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Constrained simultaneous algebraic reconstruction technique (C-SART)
—a new and simple algorithm applied to ionospheric tomography
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A simple and relatively fast method (C-SART) is presented for tomographic reconstruction of the electron
density distribution in the ionosphere using smooth fields. Since it does not use matrix algebra, it can be
implemented in a low-level programming language, which speeds up applications significantly. Compared with
traditional simultaneous algebraic reconstruction, this method facilitates both estimation of instrumental offsets
and consideration of physical principles (expressed in the form of finite differences). Testing using a 2D scenario
and an artificial data set showed that C-SART can be used for radio tomographic reconstruction of the electron
density distribution in the ionosphere using data collected by global navigation satellite system ground receivers
and low Earth orbiting satellites. Its convergence speed is significantly higher than that of classical SART, but it
needs to be speeded up by a factor of 100 or more to enable it to be used for (near) real-time 3D tomographic
reconstruction of the ionosphere.
Key words: Ionosphere, TEC, tomography, GNSS, SART, differential code biases.

1. Introduction
Computerized tomography (CT), developed in the 1960s,

continues to play an important role in the field of medical
imaging. The algebraic reconstruction technique (ART), the
first algorithm used for CT (Gordon et al., 1970), is poorly
suited for real-time tomographic applications because its
iteration steps are time-consuming.

The simultaneous algebraic reconstruction technique
(SART), a refinement of ART developed by Andersen and
Kak (1984) that solves multiple equations simultaneously,
is better suited for real-time applications. It is used in ra-
diological and medical applications, seismic investigations,
material science, among others. From a mathematical point
of view, the applications differ greatly. In medical appli-
cations, the number of observations M used to reconstruct
an image exceeds or is close to the number of unknowns
N (i.e., pixel or voxel values), whereas, in most geophys-
ical applications, M � N is valid (Ivansson, 1986). A
good overview of tomographic applications was given by
Raymund (1995), who focused on the reconstruction of the
ionosphere in detail. Computerized ionospheric tomogra-
phy (CIT) as a dedicated application of CT has attracted
the interest of the scientific community since the naviga-
tion satellite systems allows to the derivation of compute
ionosphere propagation characteristics. A variety of imag-
ing strategies have been developed within the last years;
these allow estimation of electron density fields and enable
the study of temporal and spatial variations of the iono-
sphere. In order to solve the under-determined inversion
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problem, several approaches including regularization tech-
niques (e.g., Lee et al., 2007), neural network methods (Ma
et al., 2005), Kalman filters (e.g., Hernandez-Pajares et al.,
1999; Ruffini et al., 1998), singular value decomposition
(e.g., Bhuyan et al., 2004), consideration of background
models (e.g., Spencer et al., 2004) and improvements of
the SART method (e.g. Wen, 2007; Wen et al., 2007a, b, c),
have been developed. Although all of these techniques can
reconstruct the probed media with high accuracy, many of
them strongly depend on matrix operations, which increases
the computation load significantly when the number of un-
knowns, N , is large.

We have extended SART, which does not depend on ma-
trix operations, to enable it to carry out tomographic inver-
sions accurately using simple physical relationships.

2. Simultaneous Algebraic Reconstruction Tech-
nique (SART)

A linear imaging problem such as tomography can be
expressed as

b = A x, (1)

where b represents observations (b1, b2, . . . , bM)T (∈ R
M ),

A (= (Ai, j )) represents an M × N matrix, x (=
(x1, x2, . . . , xN )T ∈ R

N ) stands for the unknowns, and T is
the transpose operator acting on a vector or matrix. SART,
as described by Andersen and Kak (1984), is given by

x (k+1)
j = x (k)

j + ω

A⊕, j

M∑
i=1

Ai, j

Ai,⊕

(
bi − b̄i (x (k))

)
(2)

for iterations k = 0, 1, . . . , K . We set the relaxation param-
eter, 0 < ω < 2, to 1 for our study. Although larger values
speed up convergence, if the value is too large, too much
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weight is given to the last projection, which prevents con-
vergence. Smaller values (close to zero) cause the algorithm
to converge slowly, which is unsatisfactory for real-time ap-
plications and systems with a huge number of cells. Wen et
al. (2007b) presented an improved algebraic reconstruction
technique (IART) based on classical ART. It computes the
relaxation parameter at each iteration step adaptively. As
the underlying mathematical statistics and the prerequisites
for the unknowns remain unstudied, this improved ART is
not be taken into account here because it is not clear how
the introduction of constraints (Section 3) affects IART.

