LRS-P 4 units)
Power 56.7 W (45.8W for Passive mode)
Sounder Operation
Frequency 4-6 MHz FM
(IMHz and 15 MHz Optional)
Tx Pulse Width 200 ps
Pulse Repetition 50 ms
Sweep Rate 10kHz/us
Power Output 800 W
Sounder Receiver
Echo Observation Range  Surface + 5 km ~ - 25 km
Range Resolution 75 m
A/D Conversion Accuracy 12 bits (6 .25MSPS)
Passive Mode Receiver
Observation Mode Dynamic Spectrum (DS)
Polarization Spectrum (PL)
FFT Spectrum (NPW)}
Waveform Capture (WFC)
Frequency Range 10 Hz - 30 MHz
Data Transmission
Standard Rate 176 kbps
High Rate 492 kbps

provides an outer view of a section of antenna during the
vibration test.
2.3 Observation modes

The operation of the LRS system has two functions: pas-
sive mode (NPW mode) and active mode (SDR; sounder
mode). Table 2 shows the major LRS observation modes
during standard operation. These include:

(1) NPW DS mode: Observation of frequency spectra of
natural waves obtained by X, and Y antennas.

NPW PL mode: Observation of polarization spectra of
natural waves by using signals detected by X and Y
antennas simultaneously.

NPW WX mode: Observation of waveform of natural
waves in high frequency detected by X-antenna within
a frequency range of 20 kHz—10 MHz.

NPW WY mode: Observation of waveform of natural
waves in high frequency detected by Y-antenna within
a frequency range of 20 kHz—10 MHz.

SXY HR mode: Sounder observation while transmit-
ting from X-antenna and receiving from Y-antenna.
The echo data are obtained and transmitted to the
ground as a waveform.

SXX HR mode: Sounder observation while transmit-
ting and receiving via X-antenna by using the TR
(Transmitter Receiver) switch. The echo data are ob-
tained and transmitted to the ground as a waveform.
SYX HR mode: Sounder observation while transmit-
ting from Y-antenna and receiving from X-antenna.
The echo data are obtained and transmitted to the
ground as a waveform.

SYY HR mode: Sounder observation while trans-
mitting and receiving via Y-antenna by using the TR
switch. The echo data are obtained and transmitted to
the ground as a waveform.

SXY LR mode: Sounder observation while transmit-
ting from X-antenna and receiving from Y-antenna.
The echo signals are transmitted to the ground as
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Table 2. Observation modes of standard operation for the LRS system.

NPW

SDR

Observation Mode and

20KkHz-
Data 20KHz-30MHz

20kHz-10MHz

Data

WFC Rate

Spectrum Wavelorm

Spectrum Wavelorm

Spectrum

Dynamic o

NFW-D§ Spectrum

176kbps

Polarization o)

NPW-PL Spectrum

(o] 176kbps

HF
Waveform o]
X-Antenna

NPW-W-X

(o] 492kbps

HF
Waveform (o]
Y-Antenna

NPW-W-Y

Q 492kbps

SDR
Waveform
XY-Antenna

SXY-HR

492kbps

SDR
‘Waveform
XX-Antenna

SXX-HR

492Kkbps

SDR
‘Waveform
YX-Antenna

SYX-HR

492kbps

SDR
Waveform
YY-A

SYY-HR

492kbps

SDR
Spectrum
XY-Antenna

SXY-LR

176kbps

SDR
Spectrum
XX-Antenna

SXX-LR

176kbps

SDR
Spectrum
YX-Antenna

SYX-LR

176kbps

SDR
Spectrum
YY-Antenma

SYY-LR

176kbps

power spectrum data.

SXX LR mode: Sounder observation while transmit-
ting and receiving from X-antenna by using the TR
switch. The echo signals are transmitted to the ground
as power spectrum data.

SYX LR mode: Sounder observation while transmit-
ting from Y-antenna and receiving from X-antenna.
The echo signals are transmitted to the ground as
power spectrum data.

SYY LR mode: Sounder observation while transmit-
ting and receiving from Y-antenna by using the TR
switch. The echo signals are transmitted to the ground
as power spectrum data.

