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Interaction of Alfven waves with a turbulent layer
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We consider the interaction of Alfven waves with a resistive turbulent layer with anomalous conductivity.
High-frequency turbulence causes the occurrence of both field-aligned and transverse resistivity. The correct
dispersion relationship for Alfven waves in a turbulent medium with anisotropic conductivities has been derived.
Alfven waves may partially reflect from a resistive layer, be absorbed in it, or be transmitted through it. When
field-aligned resistivity dominates, the relative effectiveness of these processes critically depends on the wave
transverse scale. For a thin layer as compared with the wave field-aligned length, the characteristic parameter
that controls the effectiveness of the wave interaction with a layer is the resistive Alfven scale λA, determined
by the field-aligned resistance and Alfven velocity above the layer. Comparison of energy losses estimated from
analytical relationships for a “thin” layer and from numerical calculations for a finite width layer shows that
the thin layer approximation provides a reasonable estimate over a wide range of wave scales, not only very
small. Estimation of the effective damping scale of the Pc1 waves in a turbulent cusp shows that the cusp proper
cannot be a conduit of Pc1 wave energy from the magnetosheath to the ground. The “thin” layer model has
been applied to the interpretation of the results of early studies of transient ULF wave (Pi2 pulsations) damping
during substorm onset, which showed that the damping rate increased for accompanying magnetic bays stronger
than ∼100 nT. Our estimates confirm that this additional damping can be caused by the occurrence of anomalous
transverse resistance when magnetospheric current exceeds the threshold necessary for the excitation of high-
frequency plasma turbulence.
Key words: Alfven waves, ULF pulsations, anomalous resistivity, plasma turbulence.

1. Introduction
Alfven waves play an important role in dynamic pro-

cesses in space plasma by transporting without geometric
attenuation non-stationary field-aligned currents to consid-
erable distances. Space plasma is often turbulent, so scat-
tering of particles by turbulent noise becomes more efficient
than Coulomb collisions. Such anomalous collisions of par-
ticles with turbulent noise result in the occurrence of finite
anomalous plasma resistivity (Galeev and Sagdeev, 1973;
Liperovsky and Pudovkin, 1983) and formation of turbulent
layers (TL) in a space plasma.

The problem considered here is just one aspect of the
more fundamental problem of MHD wave propagation
through a turbulent plasma. This latter, still not resolved
problem is of key importance for near-Earth space physics,
in particular for penetration of ULF waves through the mag-
netosheath or auroral plasma, propagation of ULF bursts
and transients along the magnetotail, etc.

For the problem of energy transfer in space the interac-
tion of Alfven waves with a region of turbulent plasma with
finite conductivity due to anomalous collisions is of great
importance. The basic notions about Alfven wave inter-
action with a turbulent layer (TL) with anomalous field-
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aligned resistance were formulated by Lysak and Dum
(1983), who showed that waves can partially penetrate a
layer, be absorbed in it, and reflect from it. The relative
rate of these processes turned out to be dependent on the
transverse wave scale. Later on this model was augmented
by Trakhtenhertz and Feldstein (1985), who indicated that
the occurrence of anomalous collisions should modify not
only the field-aligned conductivity, but transverse (Peder-
sen) conductivity as well, and substantially enhance the
wave absorption in a TL.

Quite often, e.g. at auroral latitudes, the high-frequency
turbulence is confined in a narrow region, where the thresh-
old for current instability is minimal (Kindel and Kennel,
1971). The width of such a layer with anomalous resistivity
might be small as compared with the field-aligned scale of
low-frequency Alfven waves. Therefore, for the description
of wave-layer interaction in such a case the thin layer ap-
proximation may be used. This approximation enables one
to obtain simpler analytical relationships and to reveal the
physical parameters that control this interaction. The prob-
lem of Alfven wave interaction with a TL has much in com-
mon with the problem of Alfven wave transmission though
a layer with a field-aligned potential drop. The first mech-
anism is caused by local resistivity due to anomalous colli-
sions (Lysak and Carlson, 1981), whereas the latter mecha-
nism is related to the non-resistive potential drop caused by
mirror forces in a magnetic flux tube (Lyons, 1980; Vogt
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and Haerendel, 1998). The nonlocal dissipation associ-
ated with a field-aligned potential drop provides a scale-
dependent coupling between the magnetosphere and iono-
sphere. The magnetospheric flow profile may undergo sub-
stantial redistribution during its evolution as a direct con-
sequence of the field-aligned potential drop (Lotko et al.,
1987). The studies of Lyons (1980), Vogt and Haerendel
(1998), and Vogt (2002) revealed the key spatial parameters
of such a coupling mechanism: the resistive scale λP and
λA, determined by the field-aligned conductance of a flux
tube, Pedersen conductance of the ionosphere, and Alfven
velocity of the magnetosphere. Though the mechanisms
of non-resistive field-aligned potential drop and anomalous
resistance are physically different, there is a mathematical
similarity between these models. Therefore, in this paper
we apply for the description of the Alfven wave interac-
tion with a TL with anomalous longitudinal and transverse
conductivities an approach similar to the one which has
been applied for the consideration of Alfven wave interac-
tion with a plasma layer with non-local Ohm’s law for a
field-aligned current (Fedorov et al., 2001). The theoretical
model developed will be applied to the consideration of the
role of Alfven wave damping in turbulent regions that occur
in the near-Earth space environment.

2. Model of Alfven Wave Interaction with a TL
We consider interaction of Alfven waves with a flat TL

with width h and complex transverse σ⊥ and field-aligned
σ‖ conductivities. The real parts of these conductivities are
caused by the occurrence of effective frequencies of elec-
tron, νe, and ion, νi, collective collisions with turbulent
noise. It is assumed that microturbulence is supported by
external sources, and is not created by an Alfven wave it-
self. Otherwise, the wave interaction with a self-generated
anomalous resistance layer may be accompanied by a num-
ber of specific effects, e.g. limitation of the field-aligned
current transmitted by a wave (Mazur et al., 2007).

