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Studies of palaeodirections and palaeointensities were carried out on mainly rhyolitic lavas and pyroclastics
from the Okataina Volcanic Centre, New Zealand, which has erupted during the past 32 kyr. Of the 17 sites
studied, 14, spanning the period 0.1–21 Ka yielded good mean palaeodirections, while three carried unstable
natural remanent magnetizations. Of 49 specimens from 7 sites, on which Thellier palaeointensity experiments
were carried out, 21 specimens gave successful results, yielding 3 site mean palaeointensities for 1886 AD,
5 Ka, and 7.5 Ka. When the new palaeodirections, together with previously reported archaeo and volcanic data,
were compared with sedimentary records from New Zealand and eastern Australia for the last 10 kyr, good
agreement was obtained in inclination but discrepancies were observed in declination. The new 7.5 Ka and 5 Ka
palaeointensities are moderately high and relatively low, respectively, and are concordant with the global trend.
The mean palaeointensity obtained for 1886 AD is, 11% higher than the IGRF1900. The difference is scarcely
significant, but might indicate a small bias toward high values. Although the sedimentary directional curves
show excellent agreement with the prediction from CALS7K, the fit of the palaeointensity data to model values
was relatively poor over the wider Pacific region. Further reliable palaeointensity data are needed to solve the
discrepancy.
Key words: Palaeosecular variation, Okataina, rhyolite lava, palaeointensity, Thellier method.

1. Introduction
Palaeomagnetic studies of archaeological artifacts, vol-

canic rocks, and lake sediments have long contributed to the
establishment of records of the geomagnetic secular varia-
tion that span the past 10–15 kyr. Much effort has been
made to create datasets for various parts of the world (e.g.,
Kinoshita, 1970; Kovacheva, 1992; Sternberg et al., 1997)
and further, to compile them into a global database (e.g.,
Creer et al., 1983; Daly and Le Goff, 1996). These data
have often been used in the computation of low degree
spherical harmonic global models (e.g., Ohno and Hamano,
1993; Hongre et al., 1998), and now a continuous global
model to degree and order 10, covering the last 7 kyr,
CALS7K, is available (Korte and Constable, 2005) based
on the most recent data compilation (Korte et al., 2005).
Palaeointensity datasets have also been used to deduce mil-
lennium scale variations of virtual dipole moment (VDM)
or virtual axial dipole moment (VADM) for the last 10–
12 kyr (e.g., McElhinny and Senanayake, 1982; Yang et al.,
2000). Nevertheless, the data coverage in time and space
is still sparse for the time range before 10 Ka and for the
area of the southern hemisphere. This study aims to con-
tribute palaeodirections and intensities from the southern
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hemisphere for the last 20 kyr from 14C dated volcanic rocks
in New Zealand.

2. Samples
Okataina Volcanic Centre (OVC) is one of eight rhy-

olitic eruptive centres in the Taupo Volcanic Zone, North
Island, New Zealand. The most recent summary of its ge-
ology is given in Nairn (2002). The volcanic activity of the
OVC started around 0.34 Ma and several caldera-forming
eruptive episodes have occurred. The most recent volumi-
nous caldera-forming eruptive episode was the 65 Ka Ro-
toiti episode which was followed by the 45–28 Ka Man-
gaone pyroclastic eruptive episode. After 22 Ka, 11 distinc-
tive intracaldera eruptive episodes followed, forming the
present-day topographic features of Haroharo and Tarawera
volcanic complexes.
The late Quaternary tephra formations of the North Island

of New Zealand were comprehensively reviewed by Frog-
gatt and Lowe (1990). These include distal airfall tephra
and unconsolidated pyroclastics associated with each of the
eruptive episodes of the Okataina Volcanic Centre. Frog-
gatt and Lowe summarized and calculated weighted means,
with standard errors, for numerous C-14 age estimates on
each of the tephra. Nairn (2002) used these means, together
with new C-14 age determinations on materials associated
with proximal pyroclastic deposits, lava flows and domes
to assign an “accepted age” at each eruptive episode as a
whole. In most cases the ages of the proximal volcanic
products are 100–200 years older than Froggatt and Lowe’s

213



214 H. TANAKA et al.: PALAEOSECULAR VARIATION FROM THE OKATAINA VOLCANIC CENTRE

Table 1. Site descriptions.

