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Formation of magnetite in Magnetospirillum gryphiswaldense studied with
FORC diagrams
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In order to study the formation of magnetite in magnetotactic bacteria, FORC diagrams were measured
on a set of cultured Magnetospirillum gryphiswaldense, following an assay in which the iron uptake is used
only for magnetite formation and not for cell growth. This enabled us to follow the magnetite formation
independently of growth. The FORC diagrams showed a clear evolution from a size-distribution with a majority
of superparamagnetic grains, to a distribution dominated by stable, single-domain grains, but still containing some
superparamagnetic particles. TEM observations confirm this evolution. According to the saturation isothermal
remanent magnetization cooling and warming curves, the Verwey transition can only be seen in the most mature
samples, and slightly below 120 K. This suggests that the samples may have suffered from some partial oxidation.
Key words: Magnetotactic bacteria, FORC diagrams, magnetite.

1. Introduction
Magnetotactic bacteria (MTB) orient and migrate along

the Earth magnetic field towards favorable habitats. Since
the first report of MTB by Blakemore (1975), subsequent
studies have shown that MTB are a phylogenetically and
morphologically diverse group of aquatic microorganisms
inhabiting freshwater and marine environments ranging
from microaerobic to anoxic. Hallmarks of the MTBs are
intracellular magnetosomes, which are magnetite (Fe3O4)
and occasionally greigite (Fe3S4) crystals enveloped in
a membrane structure. Magnetosomes are characterized
by narrow grain-size distributions (30–120 nm), distinct
species-specific crystal morphology, chemical purity and
arrangement in single or multiple linear chains (Devouard
et al., 1998; Bazylinski and Frankel, 2004; Thomas-Keprta
et al., 2000; Faivre et al., 2008). Magnetic properties of
magnetosomes are of great interest for a number of reasons.
For example, in environmental magnetism, fossil magne-
tosomes can significantly contribute to the magnetic prop-
erties of some sediments and soils (Petersen et al., 1986;
Chang and Kirschvink, 1989). They are also novel sources
for fundamental studies in fine-grain magnetism and mag-
netic materials (Coker et al., 2007), and in biotechnologies
(Lang et al., 2007; Matsunaga et al., 2007).
In the perspective of this special issue on the magnetism

of volcanic rocks, one of the main current interests in bio-
magnetism resides in the possible biological origin of mag-
netite crystals on the ALH84001Martian meteorite (McKay
et al., 1996; Faivre and Zuddas, 2006). It was shown
that the nanodimensional magnetite grains found in fracture
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zones of the meteorite are similar in size and shape to those
in the magnetosomes of terrestrial magnetite bacteria. From
transmission electron microscope analysis of single-crystals
extracted from the ALH84001 Martian meteorite, Thomas-
Keprta et al. (2000) concluded that about 25% of the mag-
netite crystals in the zoned carbonate are likely magnetofos-
sils mixed with 75% of inorganic magnetite. However, the
observation of magnetosomes chains, which is one prop-
erty unique to biogenic magnetite, is more difficult to put in
evidence. While Friedmann et al. (2001) claimed to have
identified magnetosome chains on scanning electron micro-
scope images, Weiss et al. (2004) showed with magnetic
measurements that only 10% of magnetite in ALH84001
could be isolated in chains. However there is still consider-
able debate about this matter (Kopp and Kirschvink, 2007).
In this paper, we study the formation of magnetite in

Magnetospirillum gryphyswaldense, using first-order rever-
sal curve (FORC) diagrams. FORC diagrams of SD parti-
cles can be interpreted as a combination of coercivity dis-
tributions (and therefore grain size distributions in the case
of a single magnetic mineral) and interaction field distribu-
tions. Therefore, they are the ideal tool for this studying the
evolution of magnetite crystals through time, as well as the
chain formation. The samples were grown using an assay
in which magnetite formation can be studied independently
from cell growth.

2. Samples and Preliminary Measurements
The growth conditions are described in details in Faivre

et al. (2007, 2008). Briefly, cells were first grown in a
low iron medium, in which formation of magnetite was re-
pressed. Then, cells were transferred to a medium in which
further growth was stopped but formation of magnetite was
enabled. At given time intervals, samples were withdrawn
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(a) 1h

(b) 1h30

(c) 3h

(d) 5h

Fig. 1. TEM images of a time-course series of M. Gryphiswaldense. The scale bar is 500 nm. Arrows point to what we have identified as magnetosomes.