Two definitions are needed for the calculation of expres-
sion (2).

Ai,⊕ =
N∑

j=1

Ai, j for i = 1, 2, . . . , M (3)

A⊕, j =
M∑

i=1

Ai, j for j = 1, 2, . . . , N (4)

b̄
(
x(k)

) = A x(k) (5)

In classical ART, two prerequisites have to be fulfilled.

Ai, j ≥ 0 for i = 1, 2, . . . , M and j = 1, 2, . . . , N (6)

Ai,⊕ 	= 0
A⊕, j 	= 0

}
for i = 1, 2, . . . , M and j = 1, 2, . . . , N

(7)
Jiang and Wang (2003) showed that, for k → ∞, Eq. (2)
converges to a solution for expression (1) and proved that
the result obtained is equivalent to a weighted least squares
solution of Eq. (1). For M < N , the matrix used in the
classical least squares adjustment (Koch, 1988) is a singular
type and thus cannot be inverted. Singular value decompo-
sition or regularization (Hansen, 1987) is used in this case to
obtain a solution for expression (1). Although SART always
iterates towards a unique solution independent of M > N
or M < N , the physical meaning of the results is not given
for most under-determined systems.

Equation (1) can be related to tomography applications
by denoting the value of cell j as x j . Furthermore, Ai, j

can be understood as the length of ray i in the j-th cell.
Thus, the quantity Ai,⊕ is equal to the total length of the
i-th ray, and A⊕, j is the sum of all ray paths crossing the
j-th cell. Since the ray length is always a positive number,
Eq. (6) and the first case of condition (7) are fulfilled. If
cells tα (α = 1, 2, ...A ≤ N ) are not crossed by any ray (i.e.,
A⊕,tα = 0), division by zero would occur in Eq. (2). This
problem can be easily solved by applying the algorithm
to only cells that are traversed by at least one ray—i.e.,
( j | j ∈ {(1, 2, . . . , N ) ∧ j /∈ tα}).
2.1 Applying SART to GNSS ionosphere tomography

To reconstruct the electron density distribution of the
ionosphere using data from the global navigational satellite
system (GNSS), one has to take into account that satellite
and receiver effects bias the data. Thus, the observation
equation obtained using dual-frequency code measurements
or L1–L2 leveled phase measurements (both described, for
example, by Schaer (1999)) basically reads as

STECobs = STEC + DCBs + DCBr , (8)

where STEC is the slant total electron content measured in
total electron content units (1 TECU = 1016 electrons m−2).
Differential code biases (DCBs) are assigned to both the
satellite (s) and receiver (r ) offsets (e.g., Ray and Senior,
2005) and are added to the slant total electron content so
that STECobs is obtained from the raw data (Eq. (8)). More-
over, for ray i ,

STECi =
∑

Ne( j)�si, j , (9)

where j denotes cells crossed by the ray, Ne( j) repre-
sents the electron density of cell j , and �si, j is the path
length inside the cell. It is obvious from this notation that
Ne( j) ≡ x j and �si, j ≡ Ai, j . Since it is not possible to es-
timate satellite and receiver DCBs together without setting a
reference level, it is common (Schaer, 1999) to place a zero-

sum condition on the satellite biases, i.e.,
S∑

s=1
DCBs = 0,

where S denotes the number of satellites. To estimate the
satellite and receiver DCBs when using SART, one has to
treat them as “artificial” cells, with the exception that path
length Ai, j is always equal to one. Additionally, one has
to place the same condition on the satellite DCBs. Thus,
bi = 0 (i being the number of artificial observations) has to
be applied in order to set up the zero-sum condition when
using SART.