Site Deposit Eruptive
episode

Age Tephra age Lat Lon Grid Ref.

(Ka) (yr BP) (◦S) (◦E)
NK09 Tarawera basalt dyke Tarawera

Basalt
1886 AD 38.218 176.523 V16/186258

NK10 Wahanga dome Kaharoa 0.7 770±20 38.218 176.523 V16/186258

NK16 Edgecumbe Avalanche
Breccia

2370±70 yBP 38.095 176.725 V16/368387

NK02 Tapahoro lava flow Whakatane 5 4830±20 38.164 176.519 V16/182318

NK04 Hainini Pyroclastics Mamaku 7.5 7250±20 38.086 176.457 V15/134407

NK05 Hainini dome Mamaku 7.5 7250±20 38.120 176.478 V16/151368∗

NK06 Waiti lava flow Mamaku 7.5 7250±20 38.083 176.486 V15/157411

NK18 Matutu Pyroclastics Rotoma 9 8530±10 38.037 176.561 V15/227458

NK19 Rotoma lava flow Rotoma 9 8530±10 38.039 176.572 V15/236455

NK01 Pokohu lava flow Waiohau 11 11850±60 38.165 176.519 V16/185317

NK08 Waikakareao lava flow Waiohau 11 11850±60 38.208 176.542 V16/203269

NK14 Rotorua Pyroclastics Rotorua 13.5 13080±50 38.210 176.366 U16/048273

NK11 Rotomahana dome Rerewhakaaitu 15 14700±110 38.251 176.474 V16/141224

NK07 Hawea lava flow Okareka 18±3 38.183 176.570 V16/228295

NK03 Haumingi lava flow Te Rere 21 21100±320 38.059 176.449 V15/127436

NK15 Te Koutu lava flow Te Rere 21 21100±320 38.106 176.433 V16/112386

NK17 Mangaone Tephra Mangaone 32 27730±350 38.092 176.730 V16/372389

Note:
Site is the site identification for palaeomagnetic study; Deposit is the flow name; Age is the best estimate of the eruptive episode as a whole by Nairn
(2002), with possible uncertainties of ±100 years, while Tephra age is a weighted mean with a standard error of each tephra by Froggatt and Lowe
(1990). Exceptions of the age are the Tarawera basalt dyke which age is historically known and the Edgecumbe Avalanche Breccia which has a single
C-14 age; Lat, Lon, and Grid Ref. are latitude, longitude, and a grid reference of site locality, respectively; (∗), half of the core samples were taken at
200 m apart at (38.119◦S, 176.475◦E, V16/149369).

ages for the corresponding tephra. This fact, together with
field evidence suggests that each eruptive episode lasted up
to a few hundred years, and so Nairn’s accepted ages were
given to the nearest 500 years, with possible uncertainties of
±100 years. In Table 1 we include Froggatt and Lowe’s fig-
ures, which may be regarded as accurate and precise ages of
the tephra, as well as Nairn’s “accepted ages” for each erup-
tive episodes, which though accurate, represent less precise
estimates of the age of any single eruptive product. The dis-
tribution of the volcanic products associated with OVC is
shown in Fig. 1, which is simplified from figure 5 of Nairn
(2002).
Palaeomagnetic samples were collected from lavas, pyro-

clastics, and domes at 17 sites whose descriptions are sum-
marized in Table 1. All were formed during major eruptive
episodes of the OVC except sites NK09, Tarawera basalt
dyke, NK16, Edgecumbe Avalanche Breccia, and NK07,
Hawea lava flow. Tarawera basalt dyke has a historical age
of 1886 AD. The age of Edgecumbe Avalanche Breccia is
based on a single 14C age of 2370±70 yr BP. The Hawea
lava flow lies stratigraphically between the upper and lower
eruptive episodes. The assigned age, 18 Ka, is the average
age of the two episodes, while the error, 3 kyr, is half of their
age difference. Site locations are included in Fig. 1 except
for two sites (NK16, 17) which were collected at the foot
of the Mt. Edgecumbe. Mt. Edgecumbe is an independent
volcanic complex of Holocene age which lies about 10 km
east of the region of Fig. 1.
Sites NK12 and NK13 are missing because they were

