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The Total Electron Content (TEC) is predicted by fuzzy inference systems for various station-satellite pairs.
GPS data from the GRAZ, HFLK, LINZ, MOPI and UZHL permanent stations are processed in order to obtain
the vertical total electron content (VTEC) using differenced carrier-smoothed code observations. The quality
of the VTEC prediction was studied on 9 and 11 September 2005 (DOY 252 and 254). The predictions were
computed for 5, 10 and 15 min intervals. The mean accuracies of predictions are about 0.1, 0.2 and 0.3 TECU for
these time intervals. More than 98% of the VTEC is successfully recovered with the proposed prediction method.
Key words: GPS, ionosphere, VTEC, prediction.

1. Introduction
Determining the Total Electron Content (TEC) from

dual-frequency GPS observations has become an important
application of GPS. The measured TEC along the signal
path, also known as slant TEC, is converted to the verti-
cal TEC (VTEC) using mapping functions. The slant TEC
is estimated using the geometry-free linear combination by
simply differencing the carrier-phase smoothed L1 and L2

code observations. The differential code biases (DCB) for
the receivers and satellites must also be taken into account
when estimating the TEC (Sardon and Zarraoa, 1997; Ride-
out and Coster, 2006). These mapping functions often as-
sume that the electrons are concentrated in a shell of in-
finitesimal thickness. Such a single layer model is used in
this study (Dach et al., 2007).

There are variety of error sources which affect the esti-
mation of VTEC. For example, Rideout and Coster (2006)
extensively discussed mapping function errors, Ciraolo et
al. (2007) have studied the effects of the multipath on
carrier-phase smoothed code observations using co-located
receivers and intra-daily DCB variations for a zero-baseline
experiment using single difference observations.

Predicting the TEC has also received much attention. For
example, Liu and Gao (2004) estimated model parameters
and a geometry matrix which describes the dependency of
the data on those model parameters that are used for the
TEC prediction. Liu et al. (2005) applied autocorrelation
method for short-term forecasting of ionospheric character-
istics. Oyeyemi et al. (2006) used neural network technique
in order to estimate hourly daily ( fo F2) ionospheric param-
eters using long term data for near real-time predictions.
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In this study, we use the adaptive network-based fuzzy
inference system (ANFIS) prediction method developed by
Jang (1993). It uses a supervised learning algorithm to
optimize parameters of the fuzzy inference system. The
focus is on the efficiency of the proposed method for VTEC
prediction.

2. Modeling of the Total Electron Content (TEC)
The carrier-smoothed code observations can be written

as
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The symbol ρi
k is the geometric distance between the satel-

lite and the receiver, c is the speed of light in a vacuum, δk

is the receiver clock error, δi is the satellite clock error, I i
1k

is the ionospheric phase delay, T i
k is the tropospheric delay,

f1 and f2 are the carrier frequencies, and ei
1,k and ei

2,k rep-
resent the remaining measurement noise and multipath for
pseudoranges on L1 and L2.

When smoothing the codes it is necessary to analyze and
correct the code and phase observations for outliers and
cycle slips. This data screening were performed by the
Bernese GPS software 5.0. The details of these procedure
can be found in Dach et al. (2007).

Differencing (2) and (1) gives

P̃4 = +α
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)
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The symbol α is 40.3 · 1016 m s−2 TECU−1, Ev is the ver-
tical TEC, �bi is the differential code bias of the satellite
i , �bk is the DCB of the receiver k, FI (z) is the mapping
function in the single layer model. TEC is represented by
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Fig. 1. Architecture of the prediction model.

TEC unit (TECU) where one TECU is equal to 1016 el/m2.
Single layer model (SLM) approach can be used in model-
ing of TEC. In this model, FI (z) is used to convert the slant
TEC(E) to VTEC as follows:

FI (z) = E

Ev
= 1

cos z′ (3a)

and

sin z′ = R

R + H
sin z (3b)

In these equations, z and z′ are the zenith distances at the
height of the station and the single layer, R is the radius
of the earth, H is the height of the single layer (Wild,
1994). The height of the ionospheric pierce point at single
layer selected as 400 km. The satellite DCB values were
obtained from the CODE DCB data archive. Daily DCB
values for the receivers were estimated by geometry-free
linear combination using the Bernese GPS software.