The model considered here is depicted in Fig. 1. An
external straight magnetic field B0 is normal to the layer,
and coincides with the Z -axis of an orthogonal coordinate
system {x, y, z}. The plane z = 0 is the interface between
the TL (n = 2) and lower semi-space (n = 1), whereas
the plane z = h is the interface with the upper semi-space
(n = 3). In each plasma layer (n = 1, 2, 3) the Alfven
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Fig. 1. A sketch of the model of Alfven wave interaction with a turbulent
layer (TL).

velocity VAn and wave conductance �An = (μ0VAn)
−1 are

constant.
2.1 Alfven waves in a resistive medium

Wave disturbances are presented as a sum of harmonics
∝ exp(−iωt +ik⊥x), where k⊥ is the transverse wave num-
ber. From Maxwell’s equations and Ohm’s law j = σ̂E the
equations for Alfven waves in a medium with transverse
σ⊥(ω) and parallel (field-aligned) σ‖(ω) complex conduc-
tivities follow. The possible coupling with the fast compres-
sional mode due to the Hall conductance may be noticeable
only for waves with sufficiently large transverse scales, be-
yond the scales considered here (see estimates in Yagova et
al. (1999)). In this case Ohm’s law becomes

j⊥ = σ⊥E⊥ , j‖ = σ‖E‖ (1)

Maxwell’s equations reduce to

∂z

(
Ex

By

)
= T̂

(
Ex

By

)
, T̂ =

(
0 iω − k2

⊥/μ0σ‖
−μ0σ⊥ 0

)
(2)

In a homogeneous medium the coefficients of (2) are
coordinate-independent and a dispersion equation can be
derived as follows

det
(

T̂ − ik‖1
)

= 0 (3)

where 1 is the unit 2 × 2 matrix, and k‖ = kz is the
field-aligned component of the wave number k. From the
dispersion equation (3) we obtain

iωμ0 = k2
‖

σ⊥(ω)
+ k2

⊥
σ‖(ω)

(4)

Equation (4) makes sense only if the frequency dependence
of both conductivities is explicitly indicated.

In the case of resistive MHD one has

j⊥ = σ0 (E⊥ + v × B0) , j‖ = σ0E‖ (5)

where v is the plasma velocity. The linearized momentum
equation of the MHD system gives

v⊥ = iμ0V 2
A

ωB2
0

(j⊥ × B0) (6)

where VA is the Alfven velocity. Substitution of (6) into (5)
provides the possibility to deduce an effective conductivity
tensor σ̂ (ω) as follows

σ−1
⊥ (ω) = σ−1

0 − μ0V 2
A

iω
, σ‖ = σ0 (7)

In an medium with isotropic conductivity σ0 from (4) and
(7) the widely used dispersion equation for Alfven waves
in a resistive medium follows (Tikhonchuk and Bychenkov,
1995; Senatorov, 1996)

ω2 − k2
‖V 2

A + (
k2
‖ + k2

⊥
) iω

μ0σ0
= 0 (8)

However, we believe that a turbulent medium is more ad-
equately modeled as a three-component plasma: electrons,
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ions, and plasmons (neutral quasi-particles). We consider
neutral quasi-particles as motionless, though at very low
frequencies a dragging of plasmons by oscillating ions is
possible (Liperovsky and Martjanov, 1973). The transverse
conductivity of such a medium is composed of electron and
ion conductivities σ⊥ = σ

(e)
⊥ + σ

(i)
⊥ . Rather complicated

relationships for the conductivity tensor can be reduced for
low-frequency waves (ω � �i) to the following

σ⊥(ω) � σP − iω

μ0Ṽ 2
A

, σ‖(ω)−1 � μ0λ
2
e(νe − iω) (9)

The complex transverse conductivity σ⊥ is composed of the
contributions from the static Pedersen conductivity σP and
polarization current. Here Ṽ 2

A = V 2
A

(
1 + r2

i

)2
/
(
1 − r2

i

)
is

the Alfven velocity modified by collisions, λe = c/ωpe is
the plasma electron inertial scale, and ωpe = Ne2/meε0

is the plasma frequency. Further on, for simplicity we
neglect the distinction between VA and ṼA. Commonly, the
contribution of electron inertia in field-aligned conductivity
can be omitted, that is,

σ‖ � σ0 = ε0ω
2
peν

−1
e = (

μ0λ
2
eνe

)−1
(10)

Substitution of (9) into (4) results in the generalized disper-
sion equation for Alfven waves in a turbulent medium

k2
‖ = (

1 + k2
⊥λ2

e

) (
k2

A + iωμ0σP
)− σP

σ0
k2
⊥ + i

k2
Ak2

⊥
ωμ0σ0

(11)

Equation (11) coincides with the equation from Lysak and
Dum (1983) in the limiting case σP → 0. The gas of plas-
mons is assumed to be like neutral particles upon collisions
with electrons and ions in a weakly-collisional plasma. The
static field-aligned conductivity (10) is provided by electron
collisions, whereas the Pedersen conductivity is supported
by ions and electrons, and is determined by the formula

σP = ω2
peε0

�e

(
re

1 + r2
e

+ ri

1 + r2
i

)
= σ0

(
r2

e

1 + r2
e

+ reri

1 + r2
i

)
(12)

where re = νe/�e and ri = νi/�i are the parameters which
control the frozen-in conditions for electrons and ions, and
�e and �i are their cyclotron frequencies.

Here we introduce the frequencies

ν1 = μ0V 2
AσP = νi

1 + r2
i

+ me

m i

νe

1 + r2
e

, ν2 = k2
⊥λ2

e

1 + k2
⊥λ2

e

νe

(13)
Substituting (13) into (11) transforms the dispersion equa-
tion to the following form

k2
‖V 2

A

1 + k2
⊥λ2

e

= ω2 + iω(ν1 + ν2) − ν1ν2 (14)

The wave resistance of the resistive TL is determined by the
following relationship:

ZA = �−1
A = − ik‖

σ⊥
(15)

In the ideal MHD approximation, when σP → 0 and
|σ‖| → ∞, so ν1 → 0, ν2 → 0, λe → 0, and the

dispersion equation (14) gives k‖ = kA = ω/VA and
ZA = �−1

A = μ0VA. Such a medium may be character-
ized by the plasma dielectric permeability ε⊥ = (c/VA)2.
The transverse conductivity is determined by the polariza-
tion current σ⊥ = −iω/μ0V 2

A, whereas the field-aligned
resistance vanishes.

In the quasi-static case, when ω � ν1ν2/(ν1 + ν2) ≤
(ν1 + ν2)/4, the first and the second terms in the right-
hand side of (14) may be neglected, so this equation de-
scribes the attenuation of an electromagnetic field in an
anisotropically-conductive medium with the damping scale

κ = Im k‖ �
√

ν1ν2

VA
= k⊥

√
σP

σ0
(16)

We introduce the effective skin-depths, δ‖ and δP, deter-
mined by the field-aligned and transverse conductivities,
correspondingly:

δ‖ = (
1 + k2

⊥λ2
e

)−1/2

√
2

ωμ0σ0
, δP =

√
2

ωμ0σP
.