collected from older volcanics. The former is the 0.28 Ma

old Matahina Ignimbrite, whose site mean direction was
reported in Tanaka et al. (1996). The latter was an attempt
to sample the 65 Ka Rotoiti breccia, but it was found that
the outcrop was not in situ.
A portable drill was used to collect 8–10 cores at each

site. Each core was oriented using a magnetic compass
and, when the sun was available, the solar azimuth was also
recorded. Due to the generally weak magnetization of OVC
rhyolitic rocks, the errors in the magnetically determined
azimuths were quite small. The difference between the
magnetic and the solar azimuths was usually less than 3◦.

3. Palaeodirections
Two to four samples were selected from each site as pilot

samples. Half of these were subjected to progressive alter-
nating field demagnetization (AFD) and other half to pro-
gressive thermal demagnetization (THD). When determina-
tion of the characteristic remanence vectors was straightfor-
ward by both methods, AFD was applied to the remaining
samples. In such cases demagnetization was stopped when
it could be ascertained that the remanence vector decreased
toward the origin of the orthogonal plot. However, for more
than half of the samples, AFD with full steps up to 180 mT
or THD was necessary due to the presence of large sec-
ondary components or multiple remanence components.
Figure 2 shows examples of orthogonal plots of AFD and

THD in which there is a single remanence component with
no or only a small secondary component. Such samples
with stable single components of remanence were found
only in lava flows (NK01, 02, 03, 08, 15, 19), lava domes
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Fig. 1. Distribution of volcanic products from the Okataina Volcanic
Centre, New Zealand. Open circles are site locations of palaeomagnetic
samples. The map is simplified from figure 5 of Nairn (2002). The
original color scheme has been modified in order to increase the clarity
of the figure.

(NK10, 11), and a basalt dyke (NK09). For such units it was
straightforward to calculate site mean palaeodirections, and
the associated cones of 95% confidence (α95) were small,
generally less than 5 degrees.
Examples of more complicated remanences are shown

in Fig. 3, in which orthogonal component plots of THD
and AFD data are shown for specimens from a lava dome
(NK05) and a lava flow (NK06), both of which are dated at
7.5 Ka. At the lava dome, samples were collected from two
outcrops which are 200 m apart. The samples from the first
outcrop carry two components of remanence which can be
clearly separated only by THD, as shown in Fig. 3(a). The
remanences of the samples from the second outcrop are ba-
sically single component with only a minor secondary com-
ponent, as shown in Fig. 3(b). By taking only the remanence
components that unblock below 540◦C from the former,
and taking the high coercivity components from the latter,
the sample directions cluster closely, as shown in Fig. 3(e),
readily defining a site mean palaeodirection. The presence
of two remanence components in the first outcrop of NK05,
which are separated only by THD, probably indicates some
movement of the outcrop as the dome cooled through about
500◦C. The angle between the high-T component and the
site mean direction is 34◦ which is observed mainly in incli-
nation. The movement must have been very local because it
was not recorded in the second outcrop which is only 200 m
away.
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Fig. 2. Examples of progressive AFD and THD of remanent magnetiza-
tions in which there is a single component with little or no secondary
component.
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Fig. 3. Examples of orthogonal plot of AFD and THD of samples from
Hainini lava dome (a, b) and Waiti lava flow (c, d) which both have ages
of 7.5 Ka. Site mean directions for the Hainini lava dome (e) and the
Waiti lava flow (f) reasonably agree with each other.