3. Prediction Methodology
Given a time series X = {VTEC(t), t = 1, ..., n}, where

VTEC(t) is a value at discrete time t and n is the number of
data points in the time series, we wish to predict the value
VTEC(t + 1) at time t + 1. The strategy consists of three
main steps (Fig. 1).

The first step involves data transformation computing an
equivalent volatility index (Popoola et al., 2004),

r(t) = log

(
VTEC(t + 1)

VTEC(t)

)
(4)

Volatility is a measure of the abrupt local changes in the
time series. This transformation is carried out for VTEC
time series. The benefit of using the volatility time series
instead of the estimated TEC data is that it reduces adverse
effects of possible linear trends on the predictions, since
either fuzzy systems or neural networks do not provide
precise predictions for the data that are not within the range
of training data sets. Therefore, we use volatility series
as training data instead of original VTEC data in order to
overcome this problem.

In the second step, the fuzzy logic prediction model is set
up using the volatility series. This step includes the genera-
tion of the training patterns for the FIS and the estimation of
the FIS parameters via a training procedure. For this study,

the training pattern has been composed as follows:

{r(t − 3), r(t − 2), r(t − 1)} → r(t)
↓ ↓

input vector output
(5)

It follows that the FIS used for prediction has three input
variables and one output variable, i.e., the previous three
elements in the volatility time series are used to predict
the next element. Each input variable is represented by a
fuzzy membership function (MF), which can be of triangu-
lar, trapezoid, or gaussian form. In this study, the Gaussian
MF is used to represent the input variables. The output vari-
able is represented by MFs which are linear functions of the
input variables of the Takagi-Sugeno type FIS (Takagi and
Sugeno, 1985). The Takagi-Sugeno type FIS is preferred
because it can be trained without much effort.

The parameters of input and output MFs make up the set
of parameter of FIS. Using the given training data, the FIS
parameters are updated by an iterative least-squares estima-
tion and back-propagation using gradient descent algorithm
that minimizes the sum of the squares of the differences
between the estimated VTEC and the model (predicted by
FIS) output. For the detailed description of the training pro-
cedure, the reader is referred to Jang (1993) and Akyilmaz
and Kutterer (2004).

In the third step, the output volatility predicted by the
FIS must be converted for comparison with the original data
using

VTEC(t + 1) = exp(r(t)) · VTEC(t) (6)

For the subsequent predictions, e.g., VTEC(t + 2), the pre-
dicted values (VTEC(t + 1), r(t)) become part of the input
to the FIS.

For the quality assesment of the prediction, the RMS
error and the relative error (RE) are computed as follows:

RMS =
√(

VTECp
i − VTECo

i

)2

N − 1
(7)

RE = 1

N

N∑
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i |
VTECo

i

× 100% (8)

where VTECp
i and VTECo

i are the predicted and estimated
values, respectively, for the i th element in the VTEC series,
and N is the total number of the predicted elements in the
time series.
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Fig. 2. Locations of permanent GPS stations.

Table 1. RMS of code and carrier-smoothed code multipath.

Station
RMS of code multipath (m) RMS of smoothed-code multipath (m)

DOY 252 DOY 254 DOY 252 DOY 254

MP1 MP2 MP1 MP2 MP1 MP2 MP1 MP2

GRAZ 0.41 0.44 0.40 0.45 0.04 0.05 0.04 0.06

HFLK 0.28 0.33 0.27 0.32 0.06 0.08 0.04 0.05

LINZ 0.37 0.48 0.36 0.48 0.04 0.05 0.05 0.06

MOPI 0.30 0.88 0.29 0.88 0.06 0.08 0.06 0.07

UZHL 0.63 1.65 0.61 1.68 0.05 0.07 0.07 0.09

4. Numerical Example
In this section, we apply the proposed prediction method

to predict the VTEC. In the first step, the VTECs were
estimated epoch by epoch per satellite-station pair using (3)
at five stations located in a mid-latitude region.