Table 1. Average, minimum and maximum sizes for each of the timecourse samples. The values in brackets give the range of values.

Growth time Average size (min–max) (nm) Nearest-neighbour distance (min–max) (nm)

1 h 21.7 (8.4–43.5) 192.0 (12.2–928.5)

1.5 h 25.1 (12.4–39.7) 181.0 (19.2–801.7)

3 h 33.6 (12.4–55.6) 120.7 (9.7–822.8)

5 h 39.8 (12.8–64.8) 55.1 (5.7–546.0)

from the culture for measurements. For analysis, samples
were then centrifuged and dried in order to obtain 5 mg
whole cells samples.
High Resolution Electron Microscope (HREM) observa-

tions were performed on a JEOL 2100F microscope oper-
ating at 200 kV and equipped with a field emission gun,
a high-resolution UHR pole piece, and a Gatan GIF 2001
energy filter. A drop containing the magnetotactic bacteria
was deposited onto a carbon coated 200 mesh copper grid.
The excess of water was removed with an absorbing paper
and the remaining water was pumped in the airlock cham-
ber of the microscope. An example of images through the
course of the bacteria growing is given in Fig. 1. It shows
an evolution from bacteria without any magnetite crystal to
several chains of well-formed magnetite crystals. In this
series, the first crystals started forming at t = 1 hr.

In order to obtain the distributions of sizes and distances
between particles, we measured the grain diameter and
the edge-edge distance of nearest-neighbors for about 150
grains in several different cells from the HREM photos, for
each of the 4 different samples. According to the results
given in Table 1 and Fig. 2, and as predicted, the grain size
increases with time, and the nearest-neighbor distance de-

creases with time. The most important change occurs be-
tween t = 1 h 30 mn and t = 3 h, which is the time period
where the chains are suddenly almost completely formed.
This is in agreement with what was observed by Scheffel et
al. (2006) and Komeili et al. (2006). The presence of small
grains remaining at the extremities of the chain in the most
mature stage is consistent with electron holography obser-
vations (Dunin-Borkowski et al., 1998) and other TEM ob-
servations (Faivre et al., 2007)
We compared our results with results from the

squareness-coercivity plot (Tauxe et al., 2002). The square-
ness is defined as Mrs/Ms. We prefer this plot to the tra-
ditional Day-plot because of the difficulty in estimating the
coercivity of remanence. When compared with the mod-
eled values of Tauxe et al. (2002), our values fall close to
the cubic SD-SP mixing line (Fig. 3(a)). We also measured
ARM/SIRM ratios. ARMs were given in a 100 μT field
with a 60 mT alternating-field, and SIRMs were given in a
300 mT field. The ARM/SIRM ratio clearly increases when
the time in the growth medium increases (Fig. 3(b)), show-
ing an increasing SD population with time in the growth
medium.
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Fig. 2. Nearest-neighbor distances between the edges of the grains (left) and grain size (right) distributions for the five samples. These statistics refer
to magnetosomes contained in about 10 cells.
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Fig. 3. Left: Squareness-coercivity plot of our samples, and comparison with the theoretical predictions of Tauxe et al. (2002) for randomly oriented
populations of uniformly magnetized magnetite. Re-drawn from Tauxe et al. (2002). CSD: cubic single-domain; USD: uniaxial single-domain with
length to width ratio of 1.3 and 2. Right: ARM/SIRM as a function of the time in the growth medium. SIRM was imparted in a 0.3 T; ARM was
imparted in a 100 μT field with a 60 mT alternating-field.
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Fig. 4. FORCs (top) and FORC diagrams (bottom) of the time course series of M. gryphiswaldense after: (a) 1 h 30; (b) 3 h; (c) 5 h; (d) 8 h in the
growth medium. SF = 4 for all the FORC diagrams. FORC profiles through the maximum of coercivity (indicated by the dotted lines on the FORC
diagrams) parallel to the vertical axis for the (e) t = 5 h; (f) t = 8 h samples.