(10)

(1)

12)

Within the observation time of the above modes, WFC
observation in a low frequency region may be carried out
simultaneously. Also, during the observation of SXY-LR,
SXX-LR, SYX-LR, and SYY-LR modes, the waveform of
natural waves is detected in digital form and transferred
as frequency spectra to the ground after the on-board FFT
(Fast Fourier Transformation) analysis with the data trans-
fer speed of 176 kbps.

2.4 Sequence of the sounder observation

Figure 3 shows the schematic view of the sounder obser-
vation sequence. One of the most important system parame-
ters with respect to the timing is the sequence of the sounder
operation that is performed every 50 msec. As shown in
Fig. 3(a), at the start of the sequence (T = 0), waveform
data are generated from the 5000 word memory, transferred
to the D/A converter, and then directly fed into the power
amplifier with a pulse width of 200 usec, and a frequency
sweep from 4 MHz to 6 MHz. Based on the orbital param-

eter, the time of echo detection (¢) is expected to be within
an accuracy of

o <t <1+ 100 (usec).

After the pulse transmission, the swept frequency local
signal from 4 MHz to 8 MHz is started with the same sweep
rate of 10 kHz/usec being read out from the memory with
the size of succeeding 10,000 words as shown in Fig. 3(b).
The parameter ¢ represents the delay times for the echo
from the lunar surface and subsurface boundaries. They are
given as 7 and T, respectively in Fig. 3(a). Because the
altitude of the SELENE satellite is expected to be 100 km
along the polar orbit, the expected arrival time of the echoes
is within a range of 600 usec. As a result, most of the
sounder operation in each pulse transmission is completed
within 1 msec. When the TR switch operation is used, the
time period of the TR switch signal (designed as 250 usec)
covers the time period of the sounder pulse transmission.
And immediately after the transmission, the antenna should
be connected with the receiver and isolated from the power
amplifier.

2.5 TR switch and power amplifier

For sounder observations using the same dipole an-
tenna, a TR switch (Transmitter Receiver switch: Franklin
and MacLean, 1969) is used. The TR switch works by
switching-OFF the receiver form the antenna as well as the
power amplifier with a time period of 250 psec that includes
the time period of the sounder pulse width of 200 usec
when the power amplifier is turned on. In the other time
period, the TR switch is connecting the sounder receiver to
the antenna. To protect the sounder receiver from the high
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Fig. 3. A schematic view of the sounder observation sequence (a) and a block diagram to control the sounder sequence (b). In panel (b), thick lines and
arrows indicate the flow of signals and thin lines and arrows show sequence control sounder pulse transmission every 50 msec.

voltage RF signal of the power amplifier (about 1000 Vpp
for the maximum value), the switching diode has to have a
high break-down voltage with high resistance and low ca-
pacitance characteristics for the inverse bias condition. At
the same time, the diode has to have a low impedance char-
acteristic for the forward bias condition. For this purpose,
UM7010B was selected as the switching diode of the TR
switch. The insertion loss of the TR switch is basically de-
termined by the ON-resistance of the switching diodes that
are controlled by the bias currents fed to the diodes, which
has been measured as 13 dB. To obtain low insertion loss
characteristics of the TR switch, the diode bias current of
several mA for each diode is required, which is relatively
large current for the small size step-up transformer because
it requires more than 3000 turns for the 2nd coil to realize
output voltage of about 500 V and pulse width of 250 usec.
To avoid magnetic saturation due to the DC current, the core
material of the transformer was selected as FPQ3220 (with
2500B material) which is able to keep high permeability un-
der a high bias current of 30 AT. Figure 4 shows the circuit
diagram of a unit of power amplifier (a), the final output
stage of the main power amplifier by using 4 power am-
plifier units and antenna selection switch (b), and the TR
switch (c).