3. C-SART—an Extension of SART for the Re-
construction of Smooth Fields

As described above, SART has the advantage, compared
to least-squares adjustment, that even high-resolution to-
mographic problems, which entail a huge number of un-
knowns, can be solved without reaching the limits of com-
puting power and memory. The number of mathematical
operations in a tomographic problem solved using SART
scales is determined by the number of unknowns (N ),
whereas least squares adjustment, Kalman filter (Kalman,
1960) methods, and the singular value decomposition scale
are determined mainly by the size of the design matrix,
which is N ×N . For example, the computation time for ma-
trix inversion follows ∼ O(N 3), which makes SART more
efficient than the three approaches mentioned above, even
though it is an iterative technique.

The Kalman filter approach has been used in several stud-
ies to obtain highly resolved images of the ionosphere (e.g.,
Hernandez-Pajares et al., 1999). With this approach, the
physical conditions of the media can be flexibly added as
additional information, which supports the observation ge-
ometry in cells for which no information was gathered (Hajj
et al., 2004). Ideally, the number of rays in tomography is
larger than the number of cells, so the ray geometry de-
fines a non-singular matrix, which permits reconstruction
of the probed media. This is not usually the case in geo-
science applications, unlike medical applications. To han-
dle such situations, we applied a new approach to SART by
using a simple physical model that supports the estimation
of the electron density field. We term our version of SART
“constrained-SART (C-SART)”. In the following, we will
use the expression “constraint” for any kind of artificial ob-
servation which supports the solution of the tomography
problem.
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3.1 Constrained-SART: basic idea
Figure 1 illustrates the basic idea of C-SART for a two-

dimensional case (2D) in which there are nine cells (with
values x j , j = 1, 2, . . . , 9), and a ray never crosses the
middle cell (x5). In this case, information about the value of
the center cell can be transferred from the neighboring cells
if a number of assumptions are made about the underlying
field. Generally, any physically reasonable information, ex-
pressed in the form of a finite difference equation, can be
transferred. Treating the media as a smooth field—i.e., no
steep gradients between neighboring cells—is a reasonable
way to simplify the discussion and to enable this approach
to be extended to applications other than ionosphere tomog-
raphy. One way to do this is to use the 2D-Laplacian oper-
ator,

L̂ =
−1 −1 −1
−1 8 −1
−1 −1 −1

, (10)

which relates the values for the neighboring cells to that of
the cell at the center. This operator is used to compute the
difference between the sum of the values for the surround-
ing cells and the value for the center cell, which is multi-
plied by the number of neighboring cells. Since the mean
value of all entries in the matrix is zero, application to the
ionosphere does not bias the total number of electrons in the
field. The operator has to be modified accordingly when the
concerned cell lies on the edge of the model space. It can
be used to introduce an artificial observation between un-
knowns, a so-called “constraint”. Thus, it is possible to im-
pose, for the nine-cell example, one constraint for each by
applying the smoothness operator to the surrounding cells.
This simple approach can be applied to any cell, indepen-
dent of the number of crossing rays, to guarantee that the
estimated field is smooth. This constraint, expressed as a
function of fc in its general form, can be denoted as

1

β
· fc(xa, . . . , xb) = 0, (11)

Fig. 1. Basic idea of C-SART for two dimensional (2D) case. The
x j ( j = 1, 2, . . . , 9) represent the cells, which are gray shaded on an
arbitrary scale. Cell at center (x5) is never crossed by a ray. Placement
of a Laplacian constraint on the underlying field enables the value of x5
to be deduced from those of neighbor cells.

where xa, . . . , xb includes all of the unknowns related to the
condition. Each constraint is weighted by hyper-parameter
(weight parameter) β, which determines the extent to which
the condition must be fulfilled. The choice of β should
be cross-validated to ensure that the reconstructed field is
neither too rough nor too smooth. Expressing the Laplace
operator as a constraint yields

