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Paleointensity data from Early Cretaceous Ponta Grossa dikes (Brazil)
using a multisample method
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Definition of the long-term variation of the geomagnetic virtual dipole moment requires more reliable paleoin-
tensity results. Here, we applied a multisample protocol to the study of the 130.5 Ma Ponta Grossa basaltic dikes
(southern Brazil) that carry a very stable dual-polarity magnetic component. The magnetic stability of the sam-
ples was checked using thermomagnetic curves and by monitoring the magnetic susceptibility evolution through
the paleointensity experiments. Twelve sites containing the least alterable samples were chosen for the paleoin-
tensity measurements. Although these rocks failed stepwise double-heating experiments, they yielded coherent
results in the multisample method for all sites but one. The coherent sites show low to moderate field intensities
between 5.7+0.2 and 26.4+0.7 uT (average 13.4+£1.9 uT). Virtual dipole moments for these sites range from
1.340.04 t0 6.0 & 0.2 x 10*2 A m? (average 2.9 & 0.5 x 10?> A m?). Our results agree with the tendency for low
dipole moments during the Early Cretaceous, immediately prior to the Cretaceous Normal Superchron (CNS).
The available paleointensity database shows a strong variability of the field between 80 and 160 Ma. There seems
to be no firm evidence for a Mesozoic Dipole Low, but a long-term tendency does emerge from the data with the
highest dipole moments occurring at the middle of the CNS.
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1. Introduction

Almost two decades ago, Michel Prévot and colleagues
pointed to the existence of a long-lasting Mesozoic Dipole
Low (MDL) during which the average strength of Earth’s
magnetic dipole was about one third that of the present-
day field (Prévot et al., 1990). Although interest in pale-
ointensity has been increasing in recent years, the existence
of this MDL and other primary features of the long-term
virtual dipole moment variation are still a matter of debate
(e.g., Selkin and Tauxe, 2000; Goguitchaichvili et al., 2002;
Heller et al., 2002; Biggin and Thomas, 2003; Tauxe, 2006;
Tarduno et al., 2006).

Conflicting interpretations of currently available paleoin-
tensity data arise in part from the very limited number of en-
tries in the paleointensity database (see Perrin and Schnepp,
2004). Classical double-heating techniques, known as the
Thellier-Thellier method (Thellier and Thellier, 1959), in-
volve stepwise heatings with alternate in-field and zero-field
measurements as well as intermediate checking-steps to ac-
cess the degree of alteration and the domain-structure of
magnetic carriers (e.g., Coe et al., 1978; Riisager and Ri-
isager, 2001; Tauxe and Staudigel, 2004). The Thellier-
Thellier method is very time-consuming and can be ap-
plied only to a limited number of targets. Suitable samples
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must have a thermoremanent magnetization, acquired dur-
ing rapid cooling and carried by single-domain magnetic
particles; alterations during the several laboratory heating
steps should also be negligible (e.g., Coe et al., 1978).
One way to circumvent the difficulties associated with this
method is to look for specific targets that enclose single-
domain magnetite grains and are less affected by thermo-
chemical alteration, such as basaltic glasses (Tauxe, 2006)
or single silicate crystals (Tarduno et al., 2006). An alter-
native approach is the use of multisample protocols (e.g.,
Hoffman and Biggin, 2005; Dekkers and Bonhel, 2006)
that require significantly fewer heatings per sample than the
stepwise double-heating techniques and, therefore, can be
successfully applied to a broader class of targets.

We have applied a multisample protocol to recover the
paleofield at 130.5 Ma from the Ponta Grossa basaltic
dikes. Although these basaltic rocks failed stepwise double-
heating experiments, they yielded coherent results for most
of the analyzed sites when the multisample method was
used. Based on our results, together with data from liter-
ature, we discuss the evolution of the Earth’s field strength
in the Late Mesozoic.

2. Geological Setting and Previous Studies

The Parana-Etendeka Magmatic Province (PEMP) is one
of the largest known continental flood volcanic province
(Fig. 1). It comprises about 1.5 x 10° km® of volcanic
and subvolcanic rocks, with the majority being tholeiitic
basalts and andesites with subordinate rhyolites and rhyo-
dacites, which cover an area of around 1.2 x 10° km?2. This
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Schematic geological map of the Parand basin (left) and the Ponta Grossa Arch (right) indicating the paleomagnetic sites used in this study

(modified from Raposo and Ernesto, 1995). Sites with reliable paleointensity estimates are underlined.

province is located in Brazil (mainly), Argentina, Paraguay,
and Uruguay, but also extends to Africa. The PEMP mag-
matism occurred between 133 and 130 Ma (Renne et al.,
1992, 1996). The tholeiitic basalt flows of the Serra Geral
Formation represent the main pulse of the PEMP event,
starting at 133£1 Ma and lasting less than one million
years (Renne et al., 1992). Fissural magmatism that crop
outs around the basaltic traps at the present time is slightly
younger, and comprises basaltic and andesitic dikes. Ages
vary from 129 to 131 for the Ponta Grossa dikes (peak
130.5 Ma) (Renne et al., 1996) and range from 119 Ma to
128 Ma in the Florianopolis dikes (Raposo et al., 1998).

