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It is well known that the key problem associated with network-based real-time kinematic (RTK) positioning
is the estimation of systematic errors of GPS observations, such as residual ionospheric delays, tropospheric
delays, and orbit errors, particularly for medium-long baselines. Existing methods dealing with these systematic
errors are either not applicable for making estimations in real-time or require additional observations in the
computation. In both cases, the result is a difficulty in performing rapid positioning. We have developed a new
strategy for estimating the systematic errors for near real-time applications. In this approach, only two epochs of
observations are used each time to estimate the parameters. In order to overcome severe ill-conditioned problems
of the normal equation, the Tikhonov regularization method is used. We suggest that the regularized matrix be
constructed by combining the a priori information of the known coordinates of the reference stations, followed
by the determination of the corresponding regularized parameter. A series of systematic errors estimation can be
obtained using a session of GPS observations, and the new process can assist in resolving the integer ambiguities
of medium-long baselines and in constructing the virtual observations for the virtual reference station. A number
of tests using three medium- to long-range baselines (from tens of kilometers to longer than 1000 kilometers) are
used to validate the new approach. Test results indicate that the coordinates of three baseline lengths derived are
in the order of several centimeters after the systematical errors are successfully removed. Our results demonstrate
that the proposed method can effectively estimate systematic errors in the near real-time for medium-long GPS
baseline solutions.
Key words: Medium-long baselines, systematic errors, GPS network RTK positioning, ill-conditioned equation,
Tikhonov regularization.

1. Introduction
It is well-known that the conventional RTK GPS system

has many practical limitations. One of these is that the rover
station has to be located in the vicinity of a base station
(usually less than 10–20 km). As a result, there are only a
few redundant observations, which leads to the difficulty of
checking gross errors and less positioning reliability (Gao et
al., 1997; Chen et al., 2001; Zhang et al., 2006). The recent
development of the multi-reference stations GPS network
technology (i.e. network RTK) enables high-precision RTK
positioning to be realized for medium-long baselines (typ-
ically between 30–150 km), and this technology has been
successfully implemented in many experiments (e.g. Chen
et al., 2000; Lachapelle et al., 2000; Odijk et al., 2000; Vol-
lath et al., 2000; Raquet and Lachapelle, 2001; Landau et
al., 2003; Vollath et al., 2002; Hu et al., 2003; Rizos and
Han, 2003; Alves, 2004).
The core component of this technology is to rapidly

and accurately fix the integer ambiguities of the baselines
among the reference stations in a Continuously Operating
Reference Station (CORS) network in real-time. However,
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the success rate of integer ambiguity resolution is affected
by the residual systematic errors in the baselines. Since
the characteristics of the systematic errors are continual as
well as incidental, it is difficult to describe them using a
unified and deterministic model (Yang, 1999; Zhou et al.,
1999). Current methods for estimating systematic errors
in network RTK can be divided into two steps: (1) reso-
lution of the double-differenced (DD) integer ambiguities
between the baselines and (2) substitution into the DD ob-
servation equations to compute the systematic errors of the
corresponding baseline (Hu et al., 2003). Although a great
deal of published research has focused on the resolution of
the integer ambiguity (e.g. Sun et al., 1999; Dai et al., 2003;
Chen et al., 2004), additional observation data are usually
involved in the computation. The characteristics of system-
atic errors of the medium-long baseline network have also
been studied (e.g. Han and Rizos, 1996; Fotopoulos and
Cannon, 2000). The results of such studies indicate that
the systematic errors are correlated with time for the obser-
vations of two adjacent epochs. They may, therefore, be
expressed as a function of time and be computed using a
Kalman filtering technique (Dai et al., 2003). However, es-
timating the systematic errors rapidly using actual observa-
tions is still a challenge in the study of systematic errors of
the medium-long baseline network RTK, especially when