1

βL

(
Cx j −

C∑
c=1

xc

)
= 0, (12)

where C is the number of neighboring cells, which can
range between 3 and 8 (for the 2D case) depending on the
position of cell j in the grid. It is thus possible to set up one
constraint for each cell that increases the number of obser-
vations (by the number of cells) and makes the whole sys-
tem overdetermined. For small grids, the solution can be
easily obtained using traditional least-squares adjustment
since redundancy is ensured by the constraints. Even for
a 2D case of 100 × 100 cells, SART is much faster than the
inversion of the corresponding 10,000 × 10,000 design ma-
trix from the Gauss-Markov model. In general, heat-, wave-
or Laplace-partial derivative equations can be expressed us-
ing finite differences, and dedicated constraint operators,
similar to expression 10, can be set up. Moreover, it is
possible to support the estimates by considering physical
relationships given as explicit equations. For the case of
the ionosphere, it might be useful to constrain the solution
to follow Chapman-like vertical profiles (as described, for
example, by Hargreaves, 1992). Thus, it is possible to write

x j − xm exp

[
1−

(
h(x j ) − hm

H

)
− exp

(
−h(x j ) − hm

H

)]
= 0, (13)

where xm is the electron density maximum and hm the cor-
responding height for each vertical profile. Operator h(x j )

returns the height of cell j , and H is the scale height of
a hydrostatic equilibrium (e.g., Hargreaves, 1992). To ap-
ply this constraint within C-SART, it is necessary to com-
pute xm and hm from the results of the prior iteration step.
In general, the Laplacian constraint could be used together
with the Chapman profile approach if the user wants to force
the resulting field to follow simple physical conditions of
the ionosphere. For the tomographic inversion discussed
in Section 4.2, such a Chapman constraint was not applied
since our intention was to demonstrate that C-SART per-
forms well even without knowledge of the underlying field.
As discussed above, for the case in which DCBs have to be
estimated together with the electron density field, it is com-
mon to constrain the sum of the satellite DCBs to zero to
achieve a virtual but stable reference (Schaer, 1999). One
can express this zero-sum condition as

1

βD

D∑
d=1

xd = 0, (14)

where xd are the cells corresponding to the DCBs, and βD

is the corresponding weighting factor.
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3.2 Mathematical prerequisites
Equation (12) violates condition (6) since Ai, j < 0 is

possible. Moreover, when the coefficients of the imaging
system take negative values, Ai,⊕ is negative. Therefore,
the original SART had to be refined. Censor and Elfving
(2002) showed that SART convergence is ensured when

Ai,⊕ =
N∑

j=1

|Ai, j | for i = 1, 2, . . . , M (15)

and

A⊕, j =
M∑

i=1

|Ai, j | for j = 1, 2, . . . , N (16)

are used instead of Eqs. (3) and (4). Expression (2) does
not need to be changed. The use of Eqs. (15) and (16) to
compute Ai,⊕ and A⊕, j enables the C-SART algorithm to
be handled with the SART formalism described by Eq. (2).

4. 2D Reconstruction of Ionosphere Using C-
SART—A Test Case Using Artificial Data

We used a 2D test scenario for testing the performance of
the C-SART algorithm in comparison with the SART algo-
rithm. One hundred ionosphere profiles were computed us-
ing the international reference ionosphere (IRI) model (Bil-
itza, 2001), version IRI2007. Data were obtained for the
Greenwich meridian for latitudes between −49◦ and 50◦ for
May 6, 2004, 1200 local time. The height ranged from 105
to 600 km in steps of 5 km, resulting in a grid of 100 × 100
electron density values (Fig. 2). This 2D electron density
field was used as a reference for our investigation charac-
terizing the quality of the tomographic inversion. Artifi-
cial observations were assumed to be inside the plane of
the profiles only, enabling us to treat the problem as a 2D
one. Additionally, the curvature of the Earth was ignored
to simplify the discussion. It was also assumed that the
dispersive delays outside the model boundaries had been
removed from each observation; this can be achieved with
the help of theoretical models or simple approximations of
the plasmasphere contribution (e.g., Ma et al., 2005). For
investigations including the plasmasphere and higher alti-
tudes, it would be worthwhile adding a coarse voxel struc-
ture above the ionosphere domain. The electron densities of
these voxels can be obtained together with the ionosphere-
related values from the same tomographic inversion.