3. FORC Diagrams
FORC diagrams are constructed by measuring a large

number of partial magnetic hysteresis curves called first-
order reversal curves (FORCs) (Pike et al., 1999; Roberts et
al., 2000). Starting at positive saturation, the applied field
is decreased until a specified reversal field Hr is reached.
A FORC is the magnetization curve measured at regular
field steps from Hr back to positive saturation. The FORC
distribution is defined as the second mixed derivative:

ρ(Ha, Hb) = −∂2M(Hr, H)

∂ Hr ∂ H
, (1)

where M(Hr, H) is the magnetization measured at H on
the FORC with reversal field Hr. The FORC distribution
is then plotted on the coordinates Hc = (Hb − Ha)/2 and
Hu = (Hb + Ha)/2. A more complete explanation of
the measurement and construction of FORC diagrams is
given by Muxworthy and Roberts (2006). The interpreta-
tive framework of FORC diagrams are detailed in Pike et
al. (1999) and Roberts et al. (2000). It has been confirmed
based on measurements on well characterized natural and
synthetic samples as well as micromagnetic modeling (Car-
vallo et al., 2003; Muxworthy and Williams, 2005).
In the case of ideal SD grain assemblages, under the as-

sumption that Hc and Hu are fixed for each grain but differ-

ent from grain to grain, the FORC function is equivalent to a
Preisach function (Preisach, 1935) and according to Néel’s
interpretation (Néel, 1954), the distribution along the Hc

axis is equivalent to the distribution of particle microcoer-
civities, and a cross-section through the peak of the FORC
distribution parallel to the Hi axis left of the central peak
is equivalent to the distribution of magnetostatic interaction
fields. More generally, the accurate representation of the
coercivity distribution of SD particles is the marginal dis-
tribution (Egli, 2006; Winklhofer and Zimanyi, 2006). A
recent study by Chen et al. (2007) on intact and disrupted
chains of magnetite magnetosomes with various levels of
dipolar inter-particle and inter-chain interactions efficiently
predicted packing fraction and dipolar interaction distribu-
tion from FORC diagrams.
All these previous studies have showed the following pat-

terns on FORC diagrams. SD particles are characterized
by closed concentric contours about a central peak. If the
magnetic interactions are strong, the contours show a much
greater spread parallel to the Hi axis than those with less
interactions. FORC diagrams for multi-domain (MD) par-
ticles go from contours that diverge away from the horizon-
tal axis close to the origin, to nearly vertical contours with
the peak close to Hc = 0. Finally, fine-grained SD parti-
cles are not blocked at room temperature and undergo vary-
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ing degrees of thermal relaxation depending on their vol-
ume. This translates on the FORC diagram into the shift of
the SD FORC distribution to lower coercivities, so that the
FORC distribution intersects the Hi axis. The manifestation
of these superparamagnetic (SP) particles on the FORC di-
agram is due to the fact that the measurement time is faster
than the relaxation time.
FORC diagrams were measured at room-temperature on

a Princeton Alternating Gradient Magnetometer (AGM)
at the Institute for Rock Magnetism (University of Min-
nesota) and at the Laboratoire des Sciences du Climat et
de l’Environnement (Gif-sur-Yvette, France). One hundred
FORCs were measured to construct each FORC diagram,
and the averaging time was set between 0.1 and 0.5 s, de-
pending on the noise level. The smoothing factor (SF) was
set to 4 for all the FORC diagrams. The FORC measure-
ments were carried out on a series different from the series
used for TEM imaging. The modes of preparation were
similar but the time scales are likely to be different. The
cells were centrifuged at 5000 rpm, then the supernatant
was removed and the remaining was left to dry for a day.
The time between growth and measurement was about two
weeks. The totality of the dried sample was then deposited
on the AGM probe for measurement.
In the case of chains of magnetite particles, once indi-

vidual particles are less than three particle diameters away
from its nearest neighbor in any given chain, FORC dia-
grams can only be interpreted on the basis of coercivity and
dipolar magnetostatic interaction distribution among chains
and/or among chains and individual particles not in chains.
As individual particles behave collectively during hysteresis
measurements due to the strong coupling of positive inter-
particle dipolar magnetostatic interactions, FORC diagrams
can not be interpreted on the basis of individual particles
in magnetosome chains (Penninga et al., 1995; Pan et al.,
2005; Chen et al., 2007; Prozorov et al., 2007).
Because of a too weak magnetization, it was impossible