When transverse wave numbers and frequencies are not
very low, that is k⊥ � (δPδ‖kA)−1 and kA � δ−1

P , or ν1 �
ν2 and ν1 � ω, the generalized dispersion equation (14)
reduces to the following

k2
‖ = (

1 + k2
⊥λ2

e

)
k2

A

(
1 + i

ν2

ω

)
(17)

This equation, with account for (13), may be written as
follows

(
1 + k2

⊥λ2
e

)
ω2 − k2

‖V 2
A + k2

⊥
iω

μ0σ0
= 0 (18)

The dispersion equation obtained is somewhat different
from the commonly used (8). The longitudinal wave num-
ber may be found from the following relationship stemming
from (14)

k‖ = kA
(
1 + k2

⊥λ2
e

)1/2
[

1 + i
ν1 + ν2

ω
− ν1ν2

ω2

]1/2

(19)

Stemming from (19) the damping scale (k‖ = kA+iκ) of the
wave spatial decay upon propagation can be estimated from
the following relationship, comprising both field-aligned
and transverse resistances

κ

kA
� ν1 + ν2

2ω
= 1

4
(k⊥δ‖)2 + (kAδP)

−2 (20)

The estimate (20) is valid when ν1 � ω, and ν2 � ω.
These conditions may be written in the alternative form for
the strongly magnetized electrons and ions, i.e. re � 1 and
ri � 1, and k⊥λe � 1, as follows νi + (me/m i)νe � ω, and
k2
⊥λ2

e νe � ω.
Further we will see that the critical transverse scales of

Alfven wave interaction with TL are much larger than λe,
so the correction due to electron inertia may be neglected,
k⊥λe � 1.



952 V. PILIPENKO et al.: ALFVEN WAVES AND A TURBULENT LAYER

2.2 Alfven waves in a multi-layered system
The field-aligned components k‖ of wave vectors in the

layers k1, k2, and k3 are determined by relevant disper-
sion equations. In the upper and bottom semi-planes k1 =
ω/VA1, and k3 = ω/VA3, whereas the wave number in the
TL, k2, is determined by (14) for an Alfven wave in a resis-
tive medium.

In each of the homogeneous layers the solution of Eq. (2)
may be presented in the following form:

By = B1e−ik1z

Ex = −μ−1
0 ZA1 B1e−ik1z

By = B2
(
e−ik2z + R2eik2z

)
Ex = −μ−1

0 ZA2 B2
[
e−ik2z − R2eik2z

]
(21)

By = B3
[
e−ik3(z−h) + Reik3(z−h)

]
Ex = −μ−1

0 ZA3 B3
[
e−ik3(z−h) − Reik3(z−h)

]
Here R and R2 are the coefficients of wave reflection from
the upper and lower TL boundary, correspondingly, and B1,
B2, and B3 are amplitude coefficients.

Each of the plasma semi-spaces (n = 1, 3) has a wave
resistance ZAn = �−1

An = ±μ0 E±
x /B±

y , where the ± sign
corresponds to upward/downward propagating waves. The
continuity of the tangential component of the wave electric
and magnetic fields at the interface between the layers (z =
0) results in the boundary condition

Ex = −μ−1
0 ZA1 By (22)

Substitution of (21) into (22) provides a known expression
for the coefficient of Alfven wave reflection from a bound-
ary between two plasma layers

R2 = ZA2 − ZA1

ZA2 + ZA1
(23)

However, in a multi-layered system a similar formula does
not work at the interface z = h and should be modified.
2.3 Wave reflection from a finite-width layer

The surface input impedance Z in at the upper boundary
of the resistive layer (z = h) is determined by the recurrent
equations which couple Z in and the impedance at the lower
boundary (z = 0) as follows

Z in = −μ0
Ex

By
= ZA2

ZA1 − i ZA2 tan(k2h)

ZA2 − i ZA1 tan(k2h)
(24)

The coefficient R of the Alfven wave reflection from the
TL is related to the surface impedance Z in by the known
relation

R = ZA3 − Z in

ZA3 + Z in
(25)

Substituting (24) into (25) we get

R = �A1 − �A3 + (
�⊥2 + Sk2

2h2
)

G

�A1 + �A3 + (
�⊥2 − Sk2

2h2
)

G
(26)

Here �⊥2 = σ⊥2h is the height-integrated transverse con-
ductivity of the resistive layer, such that Re �⊥2 = �P =
σPh, and k2h�A2 = i�⊥2. In (26) we have introduced the
functions G(k2h) = tan(k2h)/k2h and S = �A1�A3/�⊥2.

Now we find the coefficient of wave transmission through
the layer. From the continuity of magnetic field at z = h and
z = 0 it follows that

B2

B3
= 1 + R

exp(−ik2h) + R2 exp(ik2h)
, (27)

B1

B2
= 1 + R2 (28)

Combining (27), the transmission coefficient T = B1/B3

can be found. Substituting in (27) the relationships (23)
and (25) for the reflection coefficients R2 and R, we get
after simple algebra

T = 2

cos k2h
× �A1

�A1 + �A3 + (
�⊥2 − Sk2

2h2
)

G
(29)

2.4 Wave reflection from a thin layer
We define a TL as an “optically thin” (or just thin) layer

when |k2h| � 1. This condition can be more explicitly
expressed in two cases. For large transverse wave numbers,
satisfying the inequality (ν1 + ν2) � ω, from (11) the
approximate relation (16) follows. Then, the condition of
a thin layer has the form

|k⊥λP| � 1 (30)

Here we have introduced the dissipative scale λP =√∣∣∣∣σ⊥2

σ‖

∣∣∣∣h =
√

|Q�⊥2|, where Q = h/σ0 is the field-

aligned integrated resistance of the layer.
When transverse wave numbers are so small that ν2 � ν1

and ν2 � ω, the condition of the thin layer approximation
is somewhat different. In this case the wave dispersion
equation in a TL gives k2

2 � iωμ0σ⊥. For low-frequency
waves with ω � ν1 we have σ⊥ � σP. As a result, a TL
may be considered as “thin” when

h � δP (31)

In this limit of large-scale disturbances (k⊥ → 0) the reflec-
tion and transmission coefficients are weakly dependent on
the transverse wave numbers, and are as follows

R � R0 = 1 − �A3

1 + �A3
T � T0 = 2�A1

1 + �A3
(32)

Here we have introduced the normalized Alfven conduc-
tances

�A1 = �A1

�A1 + �⊥2
�A3 = �A3

�A1 + �⊥2

When the condition (30) of the thin layer approximation
is valid, the coefficient of wave reflection from a layer (26)
reduces to the following

R � R0
1 − qpk

2
⊥

1 + qmk
2
⊥

(33)

where

qp = �A1

1 − �A3

(
1 + 1

3

�2
⊥2

�A1�A3

)
(34)
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qm = �A1

1 + �A3

(
1 − 1

3

�2
⊥2

�A1�A3

)
(35)

In (33) the dimensionless transverse wave number k⊥ =
k⊥λA has been introduced.

