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Paleomagnetic directions of the Gauss-Matuyama polarity transition recorded
in drift sediments (IODP Site U1314) in the North Atlantic
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The geomagnetic field direction during the Gauss-Matuyama (G-M) polarity transition was investigated from
a high-accumulation-rate (≥10 cm/kyr) sediment core drilled in the Gardar drift in the North Atlantic at Site
U1314 during Expedition 306 of the Integrated Ocean Drilling Program (IODP). A well-defined characteristic
remanent magnetization was generally obtained by alternating field demagnetization. The consistency of the
results with records from Icelandic lavas confirms that the North Atlantic drift sediments contain a high-fidelity
record of the geomagnetic field change. During the G-M transition, the virtual geomagnetic pole (VGP) latitude
shows north-south-north-south rebounding, with the three VGP paths falling within different longitudinal bands.
Two of the three paths are close to or within the preferred bands in which transitional VGPs are suggested to be
longitudinally confined. Three additional loops occur that approach mid-to-low latitudes from the North or South
pole regions. In addition, the VGPs show rapid movement (directional jumps) between VGP clusters.
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1. Introduction
Geomagnetic reversals illustrate the dynamic nature of

the Earth’s magnetic field and provide important clues about
how the geodynamo works. The behavior of the geomag-
netic field during polarity transitions, i.e., transitional fields,
has therefore been a focus of paleomagnetic studies. Tran-
sitional fields have been investigated mainly on lava flows
and sediments. Relative to records from lava flows, sed-
imentary records have the advantage that they yield con-
tinuous records of field behavior and the disadvantage that
they filter (smooth) the temporal variation of the ambient
field (e.g. Hyodo, 1984), with the degree of smoothing de-
pendent primarily on sedimentation rate, although magne-
tization acquisition rate and depth (lock-in depth) also play
a role. Sediments that accumulate rapidly (≥10 cm/kyr)
are expected to provide high-resolution records of geomag-
netic field behavior that approach the temporal resolution of
rapidly extruded sequence of lava flows while also provid-
ing continuous observations (e.g., Merrill and McFadden,
1999). Drift sediments in the North Atlantic are character-
ized by high-accumulation rates and stable remanent mag-
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netizations, which have been used to study geomagnetic
field behavior of polarity transitions back to the Réunion
subchron (Channell and Lehman, 1997; Mazaud and Chan-
nell, 1999; Channell and Raymo, 2003; Channell et al.,
2003, 2004). In this paper, we extend the coverage back to
the Gauss-Matuyama (G-M) transition at 2.58 Ma (ages are
based on the geomagnetic polarity timescale of Cande and
Kent (1995)). Only three sedimentary records have depicted
the path of the virtual geomagnetic pole (VGP) in the G-M
transition; one from Turkmenian sediments (Burakov et al.,
1976), one from lake sediments from California (Liddicoat,
1982; Glen et al., 1999), and one from Chinese loess (Zhu et
al., 2000). Yang et al. (2005) recently reported that the pale-
omagnetic record of Chinese loess showed high-frequency
polarity fluctuations accompanying the G-M transition.

2. Sampling and Magnetic Measurement
Integrated Ocean Drilling Program (IODP) Site U1314

was drilled in the Gardar Drift at 56◦21.9′N, 27◦53.3′W
at a water depth of 2800 m (Fig. 1). Three holes were
drilled with the advanced piston corer (APC) using non-
magnetic core barrels; the core recovery was over 100%
at each hole. Sedimentation rates based on onboard micro-
fossil data and polarity reversals indicate a mostly constant
sedimentation rate of approximately 11 cm/kyr between the
G-M boundary and the Olduvai Subchron (Expedition 306
Scientists, 2006). Among the three holes, the G-M transi-
tion was recovered only in Hole U1314A in Core U1314A-
25H, with the transitional directions spanning from about
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Fig. 1. Location map for IODP Site U1314, which is about 500 km from
ODP Site 983 downstream the Gardar Drift. Bathymetric contours are
given in meters.