On the other hand, there were very large secondary com-
ponents in the samples from the contemporary 7.5 Ka lava
flow (NK06) which was collected at the site location 4 km
north of the dome site. The characteristic component was
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Fig. 4. Examples of orthogonal plots of THD from Edgecumbe avalanche
breccia (a, b). A block rotation at 470◦C is recognized in sample (b).
Rejected examples are shown for samples from Hainini pyroclastics (c)
and Mangaone tephra (d).

not well separated in THD as shown in the typical orthog-
onal plot of Fig. 3(c), but it was easier to define the high
coercivity component by AFD as shown in Fig. 3(d). The
large low blocking temperature or low coercivity compo-
nent was interpreted as secondary because of the fact that
the hysteresis parameters indicate the dominance of multi-
domain (MD) grains, which would lead such a viscous com-
ponent. Alternatively, the site may have experienced a light-
ning strike, which remagnetized a large fraction of the mag-
netic grain spectrum. Nevertheless high coercivity compo-
nents were well defined in most samples and a linear high-T
component was also obtained from one sample. These high
coercivity and high blocking temperature components to-
gether with the data of one specimen that was fitted by a
great circle, yielded a site mean palaeodirection with an ac-
ceptably small α95 as shown in Fig. 3(f). The two site mean
palaeodirections from the dome and the lava flow which are
considered to be of the same age are fairly close as shown
in Fig. 3(e) and (f) with a difference angle of 10◦. However,
the two directions are significantly different in statistical
terms, which probably suggests either a short time elapsed
between the emplacement of the dome and the lava flow or
that one or both sites have subsequently been disturbed.
Typical orthogonal plots of THD from a lava avalanche

site (NK16) are shown in Fig. 4(a) and (b). In the former
the remanence is a single component while in the latter there
are two components which are sharply separated at 470◦C.
Since it is difficult to distinguish the two components in the
AFD data, it is suggested that this specific block rotated
at 470◦C. It is noted that the cooling history of the lava
avalanche site is different from block to block and a sim-
ilar phenomenon was reported for a pyroclastic flow of the
Unzen Volcano, Japan (Tanaka et al., 2004).
Examples of rejected orthogonal plots are shown in

Fig. 4(c) and (d) for the samples of a pyroclastic flow

(NK04) and a tephra (NK17), respectively. Unstable re-
manences were also observed in another pyroclastic flow
(NK18). The site means of these 3 sites were rejected due
to a large α95 (≥20◦).
All site mean palaeodirections together with site statistics

are summarized in Table 2 in which those of the rejected
sites are indicated in a small font.

4. Palaeointensities
4.1 Sample selection
Samples for Thellier’s palaeointensity experiments were

selected on the basis of high stability of remanence to both
AFD and THD and a rock magnetic nature less susceptible
to heating. Samples were also required to show hysteresis
parameters consistent with single domain (SD) or pseudo
SD (PSD) grains.
Rock magnetic stability to heating was checked by mea-

suring a thermomagnetic curve, i.e., a saturation magne-
tization versus temperature (Ms-T ) curve, together with
temperature dependence of magnetic susceptibility (χ -T
curve). Ms-T measurements were made with a vibration
sample magnetometer (Micromag 3900) of Princeton Mea-
surements Co. in a helium atmosphere. χ -T measurements
were made with a magnetic susceptibility system (MS2) of
Bartington Instruments Ltd. in air. Representative Ms-T
and χ -T curves are shown in Fig. 5 in which the curves
are grouped according to the results of the palaeointensity
experiments. In the sample selection, higher priority was
given to those which show good reversibility in the heating
and cooling curves both in Ms-T and χ -T measurements.
Differences in the reversibility of the heating and cooling
curves between successful and rejected samples are not con-
spicuous in Fig. 5. Nevertheless, it is recognized that suc-
cessful samples showed fairly high reversibility, suggesting
that they are less prone to chemical alteration by heating.
Hysteresis parameters at the room temperature were also

measured with Micromag 3900. Figure 6 summarizes the
hysteresis parameters in a Day plot (Day et al., 1977) with
log-log scales together with typical hysteresis curves. Open
and closed circles indicate those samples which were suc-
cessful and those rejected, respectively, in the palaeointen-
sity experiments. Gray triangles show those not used in
the experiments. Samples with the hysteresis parameters
closer to SD nature were not necessarily higher in the suc-
cess rate of the palaeointensity experiments. An exception
is the basalt dyke (NK09) with SD nature in which all sam-
ples were successful in the palaeointensity experiments.
It is recognized that there are several samples in the mul-