to measure FORC diagrams or even a hysteresis loop for
the t = 0 and t = 30 mn samples. The FORC diagram
at t = 2 h (Fig. 4(a)) is extremely noisy, even though it
was measured with an averaging time of 0.5 s at each point.
We can distinguish a peak close to the Hc = 0 axis, which
corresponds to a SP contribution. This is confirmed by
the data from the hysteresis loop: the ratio of saturation
remanent magnetization over the saturation magnetization
is 0.015, and the bulk coercivity is very close to zero. At t =
3 h (Fig. 4(b)), the FORC diagram is much less noisy, and
the interpretation is more straightforward: the peak of the
distribution is still close to the Hc = 0 axis, but a tail starts
to appear, which corresponds to a small contribution from a
stable SD component. This pattern continues its evolution
in the same direction, as the high coercivity tail becomes
more important on the t = 5 h FORC diagram (Fig. 4(c)).
Finally, at t = 8 h (Fig. 4(d)), the main pattern is a clear,
single peak characteristic of SD grains. However, the lowest
contours are not all closed, but they intersect the Hc = 0
axis, indicating that a SP contribution remains. At t = 5 and
8 h, a negative peak is present close to the Hc = 0 axis, in
the negative Hi region, which is different from noise. This
negative feature provides another evidence for the presence

of SD grains (Carvallo et al., 2004; Newell, 2005). It
is caused by the decrease of ∂ M/∂ Hr with decreasing H ,
resulting in a positive mixed derivative value and therefore
a negative FORC distribution (Newell, 2005).
Between t = 5 and t = 8 h, the spread of the FORC

distribution through the peak of maximum distribution, par-
allel to the Hi axis, increases. The full-width at half-
maximum goes from 2.0 to 3.4 mT, indicating that inter-
actions between chains or between the chains and isolated
grains (some of them constituting probably the SP compo-
nent) also increase with time (Fig. 4(e), (f)).

4. Low-temperature Measurements
Cooling and warming curves of saturation isothermal re-

manent magnetization (SIRM) are used to identify low-
temperature transitions. In magnetotactic bacteria, the Ver-
wey transition often occurs at a temperature lower than in
stoechiometric magnetite (e.g., Moskowitz et al., 1993),
and depends on the magnetosome morphology and block-
ing volume (Prozorov et al., 2007). In order to identify a
possible Verwey transition and to measure TV, we carried
out low-temperature measurements using a Magnetic Prop-
erties Measurement System at the Institute for Rock Mag-
netism, on the exact same samples as those used for the
FORC diagram measurements. We collected measurements
of temperature dependent SIRM given with a 2.5 T applied
magnetic field at 300 K. The 300 K SIRM were monitored
both during cooling from 300 K to 10 K and during warm-
ing from 10 K to 300 K. For the samples corresponding to
t < 5 h, the noise is too important to obtain a meaningful
measurement. The two most mature samples (t = 5 and t =
8 h) show markedly different behaviours. In the first case,
the SIRM cooling and warming curve is very similar to that
observed by Pan et al. (2005) for uncultured nagnetotactic
bacteria containing a large proportion of Magnetobacterium
bavaricum (Fig. 5(a)). First, the remanence increases up to
about 130 K, then decreases slightly when the temperature
is decreased down to 10 K. Upon warming, the remanence
is reversible up to about 130 K, then decreases when the
temperature is increased up to 300 K, but the remanence
at the end of the cycle is about 2% lower than the initial
SIRM300K. The shape of the SIRM cooling-warming curve
for the sample at t = 8 h is much more consistent with what
is expected for SD magnetite (Özdemir et al., 2002), though
on a much smaller scale (Fig. 4(b)). However, it has to be
noted that the lost in remanence in the case of Özdemir et
al. (2002) could have been cause by grains larger than SD
grains. There is a large drop in magnetization upon cool-
ing through the Verwey transition, then a slight increase.
This behavior is reversible up until 50 K, then the rema-
nence drops slightly lower than on the cooling curve, and a
part of the remanence is not recovered when the tempera-
ture is back to 300 K: the loss of remanence after the low-
temperature cycling is about 13%.
The Verwey temperatures (TV) were estimated by finding

the temperature at which d M/dT is maximum on the SIRM
warming curve. The curve for t = 5 h was too noisy to
yield a reliable TV estimate. However, at t = 8 h, TV could
be estimated at 115 K from the minimum of the d M/dT
curve.
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Warming curves of SIRM in zero-field after cooling both
in zero-field (ZFC) and in a 2.5 T field (FC) were measured
on the MPMS (Fig. 5(c), (d)). This measurement of SIRM
induced at 10 K monitored on warming following two types
of cooling pre-treatment is different from the previous mea-
surement, which was that of the SIRM given at 300 K mon-
itored on cooling and warming. The Verwey transition is
absent from these two curves.