The parameter λA = (�A3 Q)1/2 is determined by
the altitude-integrated field-aligned resistance Q and the
Alfven velocity above the TL. According to its physical
sense, this parameter is the transverse scale when the field-
aligned column resistance matches the Alfven wave resis-
tance �−1

A . The previously introduced parameter, the resis-
tive length λP, is the transverse wave scale when the scale
of wave penetration into a TL with conductivity σ‖ matches
the layer width h. As one will see further, the key parame-
ter of the Alfven wave interaction with a thin TL is the ratio
between λA and the wave transverse scale, namely k⊥λA.
At the same time, the ratio between the parameter λP and
k−1
⊥ more adequately characterizes the wave dissipation in

a thin TL. These two parameters, λP and λA, were first in-
troduced as the resistive scale (Lyons, 1980) and transient
length scale (Vogt and Haerendel, 1998; Vogt, 2002) of
magnetosphere-ionosphere coupling, in studies of the math-
ematically similar problem of the Alfven wave interaction
with the non-resistive potential drop region.

From (33) it follows that if the Alfven wave transverse
scale k−1

⊥ matches the critical value

L∗
⊥ = λA

[
1 + �2

⊥2/3�A1�A3

1 + (�⊥2 − �A3)/�A1

]1/2

(36)

then, while L∗
⊥ ≥ λP, the input impedance Z in equals the

Alfven wave resistance �A3, and the reflection coefficient
from a thin TL vanishes, R = 0. Thus, the dependence
R

(
k⊥

)
(33) should change sign at the critical k∗

⊥ = 1/L∗
⊥.

Now we find the coefficient of the wave transmission
through a thin layer. Decomposing cos(k2h) and G(k2h)

into Taylor series, and neglecting in (29) terms of the order
of (k2h)3, we obtain

T � T0

(
1 + 1

2
qTk

2
⊥

)−1

(37)

where

qT = �⊥2

�A3

(
1 − 2

3

�⊥2

�A1 + �A2 + �A3

)
+ T0

2.5 Alfven wave energy losses in a TL
Let S(i), S(r), and S(t) be densities of the energy fluxes

carried by incident, reflected, and transmitted waves, re-
spectively. The energy losses of Alfven waves in a resistive
layer are determined as follows

J = S(i) − S(r) − S(t) (38)

The energy flux densities in incident, reflected, and trans-
mitted Alfven waves may be presented via the amplitude of
Alfven waves in the magnetosphere B3 as follows

S(i) = VA3

2μ0
|B3|2 S(r) = VA3

2μ0
|RB3|2 S(t) = VA1

2μ0
|T B3|2

(39)

The energy loss α in a TL, normalized to the energy flux of
incident waves, can be found from (38) and (39)

α = J

S(i)
= 1 − |R|2 − VA1

VA3
|T |2 (40)

2.5.1 Finite-width TL In a finite-width TL with
thickness h the energy absorption rate comprises two terms
q⊥ and q‖, where

q⊥ = 1

2

h∫
0

σP |Ex |2 dz q‖ = 1

2

h∫
0

σ0

∣∣∣∣ jz
σ‖

∣∣∣∣
2

dz (41)

From (21) we have

Ex = − ZA2 B2

μ0

(
e−ik2z − R2eik2z

)
,

jz = ik⊥
μ0

B2
(
e−ik2z + R2eik2z

)
(42)

where B2 and B3 are related by (27). Substituting (42) into
(41), and taking into account (40), we obtain the relation-
ship for the normalized energy loss due to the transverse
and field-aligned conductivities, as follows

α⊥ = q⊥
S(i)

= �P�A3

|�A2|2 K I1 α‖ = q‖
S(i)

= k
2
⊥K I2

(43)
The coefficients K (k2h) and I1,2(k2h) in (43) are as follows

K =
∣∣∣∣ 1 + R

exp(−ik2h) + R2 exp(ik2h)

∣∣∣∣
2

(44)

I1,2 = E0 (2Im(k2h)) + |R2|2 E0 (−2Im(k2h))

∓2Re (R2 E0(2iRe(k2h))) (45)

where the function E0 is E0(z) = z−1(exp z − 1). The
relationship for K can be transformed, using (26), into the
following

K =
∣∣∣∣∣ �A1 + �A2

cos k2h
[
�A1 + �A3 + (

�⊥2 − Sk2
2h2

)
G

]
∣∣∣∣∣
2

(46)

2.5.2 Thin TL In the thin layer approximation modi-
fied expressions for coefficients I1,2(k2h) and K (k2h) may
be found in Fedorov et al. (2007). Using them, from (43) it
is possible to find the “transverse” and “field-aligned” en-
ergy losses in the thin layer approximation
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Coefficients α⊥0 and α‖0 in (47) determine the energy losses
for waves with large scales, when k⊥ → 0, and are as
follows

α⊥0 = 4�P�A3

|�T|2 , α‖0 = 4�2
A1

|�T|2 (49)

3. Numerical and Analytical Estimates
Here we provide the results of both numerical calcula-

tions with the exact formula and estimates using the thin
layer approximation for several models, based on published
parameters of near-Earth space and turbulence.
3.1 Models of a TL

To validate the significance of the effects considered here
we provide numerical results for some models of anomalous
conductivity presented in the literature. To highlight the ef-
fect of anomalous resistance in a layer, we make the Alfven
velocity the same at all altitudes. This way we exclude an
additional wave reflection at VA jumps.