Paleomagnetic studies were performed by several authors
on Serra Geral volcanics and the dikes of Ponta Grossa and
Florianopolis (e.g., Ernesto et al., 1990, 1999; Raposo and
Ernesto, 1995; Raposo et al., 1998; Alva-Valdivia et al.,
2003). All of these studies revealed very stable two-polarity
characteristic magnetic components carried by titanomag-
netite. Only two paleointensity studies have been reported
for the Serra Geral volcanics (Kosterov et al., 1998; Gogu-
ichaitchvili et al., 2002). In both of these, double-heating
techniques were used on samples from two different regions
of the Parand basin. Kosterov et al. (1998) obtained pale-
ointensities between 20.8 and 37.7 uT (virtual dipole mo-
ment (VDM) 4.7-7.9 x 10?* A m?), with a low success rate
of 9% probably caused by a strong alteration during heat-
ing experiments. Goguichaitchvili ez al. (2002) obtained a
much better success rate of 44% and obtained paleointen-
sity values with a large dispersion varying from 19.4 up to
46.7 uT (VDM 4.0-10.5 x 10*2 A m?).

Paleomagnetic results for the Ponta Grossa dikes resulted
in an average direction of Dec = 351.7° and Inc = —42.7°,
which was obtained for both normal and reverse polarities
(all rotated to the normal polarity). This direction corre-
sponds to a paleomagnetic pole at 30.3°E, 82.4°S (N =
115, Ags = 2.0°, K = 43.8) (Raposo and Ernesto, 1995).
The characteristic component was isolated after heating
steps of 200°C to 450°C from stepwise thermal treatment.
Titanomagnetite grains are usually well-preserved, with
no evident sign of low-temperature oxidation in polished
sections. Some samples, however, show non-reversible
thermomagnetic curves that suggest some degree of alter-
ation. The samples used in our study come from left-over
hand-samples of Raposo and Ernesto’s (1995) work. We
have chosen sites with normal and reverse components and
avoided sites with intermediate directions. For each site, all
analyzed samples were cut from the same hand-sample.

3. Thermal Stability

Magnetic mineralogy and thermal stability were checked
using thermomagnetic curves and by monitoring the mag-
netic susceptibility of samples before and after heating in
a paleomagnetic oven. Measurements of magnetic suscep-
tibility were performed in a KLY4-CS3 Kappabridge sus-
ceptometer (Agico Ltd.). Initially, a group of 68 samples
(26 sites) was submitted to in-air heating up to 600°C in
a paleomagnetic oven. Their magnetic susceptibility was
measured before and after heating and found to vary from
0.8 to 152%. Only 24 samples, representing 19 sites, pre-
sented less than 10% variation. Samples from these 19
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Fig. 2. Thermomagnetic curves for samples from all sites analyzed by the multisample paleointensity protocol.

sites were then selected for the analysis of thermomag-
netic curves (Fig. 2). Thermomagnetic curves for all sam-
ples show a strong decay in magnetic susceptibility between
500°C and 580°C, indicating that the main magnetic carrier
in the basaltic dikes is magnetite with a low titanium con-
tent. These results are comparable to those obtained by Ra-
poso and Ernesto (1995) from curves of saturation magne-
tization against temperature. For most of the samples, how-
ever, the thermomagnetic curves are non-reversible, even
though their magnetic susceptibilities before and after heat-
ing are similar (Fig. 2). This behavior attests to the low
thermochemical stability of the Ponta Grossa samples.

4. Stepwise Double-heating Paleointensity

From the 19 sites selected on the basis of thermomagnetic
experiments, we selected four for classical stepwise double-
heating experiments (Thellier-Thellier method). Paleoin-
tensity measurements were performed using the Aitken et
al. (1988) protocol with in-field preceding zero-field heat-
ings. Repeatability was assessed by means of pTRM checks
performed between two double-heating steps. For the pale-
ointensity measurements, we used reduced cylindrical spec-
imens of 0.65 cm®. Remanent magnetization was measured
with a JR-6A (Agico Ltd.) magnetometer. Heating cycles
of 40 min were applied in a modified MMTD-60 (Magnetic
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Fig. 3. Arai plots of selected samples from four sites. All samples show a strong scatter in double-heating results and failure of pTRM checks.