5. Discussion
By inducing magnetite nucleation and growth in resting,

iron-starved cells of Magnetospirillum gryphiswaldense,
we were able to follow the magnetosome development by
FORC diagram, TEM and low-temperature measurements.
Because the amount of magnetic material was very weak
in the initial stages of the development, the magnetic mea-
surements could only be performed for the final stages of
growth. The Verwey temperature could only be calculated
in one case and leads a value slightly lower than 120 K.
Nevertheless, the grain size evolution, from mainly SP to
mainly SD, is very clear on the FORC diagrams, and is con-
sistent with the observations from MET images.
It must be noted that the MET images and the FORC di-

agrams have been measured on two different series. Even
though the culture method was identical, there could have
been some differences in the cultures, which would explain
that the two series did not develop at the same speed. For
example, the series used for MET imaging seem to have
grown faster than the series used for FORC diagram mea-
surements: at t = 5 h, according to the grain sizes measured
on the MET images, the majority of the grains should be
stable SD, but on the FORC diagram, the main contribution
at the same time comes from SP particles.
Even though the TEM and the FORC samples are not

the same, we can try to compare the interaction field given
by the FORC diagram and that calculated from the nearest-

neighbor distances measured from the TEM images for the
most mature sample. The dipole field equation gives

Hint ≈ μ

4πr3
(2)

where r is the centre-to-centre separation (Dunlop and
Özdemir, 1997). Using the average grain size of
39.8 nm and the centre-to-centre distance between nearest-
neighbours of 94.9 nm, we find that the interaction field is
about 2 mT. This is in the same order of magnitude as the
FWHM (3.4 mT), though lower. However, since the parti-
cles are on average less than 3 particle diameter away from
each other, we can only interpret the FWHM data as the in-
teraction between chains and between chains and individual
particles. In any case, the amount of interactions, from this
crude calculation or from the FWHM, is quite small. More-
over, the shape of the FORC distribution for the most ma-
ture sample resembles the modelled FORC distribution of
noninteracting, thermally activated SD grains (Egli, 2006).
The absence of Verwey transition at t = 5 h and the fact

that it is at a temperature lower than 120 K at t = 8 h
could be due to several factors. First, it could be due to
the fact that, according to the FORC diagram, some grains
are still SP at room temperature. If not enough grains are
blocked around 120 K, the Verwey transition will not be
seen, which could be the case here. This is similar to what
Moskowitz et al. (1989) observed on SP magnetite formed
by dissimilatory iron-reducing bacteria. It could also be an
effect of partial oxidation (Özdemir et al., 1993). Despite
the fact that the magnetosomes can protect to some extent
the magnetite crystals from being oxidized, some maghemi-
tization can occur (Pan et al., 2005; Kasama et al., 2006;
Prozorov et al., 2007). Even though a complete transforma-
tion from magnetite to maghemite would take years (Tang
et al., 2003) and is not possible in our samples, according to
Özdemir et al. (1993), “minor surface oxidation suppresses
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the Verwey transition”.
The coercivity peak of the SD fraction is around 12 mT

(Fig. 4(d)). This is much lower than the typical coer-
civity known for magnetosomes, often over 40 mT (e.g.,
Moskowitz et al., 1993; Chen et al., 2007). This high co-
ercivity is often used as a hallmark of biogenic magnetite
in coercivity component analysis (e.g., Egli, 2003). The
particular laboratory conditions in which the magnetite is
formed in this study might be at the origin of the discrep-
ancy, but in any case we have shown that bacterial SD mag-
netite can have very low coercivities.
Altogether, our results suggest the following evolution:

the first grains of magnetite formed are very small (in the
SP range) and far away from each other. As more iron
is added to the culture, magnetic grain size increases and
more and more grains become SD, and start forming chains.
When most grains are large enough to be SD, and arranged
in chains, there still remains some SP grains. According
to the TEM images, some of them are at the extremities of
the chains, but the SP contribution on the FORC diagrams
indicates that there should also remain some SP grains far
enough from the chains so that they behave independently
from the SD chains (Faivre et al., 2007, 2008).
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Néel, L., Remarques sur la théorie des propriétés magnétiques des sub-
stances dures, Appl. Sci. Res., B4, 13–24, 1954.

Newell, A. J., A high-precision model of first-order reversal curve (FORC)
functions for single-domain ferromagnets with uniaxial anisotropy,
Geochem. Geophys. Geosyst., 6, Q05010, doi: 10.1029/2004GC000877,
2005.
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