The effective frequency of particle-plasmon collisions in
general is a function of the turbulence spectral power W and
plasma parameters. Estimating this frequency is a difficult
problem, which should be solved separately for each partic-
ular turbulence type. Precise estimates demand knowledge
of turbulence type, its spatial spectra, dominating non-linear
saturation mechanism, etc. Many of these parameters are
not easily observable, so the estimates provided in the lit-
erature vary over a wide range. Assuming that collision
frequencies are known from the solution of a relevant ki-
netic problem, one may use the developed relationships to
validate the Alfven wave transmission through a particular
TL. For that, one has to replace in the plasma conductivities
(10) and (12) the frequencies of collision of charged parti-
cles with neutrals by the collective particle-plasmon colli-
sion frequencies.

For ion-acoustic turbulence an estimate of the maximal
collision frequencies has been shown (Liperovsky and Pu-
dovkin, 1983) to be

νe � ωpe(W/nT ), νi � ωpi(W/nT )2 (50)

where W/nT is the ratio between the energy densities of
turbulent noise and background plasma. However, the ion-
acoustic turbulence can exist in a highly non-isothermal
plasma only when Te � Ti. In other situations the elec-
trostatic ion-cyclotron instability dominates. This instabil-
ity saturates at a level which provides νe = (0.2 − 1)�i

(Ionson, 1976; Hudson et al., 1978).
The interaction of Alfven waves (period T = 100 s) with

a TL has been calculated for several models with differ-
ent types of turbulence. The parameters of the background
plasma have been chosen to correspond to typical values in
the auroral cavity of the upper ionosphere: N = 103 cm−3,
B = 1.45 · 103 nT. These values correspond to Alfven
velocities VA1 = VA2 = 103 km/s, and wave conduc-
tance �A = 0.8 Ohm−1. Characteristic frequencies in such
plasma are ωpe � 1.79 · 106 s−1, ωpi � 4.17 · 104 s−1,
�e � 2.55 · 105 s−1, and �i � 1.39 · 102 s−1. The electron
inertial scale is λe � 170 m.

To validate the thin layer approximation we have made
calculations for two model layers with parameters adapted
from (Trakhtenhertz and Feldstein, 1985):

TF-1: h = 30 km, νe = 103 s−1, νi = √
me/m iνe =

23 s−1;
TF-2: h = 100 km, νe = 102 s−1, νi = √

me/m iνe =
2.3 s−1.

For the TF-1 and TF-2 models the anomalous field-
aligned conductivities σ0 = 2.8 × 10−2 Ohm−1 · m−1

and 2.8 × 10−1 Ohm−1 · m−1, resistances Q = h/σ‖ �
106 Ohm · m2 and 0.35 × 106 Ohm · m2, respectively. The
Pedersen conductivity σP = 1.8 · 10−5 Ohm−1 · m−1 and
0.19 · 10−5 Ohm−1 · m−1, Pedersen conductances �P =
0.55 Ohm−1 and 0.19 Ohm−1, the Alfven resistive scales
λA � 0.9 km and 0.5 km, dissipative scales λP � 0.76 km
and 0.26 km, respectively.

Further, the absorption of Alfven waves in a TL has been
calculated for two characteristic types of high-frequency
plasma turbulence:

Model S: A layer with ion-acoustic turbulence. Anoma-
lous collision frequencies are estimated from the relation-
ship of weak turbulence theory (50) assuming W/nT �
10−3, and h = 103 km. A feature of this model is a strong
contrast (∼4 · 104) between the electron νe and ion νi colli-
sion frequencies.

Model C: A layer with ion-cyclotron turbulence.
Anomalous collision frequencies are estimated as νe �
0.7�i, νi = 0.1νe, and h = 103 km. In this model the elec-
tron and ion collision frequencies differ by only an order of
magnitude.
3.2 Reflection and transmission coefficients

The dependence of the reflection coefficient R on nor-
malized transverse wave number k⊥λA with account of both
conductivities is shown in Fig. 2. Here and further the cal-
culations made with the exact formula are denoted by solid
lines, and calculations in the thin layer approximation are
shown by dotted lines. The model code is indicated near
appropriate curves.

The most prominent feature of the reflection coefficient is
the change of its sign at certain k⊥ ∼ 0.2–0.8, depending on
the model. The vertical dashed lines denote the values k∗

⊥ =

Fig. 2. The dependence of the reflection coefficient R on normalized
transverse wave number k⊥λA with account of both transverse and
field-aligned conductivities for the TF-1 and TF-2 models. Solid lines
correspond to exact relationships, whereas dashed lines denote the thin
layer approximation. Vertical dotted lines denote the critical values of
transverse wave numbers k∗

⊥ = 1/L∗
⊥.
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Fig. 3. The scale dependence of the transmission coefficient T (k⊥λA)

according to exact (solid lines) and approximate (dashed lines) relation-
ships for the TF-1 and TF-2 models.

1/L∗
⊥ which correspond to critical scales when R should

change sign in the thin layer approximation according to
(36). For the models TF-1 and TF-2 the condition L∗

⊥ ≥ λP

is valid, and the relationship (36) gives a correct estimate of
such critical k⊥. Large-scale Alfven waves (k⊥ → 0) reflect
from a resistive layer as from a conductor R > 0, whereas
small-scale waves (k⊥ → ∞) reflect as from an insulator,
that is R → −1 when k⊥ � λ−1

P . Thus, both large-scale
and small-scale waves effectively reflect from a TL.

Figure 3 shows the dependence of the transmission co-
efficient T on k⊥λA. The coefficient T decreases mono-
tonically with increase of k⊥ from T0 at k⊥ = 0, and fur-
ther approaches exponentially 0 as k⊥λP → ∞. Indeed,
from (29) for large k⊥λP the asymptotic estimate follows
T � 4(�P/�A3)(k⊥λP)

−1 exp(−k⊥λP). Thus, at large k⊥
the energy of incident waves nearly totally converts into the
energy of reflected waves.

The comparison of calculation results in the thin layer
approximation (dotted lines in Figs. 2–3) and with the com-
plete formula for a finite width layer (solid lines) shows that
the approximation works well at scales k⊥λA ≤ 1 for both
models.
3.3 Energy losses in a TL

The dependence of energy losses in a layer with anoma-
lous conductivity on the transverse wave number for mod-
els TF-2, S, and C is shown in Fig. 4. Separate energy
losses due to field-aligned α‖ and transverse α⊥ conduc-
tivities have been calculated from (43). The total energy
losses α have been calculated using formula (40), in which
the exact coefficients of reflection and transmission are de-
termined from (26, 29), and the coefficients in the thin layer
approximation are derived from (33, 37).