Figure 2 shows the geographic location of the stations.
The data was obtained from the Scripps Orbit and Perma-
nent Array Center (SOPAC) web site maintained by Univer-
sity of California, San Diego. We use a 24-hour data set in
the RINEX format for DOY 252 and 254, a 30-s sampling
rate and a 15◦ elevation mask.

There is a correlation between solar events and changes
in the ionosphere. Significant energy input source to the
ionosphere is solar wind/radiation. A proxy on solar ener-
getics can be derived from F10.7 cm solar flux values and
sunspot numbers. The 10.7 cm solar flux is given in solar
flux unit (an sfu = 10−22 m−2 Hz−1). For this study, solar
flux readings are obtained at 17:00, 20:00 and 23:00 UT on
DOY 252 and DOY 254 from Dominion Radio Astrophysi-
cal Observatory in Pentiction (DRAO). The official reading
was taken as 99.2 sfu at 17:00 UT on DOY 252 because the
other values are extremely high. The solar flux reading was
109.7 sfu at 20:00 UT (local noon) on DOY 254. 10.7 cm
solar flux average is 110 sfu on September, 2005 (DRAO,
2008). The solar flux values are around the monthly mean.
The international sunspot numbers are 28 for DOY 252 and
34 for DOY 254, respectively (NGDC, 2008).

Since the quality of the observations is very important for
data analysis, we used UNAVCO’s quality check program

to check the code multipath before and after smoothing of
code observations (Estey and Meertens, 1999). Table 1
shows the RMS values. The multipath RMS values for each
satellite are computed and converted to the mean RMS at
each station for both P codes. The threshold values for mean
RMS for the P1 code multipath is 50 cm (denoted as MP1)
and 65 cm for P2 multipath (denoted as MP2). We note that
the multipath is almost the same for consecutive days due
to repeating satellite geometry. The RMS of the smoothed
codes is small as a result of the carrier phase smoothing.

There are variety of techniques to estimate DCBs. For
the scope of the study, we assume that the receiver DCBs
are constant in a selected time period for VTEC estimation.
Estimated VTEC values were used in training steps. Ta-
ble 2 shows daily variation of estimated DCBs for receivers
with their RMS values. DCBs were estimated with the re-
gional ionospheric model at the same processing run us-
ing the geometry-free linear combination equation. DCBs
are assumed constant within a day. 1 ns error is equal to
1.875 TECU or 30 cm of delay for L1. For comparison pur-
poses, the daily DCB values for some of the receivers can be
obtained from ftp://ftp.unibe.ch/ aiub/BSWUSER50/ORB/.
As it can be seen from Table 2, the difference of the CODE
solution and estimated DCB are between 1–1.5 ns at GRAZ
and HFLK stations. This discrepancies are depended on the
selected parameters in the software panel and the number of
the stations used for estimation.

The PRNs 6, 8, 9, 23, 27, 28 and 30 were selected on
September 9 and 11, 2005 (DOY 252 and 254). The volatil-
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Table 2. DCBs and corresponding RMS values at selected stations on DOY 252 and 254 [ns].

Station
DOY 252 DOY 254

Estimated DCB RMS CODE DCB RMS Estimated DCB RMS CODE DCB RMS
GRAZ 21.324 0.041 22.410 0.029 20.787 0.041 22.281 0.034
HFLK 20.092 0.041 21.261 0.029 19.380 0.041 20.881 0.034
LINZ 18.967 0.041 — — 18.540 0.041 — —
MOPI −12.670 0.041 — — −12.765 0.041 — —
UZHL 2.786 0.041 — — 2.524 0.041 — —

Table 3. RMS error statistics for 5, 10 and 15 min VTEC predictions at each station.