793



794 X. LUO et al.: AN IMPROVED REGULARIZATION METHOD FOR ESTIMATING NEAR REAL-TIME SYSTEMATIC ERRORS

one or more satellites tracked have a cycle slip, there is a
long data gap, or a new satellite is sent up (Rizos and Han,
2003).
We report here a new method that we have developed

to estimate the systematic errors of medium-long baselines.
This method uses the code and the phase differences be-
tween two adjacent epochs ofDD ionosphere-free combina-
tions as basic measurements. In addition, the Tikhonov reg-
ularized principle (Tikhonov and Arsenin, 1977) is used to
overcome the ill-conditioned problem of the normal equa-
tion, and the known coordinates’ a priori information of the
baselines (Ou, 2004) is used to estimate the systematic er-
rors computation.
Section 2 introduces the fundamental data preprocessing

methods for medium-long baselines. The new method for
estimating the systematic errors in near real time is dis-
cussed in Section 3. Experiment results are analyzed in
Section 4, and some conclusions are drawn and suggestions
are given in Section 5.

2. GPS Data Preprocessing
The errors in the observations for a medium-long base-

line between GPS reference stations mainly come from at-
mospheric (ionospheric and tropospheric) delays, GPS or-
bit errors, and multipath effects. For post-processing, the
orbital errors can usually be significantly reduced or elim-
inated using the IGS (International GNSS Service) precise
orbit (Roulston et al., 2000), especially for distances ex-
ceeding 100 km. In practice, the orbit can be determined
within a precision of 10 cm when the IGS Ultra-Rapid
ephemeris is used. The methods used to reduce the effects
of other errors can be summarized as follows:

1) Multipath effects can be alleviated through a care-
ful selection of the reference station’s location with
a better observational environment or multipath-prone
hardware (e.g. choke ring antenna) and proprietary
software to reduce the effects (Hofmann-Wellenhof et
al., 2001; Leick, 2004).

2) The use of Empirical tropospheric delay models, such
as the Hopfield, Saastamoinen, and UNB3 (Collins
and Langley, 1996) models can be used to compute
the a priori tropospheric delays.

3) Main ionospheric delays of a medium-long base-
line can be removed by forming dual-frequency
ionosphere-free linear combinations.

3. The Principle and Algorithm of the New
Method

3.1 The observation model
For ionosphere-free combinations, the observation equa-

tions of the DD code and carrier phase in a single epoch can
be written as:

P + ��������P = AX + S

L + ��������L = AX + BN + S (1)

where L and P are n × 1 vectors of the DD carrier phase
and code observations, respectively, which are equal to the
DD observations minus the DD linearized values calculated
for two receivers that have observed the same set of n + 1

satellites simultaneously; ��������P and ��������L are n × 1 vectors of
the residual errors of P and L, respectively, which contain
predominantly the measurement noises; X is a 3 × 1 vector
of an unknown correction of the baseline components; N is
a n×1 vector of theDD integer ambiguity; A and B are n×3
and n×n coefficient matrices of X and N, respectively; S is
the sum of the residual tropospheric delays and remaining
unmodeled errors, which is assumed to be approximately
the same for code and carrier phase.
We also assume that small-quantity deviations exist in

the baseline components in two adjacent epochs; the cor-
responding equations may therefore be expressed as:

Pm + ��������P,m = AmXm + Sm (2a)

Pm+1 + ��������P,m+1 = Am+1Xm+1 + Sm+1 (2b)

Lm − Lm+1 + ��������L ,m − ��������L ,m+1

= AmXm − Am+1Xm+1 + Sm − Sm+1 (2c)

where subscriptsm andm+1 denote the sequential numbers
of the adjacent epochs. Equations (2a), (2b), and (2c) can
be expressed in a combined form as follows,

A X = L + �������� (3)

where A =
⎡
⎣ Am 0 E 0

0 Am+1 0 E
Am −Am+1 E −E

⎤
⎦, X =

⎡
⎢⎢⎣

Xm

Xm+1

Sm

Sm+1

⎤
⎥⎥⎦,

L =
⎡
⎣ Pm

Pm+1

Lm − Lm+1

⎤
⎦, �������� =

⎡
⎣ ��������P,m

��������P,m+1

��������L ,m − ��������L ,m+1

⎤
⎦,

where E is a unit matrix.
Here, the weight matrix of the combined DD phase and

code, L, needs to be determined. Based on data presented
in the literature (Teunissen, 1997; Horemuž and Sjöberg,
2002), it can be assumed that GPS observations are neither
correlated between channels nor correlated in time and that
the ratio of the standard deviation of the code and the carrier
phase observations for each frequency is a constant, i.e.