For all TL models considered the energy losses are max-
imal at wave scales k⊥ ∼ λ−1

A . The part of energy losses
α⊥

(
k⊥

)
due to transverse resistance weakly depends on the

wave scale (middle panel in Fig. 4). In contrast, the part
α‖

(
k⊥

)
reaches peak values at k⊥ � 1.4 (upper panel in

Fig. 4). This peak is responsible for the maximum occur-
rence in the dependence of total energy losses on wave num-
bers α

(
k⊥

)
(bottom panel).

Fig. 4. Dependence of energy losses due to the field-aligned α‖, transverse
α⊥, and total α TL resistance on the normalized transverse wave number
k⊥ for the TF-2, S, and C models.

Thus, wave energy losses are determined by the trans-
verse resistance for large-scale disturbances, k⊥λA � 1.
For small-scale disturbances k⊥λA � 1 both mechanisms
contribute at a similar rate. For intermediate wave scales,
k⊥ ∼ λ−1

A , the energy losses are mostly determined by the
field-aligned resistance.

4. Geophysical Consequences
4.1 Pc1 waves in the vicinity of the dayside cusp

Many studies have proposed the cusp region as a likely
source of some of the Pc1-2 waves observed at high lati-
tudes on the ground. Intense broadband wave activity in
the Pc1-2 band is often reported by low- and mid-altitude
satellites (e.g., Erlandson et al., 1988). Polar satellite ob-
servations (Le et al., 2001) showed that narrowband waves
at frequencies ∼0.2–3 Hz are a permanent feature in the
vicinity of the polar cusp. These waves have been found
in the magnetosphere adjacent to the cusp (both poleward
and equatorward of the cusp) and in the cusp itself. The
occurrence of waves is coincident with the magnetic field
depression associated with enhanced plasma density indi-
cating the entry of the magnetosheath plasma into the cusp,
which suggests that the waves are generated in this region
by the precipitating magnetosheath plasma. The polariza-
tion and propagation angles of the waves are highly vari-
able, whereas energy flux is mostly guided along the back-
ground magnetic field. The wave frequencies are generally
controlled by the local B0 strength, which strongly suggests
that these waves are generated locally and absorbed in the
near vicinity of the generation region.

However, analysis of several years’ data from the
MACCS ground magnetometer array repeatedly failed to
find any Pc1-2 signatures when satellites and/or radars re-
ported that the cusp was overhead of a given MACCS sta-
tion. This puzzle led Dyrud et al. (1997) to undertake
a study of the latitudinal patterns seen in Pc1-2 data ob-
tained by the MACCS array, which suggested that the high-
latitude, unstructured Pc1-2 in fact originated in the high
latitude plasma mantle, not the cusp. Later on, Engebret-
son et al. (2005) reported on simultaneous field and parti-
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Fig. 5. Sketch of possible Pc1-2 wave propagation paths in the vicinity of
the cusp. The cusp proper has been depicted as a TL.

cle observations from the Polar satellite and from ground
magnetometers that confirm the presence of the “mantle”
waves and characterize the ion distributions associated with
them. In-situ particle observations appear to confirm the
generation mechanism suggested by Dyrud et al. (1997),
that cusp particles mirroring at low altitudes and then trav-
eling outward in the plasma mantle poleward of the cusp
are the source of the free energy for these waves. The Po-
lar particle data showed upward ion fluxes coincident with
each mantle wave intensification, and in association with a
downward Poynting vector. In contrast, the Poynting vector
associated with the intense, broadband ULF activity in the
cusp shows mixed direction. This is consistent with the ap-
parent lack of a “cusp signature” in ground magnetometer
observations in the Pc1-2 frequency range.

The inability of Pc1-2 waves to propagate through the
cusp region may be related to enhanced wave absorption in
highly turbulent cusp plasma, as illustrated in Fig. 5. Obser-
vations on OGO-5 (Fredericks et al., 1973) showed that the
low altitude cusp (altitudes from 1Re to 3.2Re) is filled with
intense (〈E〉 � 9 × 10−2 V/m) high-frequency electrostatic
turbulence. The mechanism of this turbulence is proba-
bly ion-acoustic or Bunemann instabilities driven by intense
field-aligned current (typically, j‖ � 2 × 10−5 A/m2) inside
the cusp. This turbulence should provide anomalous colli-
sionless resistivity, where the frequency of effective colli-
sions of electrons with electrostatic modes can be estimated
from (50). For the above parameters, the collisionless re-
sistivity in the low-altitude cusp is ρ � 8 Ohm·m, which
produces a field-aligned potential drop at a distance along
a field line S � 1.3×107 m of as much as 
� � j‖ρS �
2 kV.

For qualitative estimates the relationship (20) from the
theory of Alfven wave propagation via a turbulent infi-
nite homogeneous medium can be applied. To model the
mid-altitude cusp we assume the following plasma and
wave parameters: f = 1 Hz, VA = 103 km/s with
N = 103 cm−1 and B0 = 1.4 × 103 nT. The corre-
sponding characteristic plasma frequencies and scales are
�e � 2.6 × 105 s−1, ωpe � 1.8 × 106 s−1, and λe �
170 m. The measured anomalous field-aligned resistivity

ρ0 = 8 Ohm−1 · m−1 should correspond to an electron col-
lision frequency νe = ρ0/

(
μ0λ

2
e

) � 2.3 · 102 s−1. Assum-
ing that anomalous collisions are similar to charged parti-
cle collisions with neutral particles, one may suppose that
νi = √

me/m iνe � 5.3 s−1. From these estimates it follows
that σP � 4.3 × 10−6 Ohm−1 · m−1, and δP � 240 km.
The expected spatial damping rate is κ � 0.25 · 10−2 km−1,
and kA/κ � 2.5, thus indicating that the amplitude of such
waves should decrease by a factor of e in a distance of about
0.4 wavelengths. The damping owing to field-aligned re-
sistance is small, kA/κ � 104, for transverse wave scales
k−1
⊥ ∼ 102 km, and the main contribution is provided by the

transverse resistivity.
Our model thus predicts that the occurrence of electro-

static turbulence in the cusp causes substantial damping of
Alfven waves in the cusp, consistent with the Pc1-2 obser-
vational studies reviewed above. Surely, alternative wave
absorption mechanisms also might be operative in the cusp
region, such as Landau damping due to the resonant wave-
particle interaction in the high beta plasma of the cusp, but
their consideration is beyond the topic of this paper. These
mechanisms may be especially important when the damp-
ing due to the anomalous resistance become ineffective, e.g.
for a large transverse wave scales.
4.2 Observations of nonlinear damping of Pi2 pulsa-

tions
According to the traditional point of view, Pi2 pul-

sations are transient oscillatory processes stimulated by
substorm onset. Therefore, Pi2 waveforms are com-
monly modeled with a linear damped oscillatory function
∝exp(−γ t) cos(ωt + ϕ), where the frequency ω is the
eigenfrequency of field line oscillations, and the damping
rate γ is determined by the dissipation in the night side
ionosphere. However, “classical” oscillations of this kind
are very rare, and may be observed at low or middle lati-
tudes only. At auroral latitudes, Pi2 bursts have complicated
waveforms indicating that they are composed of contribu-
tions from several nearly simultaneous sources.