Measurements Ltd.) paleomagnetic oven, which includes
a water-cooling system that guarantees a good temperature
homogeneity in the heating chamber. Temperature and in-
ducing field gradients were measured inside the chamber,
and only the zone with more homogeneous temperature and
field was used. In addition, samples were always located
at the same position at all heating steps. During the ex-
periments, all instruments and specimens were housed in
a magnetically shielded room with an internal field below
1 uT.

The four sites investigated were found to show very scat-
tered Arai plots, with failed pTRM checks (Fig. 3). Conse-
quently, no information on the ancient magnetic field inten-
sity could be gathered from these measurements. Given the
failure of the pTRM checks and the non-reversible character
of the thermomagnetic curves obtained on sister samples,
we attribute this behavior to significant thermochemical al-
teration during the paleointensity experiments.

5. Multisample Paleointensity

Multisample paleointensity methods were developed by
a number of researchers in an attempt to reduce measure-
ment time while also reducing thermochemical alteration
due to their very limited number of heatings per sample
(Hoffman et al., 1989; Hoffman and Biggin, 2005; Dekkers
and Bohnel, 2006). Multisample methods are based on the
same principle of the Thellier-Thellier method to recover
the ancient field, i.e. the fact that the acquired thermorema-
nence is linearly related to the inducing field (valid for low
magnetic fields, in the range of the Earth’s field). In prac-
tice, the multisample methods rely on the natural variations
in magnetic properties at the scale of a paleomagnetic site

to derive the linear relation between natural and artificial re-
manences. These may be determined by varying the peak
temperature of heatings (e.g., Hoffman et al., 1989; Hoff-
man and Biggin, 2005) or by varying the inducing (labora-
tory) fields (e.g., Dekkers and Bohnel, 2006).

We used a multisample protocol in which different in-
ducing fields were applied to several specimens of the same
site, with only one in-field heating. This approach yields
reliable paleointensity estimates regardless of the domain
state of the magnetic carriers (Dekkers and Bohnel, 2006).
We investigated only the 19 sites selected after thermomag-
netic measurements.

We initially performed classical paleomagnetic demag-
netization to derive the unblocking temperatures for the sec-
ondary component (Ts.) and the characteristic remanence
(Tch). One pilot sample per site was submitted to step-
wise thermal demagnetization along 13 heating steps up to
580°C (Fig. 4). Demagnetization patterns for all samples
but two revealed a very stable magnetization. The charac-
teristic component (ChRM) was isolated after elimination
of a secondary component (SecRM) at temperatures vary-
ing from 150°C up to 550°C. The two samples with erratic
behavior (Fig. 4(a, b)) and other five samples with very
high-temperature secondary components were discarded.
Multisample paleointensity measurements were then per-
formed on the remaining 12 sites.

Multisample paleointensity estimates were performed for
seven samples from each site using three heating steps: (1)
a zero-field heating up to Ty, (2) an in-field heating up
to Teh, and (3) a zero-field heating up to Ty.. The rema-
nence obtained after heating step (1) is the ChRM, and the
remanence obtained after heating step (3) is the laboratory-
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Fig. 4. Thermal demagnetization of six representative samples represented by intensity decay and orthogonal diagrams (in specimen coordinates). The
characteristic component (ChRM) for each sample is indicated in the orthogonal diagrams by a thick grey line. The unblocking temperature of the
secondary component is also indicated.
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Table 1. Multisample paleointensity results.

VDM (10?2 A m?)

Site Lat (°) Lon (°) Dec (°) Inc (°) Aogs(°) H (uT) OH OVDM
DY-73 —24.03 —50.47 349.4 —37.8 2.6 14.9 0.6 33 0.12
DY-78 —24.00 —50.49 344.6 —36.3 4.8 5.7 0.2 1.3 0.04
DY-88 —23.95 —50.54 353.8 —42.7 1.8 20.1 0.6 4.2 0.13
DY-91 —23.94 —50.56 59 —314 2.3 15.8 0.3 3.7 0.07
DY-99 —23.86 —50.62 350.5 -29.1 2.8 11.6 0.3 2.7 0.08
DY-106 —23.83 —50.62 3522 —334 4.6 26.4 0.7 6.0 0.17
DY-108 —23.80 —50.70 339.2 —28.0 8.1 14.7 0.7 35 0.17
DY-205 —24.56 —50.50 161.9 45.4 1.8 15.1 0.5 3.1 0.10
DY-268 —25.19 —48.81 354.4 —58.0 39 11.0 0.6 1.9 0.10
DY-269 —25.22 —48.87 171.2 45.0 4.5 6.7 0.9 1.4 0.18
DY-288 —25.09 —49.46 180.4 37.3 1.9 6.0 0.3 1.3 0.06
Mean 13.4 1.9 29 0.4
DY-96 —23.88 —50.62 102 —26.5 5 415 16 99 4