tidomain (MD) range and a few samples lie apart from
the trend of SD-MD line. An example for the latter case
(NK17-1-3) is shown in Fig. 6(g). Some of these failed to
give even palaeodirections as shown in Fig. 4(c, d) but oth-
ers were successful at least in palaeodirections. This fact
probably indicates that contributions of PSD or SD grains
to the remanence varies from sample to sample even if their
hysteresis characteristics are in MD range.
4.2 Thellier’s experiments
Palaeointensity experiments using Coe’s adaptation

(Coe, 1967) of the Thellier method (Thellier and Thellier,
1959) were made for total of 49 samples from seven sites.
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Table 2. Site mean palaeodirections.

Site Age Inc Dec N /n/n0 α95 k Plat Plon

(Ka) (◦N) (◦E)
NK09 1886 AD −53.3 26.0 8/8/8 4.5 154.6 68.6 262.8

NK10 0.7 −60.7 6.1 8/8/8 2.1 693.9 84.2 305.2

NK16 2370±70 yBP −64.9 350.1 5/6/6 2.9 702.9 78.6 33.4

NK02 5 −62.7 37.0 7/7/7 8.4 52.1 61.8 290.6

NK04 7.5 −48.2 348.0 3/3/8 38.6 11.2

NK05 7.5 −61.2 321.8 7/7/10 4.6 172.1 60.8 66.0

NK06 7.5 −51.3 316.2 7/8/14 4.1 223.6 54.0 82.6

NK18 9 −49.6 345.1 4/10/10 21.8 18.7

NK19 9 −61.5 357.6 7/7/7 4.0 226.7 85.1 17.7

NK01 11 −53.4 2.8 7/7/7 5.3 128.4 85.2 205.9

NK08 11 −46.3 9.7 8/8/8 4.7 141.3 76.6 217.0

NK14 13.5 −61.4 13.7 6/6/6 5.2 168.7 78.8 293.1

NK11 15 −58.2 342.7 8/8/8 4.4 161.8 76.5 78.3

NK07 18±3 −53.7 359.8 8/9/9 5.8 93.2 86.1 173.9

NK03 21 −25.2 20.2 8/8/8 6.4 74.9 59.4 217.8

NK15 21 −49.6 352.6 6/6/6 9.2 53.9 80.2 135.6

NK17 32 −55.6 349.8 2/2/7 31.4 65.4

Note:
Inc and Dec are inclination and declination of the site mean direction; N , n, and n0 are numbers of samples used for site statistics, successful specimens,
and total specimens used for AF and thermal demagnetizations, respectively; α95 and k are a 95% confidence circle and a precision parameter; Plat and
Plon are latitude and longitude of VGP; The data indicated in a small font are those for rejected sites.
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Fig. 5. Representative Ms-T and χ -T curves, arranged according to the results of the palaeointensity experiments. Solid and dotted lines indicate
heating and cooling runs, respectively.

Experiments were carried out in a vacuum of ∼5 Pa and
a pTRM test was included at every other step. Two series
of experiments were made. In the first experiments sam-
ples from three sites showed results of low quality. These
sites were omitted from the second series of experiments
which concentrated on more promising samples. A mod-
erately fair success rate of 21/49 (43%) for specimen level
was probably due to this experimental scheme.
Experimental results were analyzed using Arai plots (Na-

gata et al., 1963). Acceptance criteria were, (1) the linear
segment should includes at least four points with a corre-
lation coefficient −r larger than 0.99 and an NRM fraction