Interval
RMS (TECU) Mean relative error (%)

5 min 10 min 15 min 5 min 10 min 15 min
DOY 252 254 252 254 252 254 252 254 252 254 252 254

Station

GRAZ 0.15 0.15 0.23 0.20 0.31 0.32 1.5 1.6 2.4 2.4 2.7 2.8
HFLK 0.08 0.13 0.14 0.22 0.24 0.32 1.0 1.5 1.4 1.8 1.8 2.1
LINZ 0.07 0.08 0.14 0.17 0.20 0.31 0.9 1.3 1.3 1.4 1.7 1.9
MOPI 0.07 0.08 0.13 0.15 0.18 0.21 0.9 1.0 1.4 1.5 1.7 1.8
UZHL 0.14 0.11 0.21 0.19 0.30 0.27 1.7 1.6 2.1 1.9 2.3 2.2
Mean 0.10 0.11 0.17 0.19 0.25 0.29 1.2 1.4 1.7 1.8 2.0 2.2

ity series of VTEC were computed for each satellite-station
pair by (4). Then the training data was composed by us-
ing first 19 epochs of volatility series of VTEC which gives
the best FIS parameters in each satellite arc according to
the systematic given in (5). This equation shows the train-
ing pattern, not the training data. Training pattern indicates
how the training data matrix is composed. In this study,
19 epochs of volatility (computed from the first 20 epochs
of VTEC data) training data is found to be sufficient for a
high-quality prediction. After the training pattern has been
determined, each input variable is represented by two MFs
of Gaussian type while the output MFs are linear functions
of the input variables. An example of an FIS with two fuzzy
rules are in the following form.

Rule 1 : If x is A1 and y is B1; then f1 = p1x + q1 y + r1.

Rule 2: If x is A2 and y is B2; then f2 = p2x + q2 y + r2.

The parameters of the input fuzzy sets (membership func-
tions) Ai , B j (i = 1, 2; j = 1, 2) are called the premise pa-
rameters whereas the parameters of output functions fi (i =
1, 2), i.e., pi , qi and ri are called consequent parameters.
In this study, the input membership function μAi (x) is cho-
sen to be the Gaussian function (Eq. (9)) with the maximum
value equal to 1 and the minimum value equal to 0,

μAi (x) = exp

[
−

(
x − ci

ai

)2
]

(9)

where {ai , ci } is the parameter set. As the values of these
parameters change, the shape of the MFs vary accordingly.

The composed FIS was trained in the last stage of the
process. The training procedure takes less than a second
for the selected training patterns using a Pentium III PC.
ANFIS editor of MATLAB v 6.5 is just used for the train-
ing. In addition, a software was developed as m-functions
in order to make computations in MATLAB v 6.5 for pre-
dictions. The FIS parameters are available after the training
step. Further predictions of the VTEC in the time series can

(a)

(b)

Fig. 3. Estimated and predicted VTEC for PRN 9 (top), prediction error
(bottom) at GRAZ station on (a) DOY 252 (RMS = 0.025 TECU, RE
= 0.16%) (b) DOY 254 (RMS = 0.018 TECU, RE = 0.13%).

be made using this parameter set. Consecutive predictions
are computed using the predicted values as input. Recall
that the output of the FIS are the volatilities. Therefore, the
predicted VTEC is calculated by (6).
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(a)

(b)

Fig. 4. Estimated and predicted VTEC for PRN 9 (top), prediction error
(bottom) at HFLK station on (a) DOY 252 (RMS = 0.020 TECU, RE
= 0.14%) (b) DOY 254 (RMS = 0.021 TECU, RE = 0.16%).

The training patterns and the FIS parameters are kept
fixed afterwards for 5, 10 and 15 min predictions. We
make predictions at every 30 s successively following the
training data. However, we use the predicted value of the 5,
10 and 15th min data point in order to evaluate accuracy
information using (7) and (8). Predictions start at 10.5
min (following the data used for training) and after the
15th min prediction is achieved the starting point is shifted
along the time axis by one epoch (30 s) for successive
predictions, i.e., the next prediction starts at 11th min until
25.5th min. About 200 predictions were made starting from
the randomly chosen data points at each station-satellite pair
of VTEC time series.