We’d like to notice that linear damping as predicted by
modeling an exponential function is very rarely observed.
Among the large variety of observed wave forms the fol-
lowing kind may be selected—a rapid damping of the in-
tense part of a signal and a slower damping of the weaker
part of a signal. Examples of such non-linear Pi2 damping
detected on the IMAGE array on Sep. 25, 2001 are shown in
Fig. 6. This example shows that small-amplitude Pi2 damp
gradually, while the intense Pi2 pulse damps much faster,
right after the first excursion. By and large, this kind of a
signal looks like the stalling of an oscillatory process un-
der large amplitude conditions. In other words, the mag-
netospheric Alfven resonator (MAR) turns out to be highly
over-damped under large amplitude Pi2 conditions.

There is other observational evidence of the occurrence
of non-linear Pi2 damping. Earlier studies of Pi2 damp-
ing rate during substorms (Barsukov and Pudovkin, 1970;
Gudkova et al., 1973) found that the damping rate increases
if the magnitude of accompanying magnetic bays 
H is
larger than some critical value ∼100 nT. The dependence of
the normalized damping rate on substorm magnetic distur-
bance (Gudkova et al., 1974) indicated that during intense
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Fig. 6. Examples of Pi2 signals (H component) with a sudden drop of amplitude, recorded at Kilpisjarvi, a station of the IMAGE array, on 10/01/2001
(day 275), 20–23 UT: raw data (left panel), and band-filtered 7–25 mHz magnetogram (right-hand panel).

magnetic disturbances the Pi2 damping rate acquired an ad-
ditional component γ ∗, such that γ → γ + γ ∗. It was sup-
posed that this additional non-linear damping mechanism
is related to the onset of plasma turbulence and anomalous
collisions, when magnetospheric field-aligned currents ex-
ceed thresholds necessary for the excitation of anomalous
resistance (Shalimov and Liperovsky, 1988). Here is a sim-
ple estimate to justify this assumption.

Using a schematic model of an auroral electrojet driven
by field-aligned currents at its boundaries (Swift, 1981), one
can relate the magnitude of a ground magnetic disturbance

B to the value of a field-aligned magnetospheric current.
The ground magnetic disturbance is produced by a band of
Hall current with surface density iH and width d located at
altitude h above the ground is as follows


B =

⎧⎪⎨
⎪⎩

μ0iH

2
at d ≥ h,

μ0iHd

2πh
at d � h.

(51)

Above a highly-conductive Earth’s crust these values are
to be doubled. The ionospheric current is related to the
field-aligned current above the ionosphere by the current
continuity condition. Taking into account a scale factor
B(m)/B(i) owing to altitude variations of the flux tube cross-
section, we obtain an estimate of the magnetospheric field-
aligned current density

j (m)
‖ = B(m)

B(i)

�P

�H

iH

d
(52)

Using 51 for auroral electrojet with d = 10 km, h =
102 km, and �H/�P = 10/π , we obtain for altitude
∼2RE (B(m)/B(i) � 0.1) for a magnetic disturbance 102 nT
above a highly-conductive crust the estimate of the magne-
tospheric current j (m) � 7.5 × 10−6 A/m2. This estimated
value is about the critical current magnitude necessary for
the excitation of ion-acoustic or ion-cyclotron instabilities
in the upper ionosphere (assuming N = 103 cm−3).
4.3 Estimate of the Q-factor of the MAR with TL

Let us augment the TL model considered in Section 2
above (Fig. 1) by the occurrence of the ionosphere in the
plane z = −h1 with Pedersen conductance �IP. Then, at
z = −h1 we have a boundary condition for Alfven waves

Ex = −(μ0�IP)
−1 By (53)

Re-calculating the impedance from the ionospheric layer
(z = −h1 + 0) to the bottom boundary of TL (z = 0 − 0)
we obtain the boundary condition:

Ex = −(μ0�1)
−1 By �1 = �A1

�IP − i tan k1h1

1 − i�IP tan k1h1
(54)

where �IP = �IP/�A1 is the normalized ionospheric con-
ductance.

Substitution in (22) instead of the wave conductance �A1

the �1 from (54), results in the coefficient of Alfven wave
reflection from the combined system TL + ionosphere

R = �1 − �A3 + (
�⊥2 + Sk2

2h2
)

G

�1 + �A3 + (
�⊥2 − Sk2

2h2
)

G
(55)

When TL are absent, the relation (55) reduces to the known
formula for the coefficient of Alfven wave reflection from
the ionosphere (Scholer, 1970; Maltsev, 1977)

RI = �IP − 1

�IP + 1
(56)

Now we use these results for the consideration of a MAR
with symmetric thin TLs above the northern and southern
ionospheres. Let an Alfven impulse with amplitude b0 im-
pinge on one of the ionospheres, as illustrated in Fig. 7.
Upon interaction with this ionosphere a part of impulse en-
ergy, T b0, transmits through the ionosphere, and a part,
b1 = Rb0, is reflected. After a second interaction with
the conjugate ionosphere the relevant parts are R2b0 and
T R2b0, etc. The resulting damping rate and Q-factor of the
MAR with a TL can be estimated as

γ = − ω

2π
ln |R|2 Q = ω

2γ
= − π

2 ln |R| (57)

where R is determined by (55).
Figure 8 shows a comparison of the results of numer-

ical calculations of the coefficient of reflection from the
ionosphere (dashed line) and from the TL + ionosphere
system (solid line). The chosen parameters of TL corre-
spond to TF-2 model, �IP = 5.0 Ohm−1, VA = 103 km/s,
h1 = 1600 km, N = 109 m−3, ω = 2π/100 s−1. Under
these parameters λA � 0.5 km.