f larger than 0.35, (2) a pTRM test is positive, as judged
by a PTRM difference normalized by the length of the lin-
ear segment (DRAT) smaller than 7%, and its accumulation
over the selected temperature interval (CDRAT) smaller
than 10%, (3) the maximum angular deviation (MAD) of
the NRM vector component corresponding to the selected
linear segment is less than 7◦ and reasonably decreases to-
ward the origin on the orthogonal plot, which is judged by
a difference angle α smaller than 7◦. These criteria are sim-
ilar with those proposed by Kissel and Laj (2004), but cri-
terion (3) is more stringent. A further criterion added to (3)
was that the deviation dev of Tanaka and Kobayashi (2003)
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Fig. 6. Day plot of hysteresis parameters on a log-log scale (a) and representative magnetic hysteresis curves in which the slope is corrected for the effect
of paramagnetism (b–g). In the Day plot (a), labels b–g correspond to the hysteresis curves (b)–(g). Open and closed circles indicate those samples
which were successful and rejected, respectively, in the palaeointensity experiments. Grey triangles indicate specimens which were not used in the
palaeointensity experiments. Hysteresis parameters are tabulated in each figure of (b)–(g) where the units are Am2/kg for saturation magnetization
(Ms) and saturation remanence (Mrs) and mT for coercivity (Hc) and coercivity of remanence (Hcr).

should be less than 7%.
Successful results were obtained from three sites: a rhyo-

lite lava (NK02), a rhyolite dome (NK05) and a basalt dyke
(NK09). Examples of successful Arai plots are shown in
Fig. 7 in which two results are shown from each site.
Two results from the 5 Ka Tapahoro rhyolite lava flow

(NK02) are shown in Fig. 7(a) and (b). NK02-4-1 (a) is
from the first series of experiments in which a laboratory
field of 40 μT was used. As the results of these first ex-
periments indicated a palaeointensity of about 30 μT, the
second series was carried out in a laboratory field of 30 μT.
NK02-6-1 (b) from the second series of experiments is in
good agreement with the results from NK02-4-1. In the case
of NK02-6-1 (b), AFD at 20 mT was carried out at every
step. This was because there were insufficient pristine sam-
ples from this flow and we had to use samples which had
previously been partially AF demagnetized for palaeodirec-
tional measurements.
In this study, four samples were AF treated at 20 mT for

every step for the reason mentioned above. Since the first
study by Coe and Grommé (1973) on the effect of AFD in
the Thellier’s experiments, few studies have examined this
matter. In two recent studies (Riisager et al., 2002; Biggin
et al., 2007), AF pre-treated specimens yielded better Arai
plots, while no difference was observed in the studies of
basaltic and andesitic samples by Tanaka et al. (2007a, b).
For the case of the rhyolite lava and basalt dyke in this study,
the Arai plots were neither improved nor worsened by the
use of AFD.

Two examples of Arai plots from the 7.5 Ka rhyolite
lava dome (NK05) are shown in Fig. 7(c) and (d). As
discussed above, the first outcrop is thought to have suffered
some movement during its cooling as shown in Fig. 3(a).
Hence, samples used for the palaeointensity experiments
were taken from the second outcrop. Successful results
were obtained from five specimens out of ten as shown in
Fig. 7(c, d). However, the specimens were actually taken
from only three cores, so the final mean palaeointensity was
calculated by combining the results from the same core.
Experiments on 1886 AD basalt dyke (NK09) were suc-

cessful for all specimens and two examples are shown in
Fig. 7(e) and (f). The excellent Arai plots obtained from
these basalt samples are consistent with the hysteresis pa-
rameters, which are in SD range and Ms-T and χ -T curves
which indicate almost no chemical alteration (see Figs. 5
and 6).
In spite of high quality of the NK09 results, it is noted

that there is significant dispersion between the palaeointen-
sities obtained. The values range from 54.1 to 74.7 μT,
and the mean of specimen palaeointensities is 64.3±6.7 μT
(n = 10), indicating a standard deviation of 10.4%. This is
not unusual because a large dispersion of palaeointensities
from a single lava flow has often been reported (e.g., Böhnel
et al., 2003; Alva-Valdivia, 2005). Nevertheless, it might
indicate an intrinsic limitation of the Thellier’s experiments
that a large dispersion is observed from such excellent ma-
terials.
The site mean palaeointensity for NK09, calculated on
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Fig. 7. Examples of successful Arai plots. Closed and open circles indicate those data points which were included and excluded, respectively, in the
linear segment. Closed and open triangles indicate pTRM tests which were judged to be positive and negative, respectively. Insets indicate orthogonal
plots of remanence vectors for the NRM steps shown in a sample coordinate system in which −Z is the direction of the laboratory field.