240.3 to 241.3 m composite depth (mcd). Unfortunately,
the G-M transition was not cored in Hole U1314C, which
only extended down to 222.3 mcd, and was not recovered
in Hole U1314B because it occurred entirely between cores
U1313B-24H and 25H.

U-channel samples of 1.5 m in length with a 2×2-cm
square cross section were sampled from the central part
of the ‘archive’ half cores. Remanent magnetizations and
hysteresis parameters were measured at the Center for Ad-
vanced Marine Core Research in Kochi University. The nat-
ural remanent magnetization (NRM) of the u-channel sam-
ples were measured at every 1-cm interval using a high-
resolution small-access pass-through magnetometer (2G
Enterprises, 755SRM) after alternating field (AF) demag-
netization in ten steps in the 20- to 80-mT peak field inter-
val, because archive halves of the cores were demagnetized
at peak fields of 20 mT on board the ship. Most of the drill-
string overprint, which was downward in direction, was re-
moved at around 10 mT at the onboard treatment (Expedi-
tion 306 Scientists, 2006). Thermomagnetic curve and hys-
teresis parameters were obtained using a vibrating sample
magnetometer (Princeton Measurements, Micromag 3900).

3. Results
In Fig. 2, the thermomagnetic analyses indicate (ti-

tano)magnetite and hysteresis ratios lie in the pseudo-single
domain (PSD) field. The results are consistent with the min-
eralogy at nearby Ocean Drilling Program (ODP) Site 983
(see Fig. 1), which indicated PSD magnetite as the domi-
nant magnetic mineral (Channell et al., 1998; Mazaud and
Channell, 1999; Channell and Kleiven, 2000).

Typical results of AF demagnetization are shown in
Fig. 3; a well-defined characteristic magnetization compo-
nent extending straight to the origin of the plot was gener-
ally obtained for the 20- to 80-mT demagnetization inter-
vals. In Fig. 4, the component direction was determined us-
ing principal component analysis (PCA; Kirschvink, 1980)
for each measurement point using a computer program by
Mazaud (2005). Generally, data from all ten AF demagne-
tization steps were used in the PCA. The maximum angu-
lar dispersion (MAD) values are low (<1◦) in the interval
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Fig. 2. (a) Typical result of thermomagnetic analysis. (b) Hysteresis
ratio plot for 15 samples. SD, PSD, and MD indicate single domain,
pseudo-single domain, and multidomain fields, respectively (see Day et
al., 1977).

of pre- and post-reversal, indicating that the component di-
rections are well defined. The MAD values are larger at
the interval of the polarity transition partly because of the
low intensity of the remanent magnetization (relatively high
noise). Overprinting of rapidly changing geomagnetic field
may also increase the MAD values (Channell et al., 2002).
When the MAD value exceeded 10◦, the orthogonal plots
were examined individually, and the principal component
was determined using at least seven of the ten measurement
steps. The declination values were corrected according to
the shipboard ‘Tensor Multishot’ orientation tool.

4. Discussion
The VGPs calculated from each direction illustrate the

movement of the north magnetic pole (Fig. 5(a)). Following
the stable Gauss polarity interval, the VGPs draw a precur-
sory loop over the North Atlantic (P1 in Fig. 5(a)) and go
to the Antarctic through eastern Asia and west off Australia
(P2). After a fluctuation towards the east coast of South
America (P3), the VGPs pass along a nearly great circle
path through the eastern Pacific on their way back to the
Arctic (P4). On their final trip to the southern hemisphere,
the VGPs pass through Asia, the Middle East, and South
Africa (P5), settling around the Antarctic after a fluctuation
towards Australia (P6). The characteristics of the VGP path
can be summarized by a north-south-north-south (N-S-N-S)
rebounding (P2, P4, and P5) associated with fluctuations in
which the VGPs approach mid-to-low latitudes (P1, P3 and
P6) before returning to a polar position. One of these loops
encircles the drill site (P1), and another is nearly antipodal
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Fig. 3. Examples of orthogonal projections of alternating field demagnetization. Solid circles represent the horizontal projection, and open circles
represent the vertical projection. The peak alternating field (mT) for each demagnetization step is indicated. Dotted lines indicate calculated
component directions.