To obtain a realistic, but weak spatial distribution of
the receivers, we assumed that the ionosphere was probed
by 14 ground receivers and two low Earth-orbiting (LEO)
satellites, which provided occultation data. The number of
GNSS satellites traceable by all receivers was set to six.
Data from three arbitrary epochs were used to reconstruct
the media (Fig. 3). This test geometry does not totally re-
flect a real-word scenario since the GPS-to-ground geom-
etry changes much less frequently than LEO occultations
occur. Nevertheless, since our investigation focused on the
improvement in the reconstructed electron density field due
to usage of C-SART, we can draw conclusions from our
results about how GNSS applications can benefit from C-
SART. Once the algorithm has been implemented in a way
that permits fast computation of dense 3D electron density
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Fig. 2. Reference ionosphere latitude profile generated from the IRI2007
model run assuming May 6, 2004, 1200 LT, at 0◦ longitude. Obtained
electron densities are referenced to the mid-point of each cell.
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Fig. 3. Ray geometry obtained from 14 ground receivers and two LEO
satellites, which provided occultation data. Six GNSS satellites were
traceable by all receivers. Each receiver tracked satellites in three dif-
ferent epochs, with angular separation between consecutive epochs of 1
degree.

fields, we plan to test it using data from dense ground GNSS
receiver networks.

Slant total electron content values were obtained for
each observation by ray-tracing through the reference iono-
sphere, ignoring contributions from electrons at higher alti-
tudes or outside the latitude boundaries. A total of 10,022
unknowns (including electron density values for the cells
and the receiver and satellite DCBs) were estimated from
288 (= (14 + 2) · 6 · 3) observations, which is a highly
under-determined situation for tomographic inversion. Of
the pixels, 11% were not hit by any ray, and 21.9% were hit
by only one ray. Therefore, with traditional SART, many
cells would need support from background models or would
even be removed from the tomographic inversion. In total,
about one-third of the field would lack good ray coverage
and thus would not be reconstructed unbiased.

The DCB values for the receivers and satellites were
added to the ray-traced STEC values to simulate actual
GNSS conditions. The ambiguities were assumed to have
already been resolved (e.g., Horvath and Crozie, 2007), so
it was possible to treat the data like code-leveled phase
measurements. The artificial measurements were corrupted
with Gaussian random noise, at a signal-to-noise ratio
(SNR) of 100, to obtain more realistic signal characteris-
tics.
4.1 Optimum choice of constraint weights by model

verification
Since the “real” electron density field is known, the

tomographic reconstruction results could be easily cross-
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Fig. 4. Results of cross-validation test after 1,000,000 iterations for different values of constraint weights βL and βD . Left plot shows results for
L2-space metric, ρL2; right plot shows them for c-space metric, ρc.

validated. Andreeva et al. (1992) proposed two measures
for describing the deviation between two models. In one,
the metric is assigned to the L2 space; in the other, it is
assigned to the c-space. The first metric,

ρL2 =

√√√√√√√√
N∑

i=1
(x̃i − xi )2

N∑
i=1

x̃2
i

, (17)

is the ratio between the standard deviations of the differ-
ences and the original field values x̃i . Thus, a small value
of ρL2 can be taken as an indicator of good global perfor-
mance for tomographic inversion. The second metric,