k = (σσσσσσσσ P/σσσσσσσσ L)
2.

where σσσσσσσσ P and σσσσσσσσ L are the standard deviation of the code and
the carrier phase observations, respectively.
The weight matrix of L can be expressed as

P =
⎡
⎣ PL/k 0 0

0 PL/k 0
0 0 PL/2

⎤
⎦

where PL is the weight matrix of the DD carrier phase.
From Eq. (3), we can obtain the solutions based on the

Least squares (LS) method,

XLS = (A
T

P A)−1A
T

P L (4)
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Fig. 1. Relationship between α and the estimated systematic errors for different satellite pairs.

Fig. 2. A comparison of the singular values of the normal equation
between the new method and the Least Squares (LS).

3.2 The construction of the regularized matrix
Since only two epochs’ observations are adopted in

Eq. (4), the condition number of the normal matrix A
T

P A
is very large (usually > 106); i.e., the normal matrix in
Eq. (4) is seriously ill-conditioned (Hoerl and Kennard,
1970a, b; Ou, 2004). To solve this problem, Eq. (3) may
be resolved based on the following Tikhonov regularization
theorem (Tikhonov, 1977):

�������� = ||A X−L||2+α ��������(X) = ||A X−L||2+αX
T

RX = min
(5)

where α is a regularized parameter; R is a regularized ma-
trix; ��������(X) is a stable function; || • || denotes the Euclidean
2-norm.
Although R can be selected as a unit matrix (Hoerl and

Kennard, 1970a, b) or a positive semi-definitive matrix (Xu
and Rummel, 1994; Xu et al., 2006), we would assume and
directly use the prior information on the (known) reference
coordinates to define R. The matrix R is given as follows
(see also Ou, 2004; Ou and Wang, 2004; Wang et al., 2006;
Cai et al., 2007),

R =
[

RX

0

]
(6)

where RX can be determined by the following equation

RX = diag(A
T
1 P A1)

where A1 =
⎡
⎣ Am 0

0 Am+1

Am −Am+1

⎤
⎦ , and diag (·) denotes the main

diagonal elements of the matrix. Thus, the stable function
��������(X) = XT

CRXXC (XC is the coordinate corrections of a

baseline for two epochs, i.e., XC = [
XT

m XT
m+1

]T
) can be

obtained. Note that the coordinate components of the base-
lines are rather accurate. If they are used as initial values
of the linearization process of the observation equation, XC

should be a small quantity. XT
CRXXC is also a very small

quantity.
Let ∂��������/∂X = 0; the stable resolutions of X may then be

solved as follows:

X̂ =

⎡
⎢⎢⎣

Xm

Xm+1

Sm

Sm+1

⎤
⎥⎥⎦ = (A

T
P A + αR)−1A

T
P L (7)

3.3 Determination of the regularized parameter
The other key problem is how to determine the regular-

ized parameter α. Several methods for selecting α are intro-
duced and reviewed by Xu (1992, 1998) and Hansen (2001).
However, in this paper, a new scheme should be investigated
to determine the regularized parameter α since the regular-
ization matrix R of this method is not positively definitive.
If different values of the regularized parameter α are

given, different systematic error estimates can be obtained
by the following equation:

X̂i = (A
T

P A + αiR)−1A
T

P L

A series of X̂i values, corresponding to different αi

(10−15 < αi < 102), can be obtained. Based on the re-
sults of many numerical examples associated with different
baselines and satellite pairs, the estimated systematic errors
are found to be less affected by the selection of αi in a wide
range.
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Table 1. Detailed information of the three baselines used in this study.

Fig. 3. Variation of the condition numbers of the LS and the new methods with time.

Fig. 4. Estimates of the systematic errors for satellite pair 22-2 of BJDX
baseline (baseline length: 1338.71 km).