-90

-45

0

45

90 Inclination

I GAD

I GAD

90

180

270

360

90
Declination

0

5

10

238 239 240 241 242 243
Meters composite depth (mcd)

MAD
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to the drill site (P6). The VGPs traverse different latitudinal
bands for each of the three pole-to-pole paths (P2, P4, and
P5).

We compare the results at Site U1314 with the volcanic
records in Iceland. The two sites are only about 1000 km
(∼10◦ in angular distance) apart. Transitional directions
across the G-M boundary have been reported from Icelandic
lava flows by many authors (Sigurgeirsson, 1957; Wilson et
al., 1972; Kristjansson et al., 1980; Kristjansson and Sig-
urgeirsson, 1993; Tanaka et al., 1995; Goguitchaichvili et
al., 1999). Kristjansson and Sigurgeirsson (1993) compiled
preceding records, and based on their results (see their fig-
ure 5) we can group the VGPs into four regions: Japan-
Australia, in and off South America, the Middle East, and
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Fig. 5. Virtual geomagnetic poles (VGPs) during the G-M transition. (a)
Path plotted on Hammer projection. The arrows indicate the movement
of VGPs, and P1 to P6 represent the temporal order. Star indicates the
drilling site. (b) VGP latitudes as a function of depth.

equatorial Indian Ocean. It is remarkable that three of these
regions are located on the VGP paths in our record: VGPs
in the Japan-Australia region are on P2 in Fig. 5, those in
and off South America are on P4, and those in the Mid-
dle East are on P5. In addition, the temporal order (strati-
graphic order) in Kristjansson (1980) is consistent with our
P4 and P5. We do not observe VGPs in the equatorial In-
dian Ocean: perhaps the volcanic sections have recorded
short-term fluctuations that were smoothed out in our sedi-
mentary record or short-wavelength anomaly predominates
in the transitional field.

Glen et al. (1999) pointed out that the difference between
VGPs from different locations may indicate the predomi-
nance of non-dipole fields during the G-M transition. Our
VGP paths also have features different from others (Bu-
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rakov et al., 1976; Glen et al., 1999; Zhu et al., 2000) as
well as some common characteristics. The change in the
VGP latitude of the record in China (Zhu et al., 2000) shows
N-S-N-S rebounding as seen in the Site U1314 record.
The VGPs from China go from the Arctic to the Antarctic
through Americas and then go back to the Arctic through
eastern Asia; these paths are located close to our paths P2
and P4, but they are opposite in direction to ours. These
paths are within or close to the ‘preferred bands’ in which
transitional VGPs are suggested to be longitudinally con-
fined within two antipodal longitude bands (see, for exam-
ple, Merrill and McFadden, 1999). The VGPs from Turk-
menia (Burakov et al., 1976) are also confined in eastern
Asia and in the preferred bands. It is notable that in the
three records of the G-M transition (this study, those from
California, and those from China), the VGPs lie outside the
preferred longitudinal bands as they pass over Africa before
they go to and settle around the Antarctic.

One of the characteristics of the G-M transitional record
from California (Glen et al., 1999) is the presence of inter-
vals of a quasi-stationary state (VGP clusters) and intervals
of rapid movement of VGPs. We also find a similar feature
in the present record. In Fig. 5(a) the VGPs cluster in the
North Atlantic in the beginning of transition, move to east-
ern Asia rapidly, cluster there again, and then rapidly move
to the Antarctic. It is also notable that the movement of
VGPs slows down at the equatorial region off South Amer-
ica in the path from Antarctic to the Arctic (P4 in Fig. 5).
These ‘directional jumps’ have been demonstrated in both
volcanic records (e.g., Prévot et al., 1985; Acton et al.,
2000) and sedimentary records (e.g. Channel and Lehman,
1997; Mazaud and Channell, 1999). The present record also
supports the feature of ‘directional jumps’ in the G-M tran-
sition.
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