Lat: latitude,

Lon: longitude, Dec: declination of characteristic component, Inc: inclination of characteristic component, Ags: confidence angle

from Fisherian statistics, H and oy: paleofield and error, VDM and oypwm: virtual dipole moment and error. Site DY-96 was not included in the

mean.
Table 2. Alteration parameters for samples S10—S70 (number corresponds to the inducing field in pT).
Site Ak (%) PTRM check (%)
S10 S20 S30 S40 S50 S60 S70 S10 S70
DY-73 -9 —12 —14 —11 —14 —15 —12 -6 -6
DY-78 —12 —10 —11 —11 —11 —19 -9 13 7
DY-88 —15 —15 —14 —14 —11 —13 —28 0 —11
DY-91 -21 -27 -20 —13 —34 -32 -30 25 17
DY-96 -9 —-30 -2 —16 25 —16 0 —60 —40
DY-99 —12 -5 —15 —6 —18 -5 -8 —16 -6
DY-106 —1 7 -2 1 -1 -2 -2 —15 -6
DY-108 24 22 19 20 19 19 20 -9 -5
DY-205 6 3 25 14 2 2 -1 7 3
DY-268 -25 4 —26 —-25 —25 —26 —25 8 2
DY-269 —15 —14 —13 —11 —12 —14 —15 2 —13
DY-288 -2 —-10 2 -8 —4 -9 —10 4 -1

Ak (%): susceptibility variation before and after paleointensity measurements; %: pTRM check parameter for samples S10 and S70.

induced pTRM. Each sample was magnetized with a differ-
ent laboratory inducing field (Hy,, values: 10, 20, 30, 40,
50, 60, and 70 uT). Paleointensity values were calculated
using an Arai-like plot (Fig. 5). In this diagram, we plot
the product of the ChRM and Hj,, for each sample against
the corresponding pTRM. Since ChRM. H),, = pTRM.H,,
the ancient field (H,) can be easily obtained from the slope
of the line. To obtain this slope, we used the same least-
square fitting routines used in classical double-heating pro-
tocols (e.g., York, 1966). Uncertainties correspond to the
error on the best fit line. Note that each point in the Arai-
like plot corresponds to an individual estimate of paleoin-
tensity; their alignment in a given site attests to within-site
coherence of paleointensity estimates.

The paleointensity results are shown in Fig. 5 and Ta-
ble 1. For all sites, the seven analyzed samples present
a very good alignment in the Arai-like plots, indicating a
strong coherence of paleointensity estimates within each
site. For 11 sites, the paleointensity estimates vary between
5.740.2 and 26.4£0.7 uT. Site DY-96 presented an anoma-
lously (and implausibly) high value of 4154+16 uT. It is
interesting to note that the paleointensities obtained from
the characteristic magnetization are similar to the apparent

paleointensities calculated from the total remanence vector
(compare the alignment of squares and crosses in Fig. 5).
For most of the sites, these differences are well below 10%,
indicating that even if the secondary components were not
completely eliminated they would contribute little to the fi-
nal paleointensity estimates. Virtual dipole moments were
calculated using the inclination of the characteristic compo-
nent for each site obtained from the original paleomagnetic
study of Raposo and Ernesto (1995). These correspond to
VDM values of 1.340.04 to 6.0 + 0.2 x 10%2 A m? (aver-
age of 2.9 + 0.5 x 1022 A m?) (Table 1).

The thermochemical alteration during paleointensity
measurements was monitored by magnetic susceptibility
measurements and a pTRM check (Table 2). Magnetic sus-
ceptibility was measured before heating step (1) and after
heating step (3). The percentual difference between the two
measurements is Ak (%). The pTRM check envisaged here
consists of a new in-field heating cycle in a different Hy,,
(or Hpeck) performed after the paleointensity measurement.
The aim of this test is to verify that the capacity of the
sample in recording a thermoremanence does not change
through the two heating steps. This can be quantified by
a § parameter that corresponds to the percentual difference
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between the TRM/ Hy,, ratio of the first in-field heating and
the TRM/ H,, ratio of the pTRM check:

( PTRMcheck  pTRM; )
Hiyp

H check

§ = H,,
lab pTRMl

)]

Unaltered samples would present low § values.