ρc =
max

i
|x̃i − xi |

max
i

|x̃i | , (18)

utilizes local performance characteristics by relating the
largest reconstruction error to the largest true value. The
better the performance, the smaller the metric. Thus, to find
the optimum constraint weight parameters βL and βD , we
computed ρL2 and ρc for different weights. Figure 4 shows
the results of the cross-validation test after one million iter-
ations for different values of the constraint weights. Agree-
ment with the model strongly depended on the value set for
βL, and agreement was best when βL was set to one. The
selection of the βD value was less critical as it did not have
a noticeable effect on ρL2 and ρc as long as βL > 0.1. Since
βL strongly determines the roughness of the reconstructed
field, setting of its value can lead to bigger reconstruction
errors when the field is forced to be too smooth (βL < 1).
If βL is set to a value larger than one, the algorithm cares
less about the Laplacian constraints and tends to perform
in a way similar to classical SART. Thus, in the following
examples, βL = βD = 1 is used for the reconstruction of
the electron density field. For tomographic problems with
a larger number of rays, a cross-validation test should be
done again to determine an optimum pair of values for βL

and βD

4.2 Tomographic reconstruction results for SART and
C-SART

Using SART and C-SART with the optimum constraint
weights from above, we reconstructed the electron density

Table 1. Modeled and reconstructed (after 106 iterations) DCB values for
SART and C-SART algorithms. DCBs represents value for GNSS satel-
lite s, and DCBr represents value for receiver r . Values for receivers
on-board LEO satellites are denoted by A and B.

Type Model SART C-SART

DCB1 −2.90 −0.24 −2.89
DCB2 0.45 0.13 0.46
DCB3 1.45 0.13 1.55
DCB4 2.10 0.16 2.20
DCB5 0.95 1.40 0.83
DCB6 −2.05 −1.58 −2.15
DCB1 0.50 −0.13 0.61
DCB2 1.00 0.16 1.17
DCB3 1.50 0.18 1.65
DCB4 2.00 0.20 2.09
DCB5 2.50 0.23 2.55
DCB6 0.50 0.16 0.47
DCB7 1.00 0.22 0.86
DCB8 1.50 0.21 1.41
DCB9 2.00 0.23 1.98
DCB10 2.50 0.27 2.50
DCB11 0.50 0.16 0.56
DCB12 1.00 0.19 1.09
DCB13 1.50 0.22 1.64
DCB14 2.00 0.25 2.14
DCBA −0.50 0.44 −0.50
DCBB 1.00 0.15 1.07

fields. One million iterations were carried out, with βD set
the same for both algorithms. Figure 5 shows the recon-
structed fields for both algorithms. The classical SART al-
gorithm did not reconstruct the model ionosphere well and
even produced some negative electron density values. Since
all unknowns were initialized with zero values, the cells not
crossed by rays retained this value through all iterations.
Moreover, the DCBs (Table 1) were not recovered at all,
which directly translated into artifacts in the reconstructed
image. In contrast, the C-SART algorithm reconstructed
the model ionosphere much better. It did not produce neg-
ative values, the recovered field looked very similar to the
model one (Fig. 1), and the uncrossed cells were updated
with information from the neighboring ones by the Lapla-
cian constraint as expected. The absolute relative error of
the C-SART reconstruction, as depicted in Fig. 6, did not
exceed 75% and was less than 15% for most of the regions.
Closer examination revealed that the areas with higher rel-
ative errors had lower electron densities, meaning that their
absolute reconstruction error was not necessarily large.

Averaging the absolute relative errors over the whole im-
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Fig. 5. Reconstructed electron density fields after 1,000,000 iterations. Left figure shows estimated field for SART, and right one shows it for C-SART.
Note that the range of the values differs between plots and that color coding is not the same.

Fig. 6. Absolute relative reconstruction errors with respect to IRI model for SART (left) and C-SART (right) algorithms. Note that the range of the
values differs between plots and that color coding is not the same.

Fig. 7. Electron density fields reconstructed by SART and C-SART when DCBs were known and models were initialized with IRI2007 data from an
epoch 1 month earlier. Upper plots show reconstructed fields, and lower plots show corresponding absolute relative errors with respect to original
field.

age produced a mean reconstruction error of 11.9%, which
is in good agreement with ρL2, a similar measure. The ab-
solute relative errors for the SART reconstruction (Fig. 6)
were large (82% on average). This clearly demonstrates that
C-SART provides much better results than SART.