2.6 Performance of the power amplifier

As is shown in Fig. 4(a), one unit of the power amplifier
consists of a transformer coupled push-pull AB class am-
plifier. Due to the AB class operation and lossy transformer
coupling, the efficiency of the power amplifier is about
25%; howeyver, it shows very strong and stable characteris-
tics for any load condition from zero to infinite impedance.
At the final stage of the main power amplifier, 4 units of
amplifier work in parallel with the push-pull operation as
shown in Fig. 4(b). Due to the frequency dependence of the
dipole antenna impedance within a frequency range from
4 MHz to 6 MHz in free space, we selected standard load
impedance of 100 ohms for the evaluation of the power am-
plifier. Figure 5 shows an example of the waveform output
obtained in the environmental test from the power ampli-
fier when the load impedance is set as 50 ohms for each
terminal. The output peak amplitudes of 300 V and 305 V
are obtained for each resistance; namely, in this case, the
output powers of 225 Watts and 232 Watts for each load re-
sistances are obtained. The total power becomes 457 Watts
for the load impedance of 100 ohms. When we take into ac-
count the variation of antenna impedance (Z,) and antenna
gain within the frequency range of LRS observation, the ra-
diation power from the LRS system is able to be examined.
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Fig. 4. A circuit diagram of power amplifier unit (a), the final output stage of the main power amplifier using 4 power amplifier units and an antenna
selection switch (b), and the TR switch (c). To generate 800 Watts sounder RF pulses, the final stage of the main power amplifier consists of 4 units

of the power amplifier given in (a).

Z, is a complex value with resistance and reactance parts
of the antenna impedance described as:

Zo=2,+iZ:. 1

As shown in Fig. 6(a), the LRS dipole antenna changes
its impedance depending on the frequency. Taking into
account the antenna gain of the dipole antenna as well as
the antenna impedance, estimated radiation power from the
LRS system is given in Fig. 6(b). As shown in Fig. 6(b),
the peak power of the LRS sounding pulse is estimated as
753 Watts. It is noted that the frequency spectrum of the
radiation power is concentrated within the frequency range
of about 750 kHz (—3 dB). Then, when we take into ac-
count the effective radiation power spectrum of the sounder
pulses, the spatial resolution of the sounder observation is
estimated about 200 m.

2.7 On-board data analysis

The envelope of the output RF pulse shape clearly shows
the effect of the envelope function. The transmission signal
waveform is described as a function of time, as

0 t <0,
Tx(t) = ja(t)cosgp(t) 0=t =T, 2
0 Ty <t,
where
¢(t) = (a)o + %st) t. 3)

Variables wy, s and a(¢) are the starting angular frequency
(2m x 4 x 10° rad/sec is selected for the LRS system), the
sweep rate of angular frequency (27 x 10'° rad/sec?), and a
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Fig. 5. Examples of an waveform envelope (a) and a fine signal shape (b) of the power amplifier output for 50 ohm load impedance of each channel.

pulse shape function to define the envelope for transmitted
RF pulses, respectively; and T in Eq. (2) gives the sounder
pulse width (200 pusec for the LRS system). For the shape
function we selected a sine function described as:

. t
a(t) = sin (n X ?o)

As has already been discussed by Ono and Oya (2000),
the pulse compression technique was used in the pulse
transmission, reception and data analysis. In the LRS ob-
servation, the transmitted signal is swept in frequency from
4 MHz to 6 MHz within the pulse period of 200 psec. This
pulse compression technique realizes an equivalent pulse
width of about 0.5 usec which makes it possible to obtain
the high spatial resolution of about 150 m for the detection
of delayed echo signal reflected from the surface or subsur-
face of the Moon. As discussed by Ono and Oya (2000),
the conversion from a frequency resolution (§w) to a corre-
sponding distance (§z) can be obtained as,

“

¢ dw

C2/E s
where €], ¢, and s are the relative dielectric constant of
the surface material, the speed of light, and the sweep rate
of angular frequency (2m x 10'0 rad/sec?), respectively.
Based on the sampling theorem, the frequency resolution of
Fourier analysis can be estimated as a function of the data-
sampling period equal to the period of pulse transmission;
therefore, the theoretical limit is 5 kHz for the present LRS
system.