In order to show statistics of VTEC predictions, the RMS
errors and the mean relative errors of the VTEC for all ob-
served satellites in each station are summarized in Table 3.
The mean RMS values for 5, 10 and 15 min predictions ob-
tained from the five stations are given in the last row. In this
table, the VTEC prediction errors at all the stations for 5,
10 and 15 min prediction intervals are less than 0.12, 0.20
and 0.30 TECU for DOY 252 and 254, respectively. The
prediction RMS errors have very similar behaviour for the
same stations for the selected prediction intervals. As it is
expected, the short-term predictions have been found to be
more accurate than the long-term predictions. This is be-

(a)

(b)

Fig. 5. Estimated and predicted VTEC (top), prediction error (bottom)
at UZHL station for (a) PRN 30 and DOY 252 (RMS = 0.043 TECU,
RE = 0.31%) (b) PRN 23 and DOY 254 (RMS = 0.045 TECU, RE =
0.61%).

cause the predicted values were used as inputs for further
predictions and hence the error propagation decreased the
prediction quality.

For 5 min prediction intervals, the mean RE has been
found to be 1.2% and 1.4% which means that 98.8% and
98.6% of the VTEC was successfully recovered by the pre-
diction technique for DOY 252 and 254, respectively. In
addition, the mean RE for 10 min intervals are at the level
of 1.7% and 1.8%, and for 15 min intervals are about 2.0%
and 2.2% on two succesive days.

In addition to the given statistics in Table 3, Figs. 3–5
are given as the selected examples of the FIS prediction
from the analyzed VTEC arc to visualize the prediction
procedure. Each figure represents the estimated and the
predicted VTEC values on top and the respective prediction
errors in bottom frames. The X -axis shows the Universal
Time (UT) while the Y -axis represents the VTEC values in
TECU for the selected satellite-station pair.

Note that for each sample, the prediction error increases
with time. For example, in Fig. 5(b) the amplitude of the
prediction error at 7:50 UT is almost three times larger than
the one at 4:38 UT. This is mainly due to the FIS predictor,
because the volatility index computed from 7:50 UT are not
covered by the volatility values in the training data set. This
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situation can be regarded as one of the weakness of the pro-
posed method. The input data range is an important param-
eter in FIS predictions. However, the mentioned method
gave reasonable predictions in the scope of the study. All
the statistics in Table 3 are very consistent within the se-
lected prediction intervals. This case can be related to the
similarity of the ionospheric variations in the local area, es-
pecially in the mid-latitude region. For example, the TEC
values for PRN 9 at GRAZ (Fig. 3(a)) and HFLK (Fig. 4(a))
are about 10 TECU at 13:55 UT for DOY 252. The differ-
ences between the estimated and predicted TEC in Fig. 5(a)
are more disturbed with respect to the other time series of
TEC which was given in the figures. This can be related
with the periodic variation in VTEC in the given time pe-
riod.

5. Conclusions
The vertical TEC is predicted that allows real-time GPS

applications without concerns about latency, using Takagi-
Sugeno type fuzzy inference systems. The input parameter
for the prediction is VTEC, which can be easily computed
from carrier smoothed-code observations. A mean relative
prediction error of about 2% shows the efficiency of the pro-
posed prediction method. The mean RMS errors for 5, 10
and 15 min intervals are about 0.1, 0.2 and 0.3 TECU for
the selected days, respectively. When the prediction time is
increased by a factor of two or three, the RMS values also
increases by two or three. This demonstrates a linear rela-
tion between prediction times and RMS, which is normal
due to the nature of fuzzy prediction methods. Therefore,
the RMS error increases linearly by the prediction time. The
mean RMS errors from different stations are almost identi-
cal. This result is expected because the ionospheric changes
in a local area have similar behaviour.

It is important to select the prediction time interval care-
fully because the prediction error increases with prediction
range. Positioning in real-time, including single-frequency
applications, can be supported up to 15 min with sufficient
accuracy using predicted VTEC with the methodology dis-
cussed.
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