4.2.1 Reconstruction of differential code biases
Satellite DCBs are usually known up to a certain accuracy
level since they are monitored on a daily base by several
GNSS analysis centers (Feltens, 2003). The receiver biases

are usually available for download if the station belongs to
the global GNSS network. Otherwise they have to be de-
termined in a prior step or be estimated together with the
ionospheric parameters. To demonstrate that C-SART per-
forms well even when the receiver and satellite DCBs are
unknown, the DCBs were included in the algorithm and
were treated as “virtual” cells with the mathematical ex-
pressions described in Section 2. Table 1 shows the DCBs
recovered with the SART and C-SART algorithms after one
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million iterations. C-SART clearly reconstructed the satel-
lite and receiver biases, whereas classical SART did not.
The zero-sum constraint, applied to the satellite DCBs, was
met in both cases, but only C-SART with its simple Lapla-
cian constraints on the electron density field produced the
values correctly. Since SART did not iterate towards the
correct satellite DCBs, the receiver DCBs and the electron
density field itself were negatively affected. The satellite
DCBs from C-SART were within 0.17 TECU (total elec-
tron content) of the model values. Those for the ground-
based and LEO on-board receivers were within about the
same range. These estimated DCB values should satisfy
user needs, especially when the low number of input obser-
vations and the weak observation geometry are considered.
The values from SART did not agree with the model ones,
negatively affecting reconstruction of the electron density
field.

4.2.2 Known DCBs and initialization with back-
ground model To demonstrate how SART and C-SART
perform when all DCBs are known and the models are ini-
tialized with a background ionosphere model, IRI2007 elec-
tron density profiles were computed for an epoch of 1 month
preceding the one used in the previous section. This was
done to ensure that the cells were initialized with values
that were realistic but also sufficiently different considering
that the background model has a limited ability to predict
actual conditions. As the receiver and satellite DCBs were
known, only the electron density values for each cell had
to be estimated. Nevertheless, SART did not update the
uncrossed cells, and the values of the background model
remained unchanged. Thus, the quality of the background
model strongly determines the accuracy with which SART
can recover the ionosphere when the geometrical coverage
is poor.

The electron density fields reconstructed by the SART
and C-SART algorithms are shown in Fig. 7 together with
the absolute relative errors. The performance of SART was
greatly improved: the average absolute reconstruction error
was 16.1%, and the maximum was 235%. The C-SART al-
gorithm benefited only slightly from the background model
initialization: the mean absolute relative reconstruction er-
ror improved slightly to 11.6%. However, the field recon-
structed by C-SART was slightly degraded in the upper
ionosphere (the maximum error in that region was 98.1%).
Therefore, the use of a background model is significantly
useful for the SART algorithm, but using it still does not
solve the problem of uncrossed cells. The C-SART algo-
rithm performs about 50% better than the SART one re-
gardless of whether there is knowledge of the DCBs or the
background model is initialized. The only advantage gained
from using the background model for the C-SART algo-
rithm is that the convergence speed is slightly faster, as dis-
cussed in the next section.

4.2.3 Convergence and computation speed The
sum of the squared improvements (SSI) for iteration k,

SSI =
N∑

j=1

[
ω

A⊕, j

M∑
i=1

Ai, j

Ai,⊕

(
bi − b̄i

(
x (k)

))]2
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Fig. 8. Convergence of SART (dashed line) and C-SART (thick line)
measured using sum of squared improvements for each iteration step.
The thick dotted lines correspond to SART and C-SART runs with
known DCBs and background field initialization.