6z

)

The echo signals picked up by using the dipole antenna
are mixed with the local signal swept from 4 MHz to
8 MHz; the sounder receiver signal is obtained after pass-
ing through the 2 MHz low pass filter and being converted
to a digital form, as is shown in Fig. 3(b). Based on the
model calculation of signal levels for surface and subsur-
face echoes (Ono and Oya, 2000), the necessary dynamic
range of the receiver is estimated to be more than 60—70 dB.
To realize this requirement, the linearity of the transmit-
ted pulse waveform and receiver should cover this dynamic
range. We used 12 bit resolution for signal processing
which makes it possible to realize the dynamic range of
72 dB. The linearity of the waveform synthesis in the trans-
mission pulse and swept frequency local signal is achieved
by using 12 bit D/A converter as described in Section 2.4.
In the receiver, an A/D converter with a sampling speed of
6.25 MHz and an amplitude resolution of 12 bit is used for
this purpose. To adjust the signal level, a gain control is
performed in the analog circuit beforehand, by applying at-
tenuation of —0 dB (high-gain), —15 dB (medium gain) and
—30 dB (low gain). The A/D conversion is accomplished
within the time period of 400 usec with a sampling clock
of 160 nsec that generates 2500 words of the sounder data.
To minimize the amount of data transmission to the ground,
2048 words are selected and transferred to the ground as
a waveform of an echo. The waveform data require high
speed data transmission with a speed of 492 kbps. When
the resource of telemetry is strictly limited, the power spec-
trum data after analyzing with fast Fourier transformation
on-board are transferred to the ground for 320 frequency
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Fig. 6. An estimated antenna impedance in the vacuum condition (a), and an estimated radiation power of the transmitted pulse (b). Solid and broken
curves in (a) give real and imaginary part of the antenna impedance, respectively.

steps with 12 bit logarithmic data form. In this case, the
176 kbps data transmission speed is enough to transfer the
sounder data and WFC data at the same time. However, to
achieve higher order data analysis of the LRS data, such as
the synthetic aperture radar (SAR) method, waveform data
transmission is necessary.

3. Calibration of the Sounder System

The calibration of the overall sounder observation is car-
ried out by using a delay circuit which simulates delayed
echo signals that are returned from the lunar surface as well
as subsurface boundaries. The delay circuit consists of fast
speed A/D converter, FIFO (First In First Out) memory and
D/A converter. The delay time is precisely controlled by
adjusting the delay clock number of the data read out fed
to the D/A converter. Figure 7 provides a schematic set up
of LRS components and echo simulation for the calibra-
tion of the LRS system for the SXY or SYX mode sounder
operation. As shown in Fig. 7, output power signals are
fed to the delay circuit where the delay time is set with
a time unit of 40 nsec. For example, a delay time set of
660 psec is applied for simulating echoes from the distance
of 100 km. When the start time of the local sweep signal

inside the LRS-E is set as 650 usec from the sounder pulse
transmission, there is a frequency difference of 100 kHz be-
tween these signals, and finally, the receiver output signal
has a frequency of 100 kHz appearing in the final wave-
form data as shown in panel (c) of Fig. 7. The sampling
speed of the waveform data is 6.25 MHz at the A/D conver-
sion; the waveform data with a word length of 2048 have a
time period of 327.68 usec. Figure 7(c) shows an example
of the waveform data transmitted to the ground when the
data transmission rate of 492 kbps is obtained. In this case,
when the data transmission period is 2048 words with 12 bit
resolution, then the most favorable data are available on the
ground. A similar configuration is also used for the SXX or
SYY mode sounder operation.