The values of Ak vary from —34 up to +25% and val-
ues for 6 vary from —60 up to +25% (Table 2). Site DY-
96, which gives anomalously high paleointensity values,
presents the highest variations in both parameters. At this
site, Ak varies between —30% and +25%, and § values are
—40 and —60%. The other sites that give coherent pale-
ointensity estimates show less variation in Ak values and
much smaller § values. These results suggest that these pa-
rameters can be used to assess the quality of paleointensity
determinations in multisample methods. However, both pa-
rameters have a number of drawbacks. The Ak parameter
indicates only the variation in initial and final magnetic sus-
ceptibilities. As shown in the thermomagnetic curves of
Fig. 2, samples may experience thermomagnetic alteration
albeit showing similar initial and final magnetic suscepti-
bilities. The § parameter indicates only the alteration that
occurs after the first in-field heating cycle, i.e., after the pa-
leointensity determination.

6. Discussion and Conclusion

The multisample protocol has proven to be useful for
determining paleointensities for the Ponta Grossa dikes
that were not suitable for double-heating techniques. The
within-site consistency of thermoremanence acquisition
was asserted by the analysis of mean-square fit parameters.
A pTRM check was devised to account for mineralogical
alteration during heating. Most of the sites have provided
coherent paleointensity estimates, indicating low to moder-
ate paleofields with a mean at 13.4 + 1.9 uT (VDM 2.9 +
0.5 x 10*> A m?). Samples with normal and reverse polar-
ities gave similar paleofield estimates (Table 1).

Figure 6 shows the dipole moment values from the five
Ponta Grossa dikes together with VDMs and virtual axial
dipole moments (VADMSs) from other units with ages be-
tween 80 and 167 Ma. This compilation includes only re-
sults obtained from double-heating techniques with pTRM
checks and originate from the following sources: data from
whole rock were obtained from the PINT2003 database
of Perrin and Schnepp (2004) supplemented with results
from Ruiz et al. (2006) and Granot et al. (2007); data from
oceanic basaltic glass correspond to the database of Tauxe
(2006), and data from single silicate crystals were compiled
from Tarduno et al. (2001) and Tarduno and Cottrell (2005).

The paleointensity data between 80 and 160 Ma are
sparsely distributed with very few data at the middle of
the Cretaceous Normal Superchron (CNS). Intervals of 80—
95 Ma and 115-135 Ma show the highest density of re-
sults. Within these intervals, there is a strong variability
of VDM values, but the highest dipole moments are lo-
cated within the CNS. This pattern, initially observed on
single silicate crystals (Tarduno et al., 2001), is also ob-
served on basaltic glasses. Results from whole-rock anal-
yses, however, show a stronger variability, with both high
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Fig. 6. Evolution of virtual dipole moments (VDM) or virtual axial
dipole moments (VADM) for cooling units (single-silicate crystals and
whole-rock) and individual specimens (oceanic basaltic glass) with ages
between 80 and 167 Ma. Black squares correspond to whole rock data
(Riisager et al., 2001; Perrin and Schnepp, 2004; Zhu et al., 2004a,
b, ¢; Shi et al., 2005), blue empty squares correspond to single silicate
crystals (Tarduno ez al., 2001; Tarduno and Cottrell, 2005), green empty
squares correspond to oceanic basaltic glass (Tauxe, 2006), and red
circles are our data. Reversal chart is from Gradstein et al. (2004).

and low values within the CNS. Before the CNS, the pa-
leointensity data show a strong variability for all datasets,
but average dipole moments are dominantly low. The av-
erage dipole between the end of the CNS and the middle
Jurassic is 4.7 x 10?*> A m2. All results from the upper
and middle Jurassic fall below the present-day dipole mo-
ment of 7.8 x 10?> A m?. For ages closer to the lower CNS
boundary, higher values were observed in two studies with
mean VDMs of approximately 7 x 10?2 A m? similar to
the present-day field (Goguitchaichvili et al., 2002; Ruiz
et al., 2006). However, other studies give systematically
low dipole moments. Results from volcanics from north-
east China (Zhu et al., 2003, 2004a, b) and also the data
from the Serra Geral volcanics of Kosterov et al. (1998) are
always below the present-day field with an average value of
3.6 x 102 A m?. Our results (average of 2.9 x 10*? m?)
agree with such a tendency for low dipole moments in the
Early Cretaceous, just before the CNS. In summary, there
seems to be a strong variability of the field throughout the
time-window of our analysis. At present, there is no firm
evidence for a MDL, but a long-term tendency does emerge
from the data, with highest dipole moments occurring at the
middle of the CNS.
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