The relationship between α and the estimated systematic
errors (for different satellite pairs) is shown in Fig. 1 where
two baseline are used (see Section 4.2). From Fig. 1, we
see that the systemic errors level out for 10−12 < α < 102,
suggesting that α can be selected as 1 in order to calculate
it conveniently. For α = 1, an example is given from the
baseline BJJI (see 4.1 and Table 1).
The distribution of the singular values of the normal ma-

trix of both LS and the new methods are shown in Fig. 2.

Figure 2 shows that six singular values of the LS normal
equation are less than 10−15. This indicates that the LS nor-
mal matrix is close to singularity. However, all singular
values of the normal equation of the new method are always
more than 10−5, which suggests that the singularity state of
the new method is improved significantly.
In addition, the condition numbers of the normal equation

of the LS and of the new method are calculated using all
245 epochs of data for BJJI baseline. Their variation with
time is shown in Fig. 3. At the top of Fig. 3, all condition
numbers of the LS normal equation are more than 1017, and
at the bottom of this figure, all condition numbers of the
new method normal equation are less than 104 and their
deviations are very stable. This distribution shows that the
state of the ill-conditioned equation can be well controlled
using the new method and that the systematic errors may
be estimated in two epochs each time by Eqs. (6) and (7).
For a long-term observation, the sequential values of the
estimated systematic errors can be obtained.

4. Results and Analyses of the Experiments
4.1 Data background
Table 1 lists all of the three baselines used in this study.

Baseline BJDX from Fangshan (in Beijing) to Dingxin (in
Inner Mongolia) is a long baseline (1338.710 km), and
baseline BJJI from Fangshan (in Beijing) to Jixian (in
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Fig. 5. A comparison of the deviations of the baseline components with and without the systematic errors uncorrected using the new method for BJDX
baseline (09/12/2002).

Fig. 6. A comparison of the deviations of the baseline components with and without the systematic errors corrected using the new method for BJDX
baseline (09/13/2002).

Fig. 7. The estimates of the systematic errors for satellite pair 22-2 of BJJI
baseline.

Tientsin) is a medium-long baseline (149.489 km). These
two baselines are from Crustal Movement Observations
Network of China (CMONC) observed on 12 September
2003 and 13 September 2002, respectively, with a 30-s sam-
pling interval and 15◦ elevation cut-off angle. The satellite
pairs are PRN 22-2, 2-1, 1-3, 3-13, and 13-31, and there
are 245 epochs of data in the observation. The baseline
AVCL is a short baseline (38.190 km) from the AVCA sta-
tion to the CLRE station in the National CORS located in
the Michigan area in the USA. It was observed on 15 June,
2003, with a 1-s sampling interval and 15◦ elevation cut-off
angle. The satellite pairs are PRN 3-13, 13-2, 2-1, 1-31, and
31-16, and there are 3500 epochs of data in the observation.
4.2 Data processing scheme
Firstly, the sequence of observation units is formed for

every observation session. Each unit includes data for two
adjacent epochs (i.e., first to second epoch; second to third
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Fig. 8. A comparison of the deviations of the baseline components with and without the systematic errors corrected using the new method for BJJI
baseline (09/12/2002).

Fig. 9. A comparison of the deviations of the baseline components with and without the systematic errors uncorrected using the new method for BJJI
baseline (09/13/2002).

Fig. 10. Estimates of the systematic errors for satellite pair 22-2 of AVCL
baseline.

epoch, etc.). The systematic errors are then calculated for
each unit using Eq. (7).
4.3 Results and analysis
For the baseline BJDX, we estimated the systematic er-

rors in two adjacent days using our new method. Figure 4
represents the estimates of the systematic errors of the satel-
lite pair 22-2. From Fig. 4, it can be seen that the maximum
systematic error estimates is as high as 3 m and the mini-
mum exceeds −3 m. The root mean square (RMS) error is
more than several decimeters.
Placing these systematic errors into Eq. (4), we can then

calculate the coordinate components of the baselines. The
left parts of Figs. 5 and 6 show the deviations of the base-
line components without any correction for systematic er-
rors; the right parts indicate the deviations of the baseline
components with the correction for systematic errors (the
comparison mainly serves to demonstrate the effect of sys-
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Fig. 11. A comparison of the deviations of the baseline components with and without the systematic errors corrected using the new method for AVCL
baseline.