Figure 8 shows an example of data analysis in the SXX-
HR calibration mode, with data transmitted via the high
speed telemetry format. The transmitted waveform data
are analyzed with FFT analysis on the ground based on a
computer system. The delay time of the local signal pro-
grammed in the LRS-E and echo delay time set up in the
echo simulator are set as 560 usec and 579.6 usec, respec-
tively. In this case, the sounder receiver output signal has
a frequency of 196 kHz, corresponding with a 19.6 usec
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-40.0
= LRS Real Range Data
g SDR SXX-mode
5 -60.0 Expected Surface Echo
= (Minimum Leval) -
2 [Final Caliburation Data
=
E‘ -80.0
E Expected Subsurface Echo
& Level (tan§=0.006)
§ -00.0
g
[:¥] tand=0.01
o
4
= a0
-140.0
-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Corrected Range (m; &=4)

Fig. 8. A typical example of the result of the sounder echo analysis displayed as the A-scan display format (Kobayashi et al., 2002a). As shown in
the figure, the background noise of the sounder receiver is obtained as about —120 dB V that is well enough to detect the surface echoes from the
Moon. The green lines give an expected subsurface echo intensity depending on the loss tangent value of the surface material as well as depth of the

subsurface boundaries. As shown in this figure, subsurface echoes from t
tangent value of 0.006.

delay. The horizontal axis of Fig. 8 shows the frequency
range of 160 to 530 kHz. This frequency range coincides
with the distance of 11 km in free space. Furthermore,
based on Eq. (5) when we take into account the electrical
permittivity (¢) of the surface material as 4.0, this appar-
ent distance is converted to the depth of 5500 m below the
Moon surface. The transmitted waveform data have already
been analyzed by applying the fast Fourier transformation
on the ground system, and the power spectrum is directly
converted to the range data as shown in the figure. The ob-
tained spectrum shows good performance of the pulse com-
pression method of the sounder system as required. The de-
tail data are shown in Fig. 8, showing that the sounder pulse
width transmitted at 200 psec pulse train is compressed to
about 0.6 usec. The range resolution defined as the —3 dB
spectral widths in the FFT result is about 180 m of free

he depth of 5000 m are detectable when propagation medium has low loss

space. This value is almost consistent with the range res-
olution estimated as 200 m by applying the estimated ra-
diation power spectrum of the sounder pulses discussed in
Section 2.6. It is noted; the better range resolution appeared
by using the echo simulator did not take into account the
effect of the frequency variation of antenna impedance. In
Fig. 8, variation of the estimated subsurface echo intensity
is plotted by green lines for changing the tan§ values of
the surface material. Figure 8 also indicates the estimated
signal level of echoes from the lunar surface based on the
transmitted sounder power of 753 Watts as previously dis-
cussed. Compared with the system background noise, it is
clear that the present LRS is able to obtain the subsurface
echoes from the Moon with a maximum observation range
of 5 km for small loss tangent medium (tan § = 0.006). The
limit of the observation range is changeable depending on
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intensity range for the ALSE receiver; however it was out of range of the photo-film data recording.

the properties of the propagating medium, especially on the
loss tangent value as shown in the figure.

To demonstrate the overall performance of the LRS sys-
tem, including the capability of the passive mode receiver,
Fig. 9 shows a level diagram of the LRS receiver for the
DS mode, PL mode, SDR mode and SDR mode includ-
ing the TR switch operation. For the sounder observation
mode, when the transmission power of the sounder pulse of
753 Watts is taken into account, it can then be directly com-
pared with the results of the ALSE experiment on-board
Apollo 17 (Phillips et al., 1973). Environmental tests were
also carried out to verify the reliability of the functions
of the LRS system under the environmental conditions at
launch and in lunar orbit. These include (1) temperature
test, (2) vacuum test, (3) thermal vacuum test, (4) vibration
test, and (5) mechanical shock test. In addition to the envi-
ronmental tests, electromagnetic compatibility (EMC) tests
were carried out to evaluate the noise level of the observa-
tion instruments as well as the SELENE spacecraft during
the on-flight observation (Kumamoto ef al., 2008).