For a given set of parameters the scale-dependences
of the reflection coefficient and magnetospheric resonator
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Fig. 7. Schematic illustration of the Alfven wave interaction with a TL + ionosphere system.

  
 

 

   

  

Fig. 8. Results of numerical modeling of the MAR with a TL: (a)
coefficient of reflection from the ionosphere (dashed line) and from a
TL + ionosphere system (solid line); (b) Q-factor of the MAR without
a TL (dashed line) and with a TL (solid line).

quality Q are shown in Fig. 8. The reflection coefficient
of Alfven field line oscillations between conjugate iono-
spheres drops from ∼0.7 to ∼0.5 (Fig. 8(a)). The plot in
Fig. 8(b) shows that the Q-factor of the MAR even with a
thin TL (solid line) is more than 2 times less than without it
(dotted line): ∼5 and ∼2. Upon growth of k⊥ the Q-factor
decreases until a minimal value is reached at k⊥ ∼ λ−1

A , and
then increases under further growth of k⊥ thanks to high re-
flection of small scale waves (this interval is of no interest
for further consideration and is not shown in the figure).

Transverse scales of typical Pi2 pulsations as observed
on the ground are much larger than λA. Therefore, damping
of these oscillations is determined by the large-scale limit
of dissipation on transverse resistance (49). Small-scale
disturbances which may accompany Pi2 bursts are expected
to be absorbed by the TL.

Thus, the occurrence of a TL with anomalous conduc-
tivity indeed results in a substantial increase of the Pi2
damping rate. However, the damping mechanism is differ-
ent from the mechanisms proposed in earlier studies, and
caused not by a field-aligned, but by transverse, anomalous
resistance.

4.3.1 Decay of quasi-static field-aligned currents
Turbulence can result not only in additional absorption of

Alfven waves, but it can cause the divergence of quasi-static
field-aligned currents. This effect destroys the electromag-
netic coupling between the magnetosphere and ionosphere
at small scales. From (16) it is possible to estimate the char-
acteristic scale of current decrease due to divergence caused
by static conductivity in a turbulent medium


z � a⊥
√

σ0/σP (58)

This relationship indicates that small-scale currents with a
transverse scale a⊥ will be totally screened by a TL with
thickness h > 
z. For example, for TF-2 model parameters
(σ0 = 2.9 × 10−1 and σP = 1.9 × 10−6), a TL with
thickness ∼103 km causes substantial attenuation of field-
aligned current structure with transverse scale <2.5 km.

5. Discussion and Conclusion
Satellite observations have confirmed that densities of

currents transported by Alfven waves in the magnetosphere
are sufficient for excitation of anomalous resistance and
auroral form activation (Pilipenko et al., 1999; Rankin et
al., 1999; Keiling et al., 2002; Streltsov and Lotko, 2003).

Earlier theoretical estimates of plane Alfven wave damp-
ing (e.g., Liperovsky and Martjanov, 1973) were made un-
der the assumption that anomalous resistance is evenly dis-
tributed along a flux tube. However, satellite observations
show that turbulence is concentrated in a narrow layer above
the auroral ionosphere (Fejer and Kelley, 1980). Alfven
waves impinging on a TL with anomalous resistivity can
partially reflect from it, be absorbed, and be transmitted
through it. Considerations made in this paper extend the
results of earlier works by Lysak and Dum (1983), and
Trakhtenhertz and Feldstein (1985). When field-aligned re-
sistivity dominates the relative effectiveness of these pro-
cesses strongly depends on the wave transverse scale. A TL
totally screens small-scale disturbances, and only weakly
absorbs large-scale disturbances.

The basic features of the Alfven wave interaction with
a TL are similar to those of the wave interaction with a
multi-layer system including the auroral acceleration region
(Vogt and Haerendel, 1998; Vogt, 2002). When the TL
width is small as compared with the Alfven wave length,
the key parameter which determines the effectiveness of the
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wave interaction with a layer is the Alfven resistive scale
λA. It is necessary to mention that the mechanisms of the
influence on Alfven waves from the non-resistive potential
drop (Vogt and Haerendel, 1998; Fedorov et al., 2001) and
from the anomalous resistivity, considered in this paper,
are physically different. However, from the mathematical
point of view, the reflection from the combined ionosphere-
AAR system is formally very similar to those from the
ionosphere-TL system with field-aligned resistivity. Surely,
transverse conductivity does not occur in the AAR models,
but it is of primary importance for the TL model considered
here.

The analytical results obtained here may be applied to
the description of the Alfven wave interaction either with
a thin TL, when the field-aligned wave scale L‖ is much
larger than the TL width, L‖ � h (Section 2.4), or in
the local approximation, when L‖ � h (Section 2.1). In
the intermediate case, when L‖ ∼ h, the model developed
cannot be directly applied and a field-aligned dependence
of the wave field and TL parameters is to be considered,
which could be done only numerically.

Comparison of energy losses estimated from simplified
analytical relationships for a thin layer, and numerically
calculated from complete formulas for a finite width layer,
has shown that the thin layer approximation gives reason-
able estimates for all transverse wave scales, except very
small. Estimation of the effective damping scale in a turbu-
lent cusp shows that the cusp proper cannot be a conduit of
Pc1-2 wave energy from the magnetosheath to the ground.
This model also shows that the occurrence of anomalous
transverse resistance when magnetospheric current exceeds
the threshold necessary for the excitation of high-frequency
plasma turbulence provides an additional non-linear damp-
ing rate of transient Pi2 pulsations.

At the auroral latitudes the convective plasma flow in the
presence of a feedback between the magnetospheric distur-
bances and distortions of the ionospheric conductance can
result in the instability of such system (Pokhotelov et al.,
2001; Lysak and Yoshikawa, 2006). In such situation a
TL plays an important role providing an electron acceler-
ation by anomalous E‖. The necessary coupling between
the magnetosphere and ionosphere for the feedback insta-
bility is performed by small-scale Alfven waves. How-
ever, the occurrence of TL providing an additional wave
absorption and damping at small transverse sales (namely,
at L⊥ ≤ λA) can decouple the magnetospheric disturbances
from the ionosphere. This effect, though it can influence
significantly the development of feedback instability, has
not been taken into account yet in the auroral physics.
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