tematic errors on any new station(s); this holds true for all
of the following comparisons). The RMS of uncorrected
systematic errors in the coordinate components of the base-
lines is obviously larger than that of those baselines with
the systematic errors corrected. The RMS of the latter is at
the level of centimeters, which reflects the precision of the
coordinates of the reference stations and suggests that the
systematic errors have been eliminated successfully using
the new approach.
The systematic errors are also estimated for the baseline

BJJI using two adjacent days of data. The estimates of
the systematic errors of the satellite pair 22-2 are shown
in Fig. 7.
The estimates of the systematic errors of this baseline

have characters that are similar to those of the baseline
BJDX. A comparison of the coordinate components of the
baseline without the systematic errors corrected and with
the systematic errors corrected is shown in Figs. 8 and 9,
respectively.
For the baseline AVCL, whose sampling interval is 1 s,

there are more epochs of data. The estimates of the system-
atic errors of the satellite pair 31-16 are shown in Fig. 10.
The estimates of the systematic errors of this baseline are
at the level of decimeters. A comparison of the estimates
of the components of the baseline with and without the sys-
tematic errors corrected is shown in Fig. 11. It can be seen
that the precision (RMS) of the coordinate components with
the systematic errors corrected is at the level of millime-
ters, while the precision (RMS) of the coordinates’ compo-
nents without the systematic errors corrected at the decime-
ter level.
Based on these results, it can be concluded that the sys-

tematic errors are not negligible for medium-long baselines
and that an effective measure must be taken to remove them.
Positioning accuracy can be improved significantly after the
systematic errors are identified. A centimeter-level of pre-
cision can be achieved for the coordinates of the baselines

when the systematic errors are properly corrected. These
results show that the estimation process of the systematic
errors is very successful and that the new approach is effec-
tive.

5. Conclusions
This paper presents a new method for estimating the sys-

tematic errors for medium-long baseline GPS data process-
ing. The proposed method uses several epochs or as few as
only two adjacent epochs of GPS data for the calculation.
Two key steps are adopted. First, the systematic errors are
considered to be unknown parameters to be estimated. It
should be noted that the systematic errors mentioned here
are the combined residual errors, which include the residu-
als of the tropospheric delays and the other unmodeled er-
rors. Secondly, the code and the phase difference between
two adjacent epochs are regarded as basic measurements.
The new method is markedly different from existing meth-
ods in that it effectively combines the Tikhonov regular-
ization principle with a scheme designed for constructing
the regularized matrix. It also determines the correspond-
ing regularized parameter based on the information of the
known coordinates of the reference stations. Through the
application of these steps, the new method can improve the
state of the ill-posed problem of the normal equation matrix
and estimate the systematic errors precisely and reliably.
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Horemuž, M. and L. E. Sjöberg, Rapid GPS ambiguity resolution for short
and long baselines, J. Geod., 76, 381–391, 2002.

Hu, G. R., H. S. Khoo, P. C. Goh, and C. L. Law, Development and
assessment of GPS virtual reference stations for RTK positioning, J.
Geod., 77, 292–302, 2003.

Lachapelle, G., P. Alves, L. P. Fortes, M. E. Cannon, and B. Townsend,
DGPS RTK positioning using a reference network, Proc of the 13th Int
Tech Meeting Satellite Division US Inst Navigation, Salt Lake City, UT,
19–22 September, 1165–1171, 2000.

Landau, H., U. Vollath, and X. M. Chen, Virtual Reference Station Sys-
tems, J. GPS, 1.1, 137–144, 2003.

Leick, A., GPS satellite surveying, 3rd Edition, Wiley, New York, 2004.
Odijk, D., H. van der Marel, and I. Song, Precise GPS positioning by

applying ionospheric corrections from an active control network, GPS
Solution, 3, 49–57, 2000.

Ou, J. K., Uniform Expression of Solutions of Ill-posed Problems in Sur-
veying Adjustment and the FittingMethod by a Selection of the Parame-
ter Weights, ACTA Geod. Cartogr. Sin., 33, 284–288, 2004 (in Chinese).