4. Observation Targets of the LRS System

Based on the verified instrumental capability revealed by
the instrumental development, and previous work invoking
theoretical predictions of the sounder observation above the
surface of the Moon, it is possible to draw an accurate ob-
servation of the results as shown in Fig. 10 (modified the

results of Kobayashi et al., 2002b). As shown in this figure,
along the path of the SELENE satellite orbit, the LRS ob-
servation detects clear nadir echoes, and sometimes strong
echoes from craters’s edge (off nadir echoes). However,
when we examine the B-scan plot of the LRS data, it be-
comes possible to see the echoes of nadir subsurface echoes
(Kobayashi et al., 2002b). LRS operations will mainly be
controlled by using macro-commands, each of which in-
cludes a necessary command group of discrete functions
and system parameters. The daily operation will be con-
trolled by executing stored macro-commands depending on
the time sequence on-board the SELENE. The orbital mo-
tion of the SELENE satellite will be taken into account to
define the observation targets along the lunar orbit. Major
target regions on the lunar surface have been identified as
sown in Fig. 11. As shown in this figure, regional character-
istics of the lunar surface are identified as 6 regions depend-
ing on latitudinal and longitudinal distribution of the geo-
logical characters. It is clear that the low latitude region of
the near side (identified as N1, and S1) is characterized by
maria and basins as dominant geological features, an area
where detection of subsurface echoes is mostly expected. In
particular, the region indicated by a red rectangle is an area
where the ALSE experiment on-board the Apollo 17 made
many interesting findings and left many unsolved problems
associated with trends of subsurface echoes (Peeples et al.,
1978; Sharpton and Head, 1982; Cooper et al., 1994). Be-
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the Apollo 17.

cause the orbital motion of Apollo 17 was longitudinal, and
the orbital character of the SELENE satellite is latitudinal
along the polar orbit, LRS observations will make a sig-
nificant contribution toward understanding the geological
structure of this region.

In the lunar farside region, complex highland features
seem to prevent clear subsurface echoes for LRS sounder
observation; however, some of highlands have the potential
for discovery of crypt-mare. As has been pointed out by
Yamaji et al. (1998) and Jolliff et al. (2000), sounding of
South Pole Aitken is also an important target as a candidate
region to find old structures, and the Orientare Basin is a

valuable research field to study the origin of the multi-ring
crater. As has been discussed by Kobayashi et al. (2002b),
even in the highland region, careful data analysis of the LRS
results will make it possible to identify subsurface structure
below the crater rich terrain.

5. Discussion and Conclusion

Results of previous radar soundings by Apollo 17 (for
example, Sharpton and Head, 1982; Cooper et al., 1994)
have shown that the subsurface layers are clearly detectable
above the mare region. It is possible that trends of sub-
surface layers which have important information about the
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thermal history of the Moon will be detected (Yamaji et al.,
1998). It is also possible that buried craters and other struc-
tures associated with the activities of volcanoes or meteors
before the formation of mare will be found, as was reported
by the MARSIS observation on-board the Mars Express
(Watters et al., 2006). On the other hand, it seems difficult
for radar echoes from the highland to identify the subsur-
face signals. Kobayashi et al. (2002a) showed that an appro-
priate averaging method of echo signals has a distinct ad-
vantage for finding a subsurface nadir echo signal, because
off-nadir clutter echoes are incoherent in nature, while the
subsurface nadir echoes tend to be coherent. Thus, the ap-
plication of data stacking may be the most likely method
to overcome the off-nadir echoes. Another approach to re-
duce off-nadir backscatter echo waveforms is to reproduce
backscatter signals from major craters. This method re-
quires precise map of the surface shape of the Moon, how-
ever, this will only be available when the SELENE mission
completes the global mapping of the lunar surface.

Surface sounding of the Moon by using long radio wave
is another target of the LRS system. It is possible to apply
SAR analysis by using the waveform data from the LRS
observation. As is well known, SAR analysis adds the am-
biguity of a mirror image when used in the wide field of
view of the antenna system. Indeed, the LRS system uses a
dipole antenna. Then when application of the SAR anal-
ysis on the observation data is required, several datasets
are needed from multiple orbits of the observation with ad-
equate accuracy of the orbital parameters (Kobayashi and
Ono, 2007). When the SELENE mission is complete, pre-
cise orbital data may be available by using the results from
the RSAT and VRAD experiments. When observation po-
sition data can be identified with enough accuracy, the SAR
analysis may be available to generate a map of the perma-
nent shade region near the South Pole region, and also a
map of the Moon surface as derived from log wavelength
radio waves.
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