was used as an indicator of the convergence speed. Equa-
tion (19) is also related to the energy (Mailloux et al., 1993)
remaining in the system after the k-th iteration. Thus, it
can be used to define a threshold for stopping the itera-
tive process if SSI decreases to a certain value. Figure 8
plots SSI against the number of iterations for the SART
and C-SART algorithms with and without DCB informa-
tion and background model initialization. When the DCBs
were known and the background model was initialized, SSI
stabilized before one million iterations for both algorithms.
However, when the DCBs were estimated and the models
were initialized with zero values, the SSI for SART did
not decrease much, and that for C-SART saturated only
after about 1.2 million iterations (not shown here). For
practical applications, it is sufficient to stop the iterations
once SSI drops below 10−2 (electrons2/cm6) as any subse-
quent improvements are usually too small to affect the to-
mography results. It took 737 s to complete 106 iterations
with SART and 1418 s with C-SART. C-SART reached the
threshold of 10−2 (electrons2/cm6) in about 2 · 105 itera-
tions. Thus, it took only 4 min and 44 s (i.e., 284 s) on
a simple PC (2.3-GHz Pentium D CPU, 2-GB RAM) to
carry out high-resolution ionospheric tomography and esti-
mate the unknown DCB values (although their values might
have stabilized in an earlier iteration). The coding of the C-
SART algorithm in a low-level programming language will
lead a significant reduction in computing time (by at least
an order of magnitude).

5. Discussion
Our simple algorithm, the constrained simultaneous alge-

braic reconstruction technique (C-SART), has many advan-
tages for reconstructing the ionosphere by means of elec-
tron density values using GNSS measurements. It is suit-
able for real-time applications and even enables estimation
of instrumental biases within a reasonable processing time.
The reconstructed fields are significantly better than those
obtained from classic SART. Moreover, C-SART can esti-
mate the DCB values accurately enough when necessary.

In the test case we used, in which a very weak sampling
of the 2D field was assumed, the average absolute error of
the reconstructed field was about 12% (including cells not
crossed by rays). The estimated DCB values had a maxi-
mum error of about 0.2 TECU, which is accurate enough
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for an unbiased reconstruction of the ionosphere. Since
C-SART is based only on the assumption that the under-
lying field is smooth, it can be applied to other tomography
applications as well. It is also easy to apply other condi-
tions in the form of difference equations to the algorithm,
e.g., heat-, wave-, and Laplace-partial derivative equations.
This means that physical conditions estimated from mea-
surement data can be considered in the field reconstruction,
resulting in better representation (including unprobed areas)
of the media. One drawback of the smoothness operator is
that, for applications in which the media contain disconti-
nuities, the C-SART algorithm gives incorrect results. In
the case of steep gradients, the grid should be refined or
βL should be increased in order to allow for more variation
between cells.

6. Future Work
To enable the C-SART algorithm to be used for (near)

real-time 3D tomography of the ionosphere, we need to
speed it up by a factor of 100 or more. Assuming that
GNSS observations are taken every 30 s and that some
time is spent on data transfer and the leveling of the L1–
L2 phase measurements, about 15 s should remain for iono-
spheric reconstruction. A speed-up by a factor of 10 or can
be achieved by optimizing the routines and loops and by
coding parts of the algorithm in a low-level programming
language (e.g., Assembler). In addition, the reconstruction
could be modularized using either message parsing inter-
faces (described, for example, by Skjellum et al., 1993) or
OpenMPTM (Dagum and Menon, 1998), which distributes
the computation load among multi-core processors.

The C-SART algorithm can thus be speeded up (nearly)
proportional to the number of core processors used. More-
over, Moore’s Law (Moore, 1965), which predicts the num-
ber of transistors in future CPUs, indicates that the re-
alization of on-line monitoring of the ionosphere using
C-SART is feasible. Additionally, a large number of iter-
ations (2 · 105) is not necessary when models are gener-
ated in 30-s intervals since each model run can be initialized
with the results of the prior one, which will not differ much
from the new one. Moreover, other measurements, such as
ionosonde profiles, can be utilized when available.

Although C-SART has been applied to ionosphere to-
mography it is not necessarily limited to this single applica-
tion. Basically, it can be used for any kind of tomographic
inversion as long as constraints can be defined in a mean-
ingful sense. For example, C-SART can be used for seis-
mic prospection by applying a-priori velocity information
as constraints. It can be used for other problem statements
occurring in seismology, atmosphere, space-physics, and
medical research without any large modifications. Thus, the
flexibility of C-SART, paired with increasing computational
power, will make it a powerful tool for a variety of scientific
applications.
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