Ou, J. K. and Z. J. Wang, An improved regularization method to resolve
integer ambiguity in rapid positioning using single frequency GPS re-
ceivers, Chinese Sci. Bull., 49,196–200, 2004.

Raquet, J. and G. Lachapelle, RTK positioning with multiple reference
stations, GPS World, 12, 48–53, 2001.

Rizos, C. and S. Han, Reference station network based RTK systems—
Concepts & progress, Wuhan Univ. J. Nat. Sci., 8, 566–574, 2003.

Roulston, A., N. Talbot, and K. Zhang, Evaluation of various GPS satellite
ephemerides, Proc. 13th Int. Tech. Meeting Satellite Division US Inst.
Navigation, 19–22 September, Salt Lake City, USA, 45–54, 2000.

Sun, H., M. E. Cannon, and T. E. Melgard, Real-time GPS reference net-
work carrier phase ambiguity resolution, Proc. of Institute of Navigation
National Technical Meeting, 25–27 January, San Diego, CA, USA, 193–
199, 1999.

Teunissen, P. J., The geometry-free GPS ambiguity search space with a
weighted ionosphere, J. Geod., 71, 370–383, 1997.

Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, New
York: Wiley, 10–21, 1977.

Vollath, U., A. Buerchl, H. Landau, C. Pagels, and B. Wagner, Long-Range
RTK Positioning Using Virtual Reference Stations, Proc. of the 13th Int.
Tech. Meeting Satellite Division US Inst Navigation, September, Salt
Lake City, USA, 1143–1147, 2000.

Vollath, U., H. Landau, X. Chen, K. Doucet, and C. Pagels, Network
RTK versus Single Base RTK—Understanding the Error Characteris-
tics, Proc. of the 15th Int. Tech. Meeting Satellite Division US Inst. Nav-
igation, 24–27 September, Portland USA, 2774–2781, 2002.

Wang, Z., C. Rizos, and S. Lim, Single epoch algorithm based on Tikhonov
regularization for deformation monitoring using single frequency GPS
receivers, Surv. Rev., 38, 682–688, 2006.

Xu, P. L., The Value of Minimum Norm Estimation of Geopotential Fields,
Geophys. J. Int., 111, 170–178, 1992.

Xu, P. L., Truncated SVDMethods for Linear Discrete Ill-posed Problems,
Geophys. J. Int., 135, 505–514, 1998.

Xu, P. L. and R. Rummel, A Generalized Ridge Regression Method with
Applications in Determination of Potential Fields, Manuscr. Geod., 20,
8–20, 1994.

Xu, P. L., Y. Fukuda, and Y. M. Liu, Multiple Parameter Regularization:
Numerical Solutions and Applications to the Determination of Geopo-
tential from Precise Satellite Orbits, J. Geod., 80, 17–27, 2006.

Yang, Y., Robust estimation of geodetic datum transformation, J. Geod.,
73, 68–274, 1999.

Zhang, K., F. Wu, S. Wu, C. Rizos, C. Roberts, L. Ge, T. Yan, C. Gor-
dini, A. Kealy, M. Hale, P. Ramm, H. Asmussen, D. Kinlyside, and P.
Harcombe, Sparse or Dense: Challenges of Australian Network RTK,
Proceedings of IGNSS Symposium 2006, Holiday Inn Surfers Paradise,
Australia, 17–21, July 2006.

Zhou, J. W., J. K. Ou, and Y. X. Yang, Research on the theory of observa-
tion data and errors, 29–35, Seismic Publishing House, Beijing, 1999
(in Chinese).

X. Luo (e-mail: luoxiaowen2000@hotmail.com), J. Ou, Y. Yuan, J.
Gao, X. Jin, K. Zhang, and H. Xu


	1. Introduction
	2. GPS Data Preprocessing
	3. The Principle and Algorithm of the New Method
	3.1 The observation model
	3.2 The construction of the regularized matrix
	3.3 Determination of the regularized parameter

	4. Results and Analyses of the Experiments
	4.1 Data background
	4.2 Data processing scheme
	4.3 Results and analysis

	5. Conclusions
	References