the basis of independent samples, is 62.9±5.7 μT (N = 6).
This site mean palaeointensity may also be slightly biased
towards a high value. The actual field intensity at the site
for 1886 AD is unknown, however the mean palaeointensity
is some 11% larger than the total field of 56.5 μT calculated
from the IGRF1900 (IAGA WG, 2005). The field intensity
over the region has decreased by about 2 μT, or 4% over
the past century, in accord with a general decrease in global
dipole moment. A drop of as much as 11% in the 15 year
period from 1886 to 1900 is therefore considered unlikely,
and the mean palaeointensity value of 62.9 μT is therefore
probably too high.
This might be an indication of the experimental prob-

lems of the Thellier’s method which has been frequently
discussed in the literature (e.g., Tanaka and Kono, 1991;
Calvo et al., 2002; Yamamoto et al., 2003).
The site mean palaeointensities together with corre-

sponding values of the VDM and VADM are summarized
in Table 3. Details of the specimen level results including
the quality factors of Coe et al. (1978) are summarized in
Appendix for 21 successful specimens.
Examples of rejected Arai plots are shown in Fig. 8. A

negative pTRM test was the most frequent reason for the
failure of an experiment. The Arai plots shown in Fig. 8(a)
and (b) were rejected because the DRAT was larger than 7%

in each case.
The Arai plot shown in Fig. 8(c) was rejected due, not

only to negative pTRM test, but also poor linearity, with the
correlation coefficient below 0.99. The magnetic suscepti-
bility, measured after every step, also increased markedly
above 400◦C, as shown in the inset. In this study change in
magnetic susceptibility was not used as a quantitative crite-
rion. In most specimens the change was between 5% and
20%; however, the increase of about 40% observed in this
specimen was taken to indicate that significant alteration to
the magnetic mineralogy had occurred during heating.
Arai plots with two linear segments as shown in Fig. 8(d)

are also one of the most frequent reasons for rejection.
In the case of NK11-6-3, the pTRM test was positive for
both segments, making it difficult to decide which of them
should be adopted. In the past, the low-T segment was often
adopted by supposing that chemical alteration of magnetic
minerals occurred in the high-T range. Valet (2003) argued
that such data should be rejected: either because of an effect
of MD grains on the steep slope of the low-T segment, or
because of chemical alteration even at these relatively low
temperatures. In the case of Fig. 8(d) we suspect chemical
alteration to be the cause because both segments show a
high degree of linearity, in contrast to the concave-up trend
often recognized in data from MD grains.
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Fig. 8. Examples of rejected Arai plots. Notations are as for Fig. 7 except for (c) in which the change in magnetic susceptibility, χ , measured after each
step is shown in the inset.

Table 3. Site mean palaeointensities.

Site Age N (n/n0) F VDM VADM
(Ka) (μT) (1022Am2)

NK09 1886 AD 6 (10/10) 62.9±5.7 11.7±1.1 11.1±1.0
NK02 5 5 (6/9) 31.0±3.5 5.1±0.6 5.5±0.6
NK05 7.5 3 (5/10) 58.1±2.9 9.8±0.5 10.3±0.5

Note:
N , number of samples used for the site mean; n/n0, numbers of successful/total specimens; F , simple average of sample palaeointensities and its
standard deviation.

Two examples from the 9 Ka rhyolitic Rotoma lava flow
are shown in Fig. 8(e) and (f). NK19-3-1 (e) was rejected
due to a negative pTRM test together with a large value of
their accumulation (CDRAT>10%). NK19-4-1 (f) passed
the pTRM test criteria in terms of DRAT and CDRAT, but
failed criterion (3), that the NRM vector should decrease
toward the origin. In the orthogonal plot of zero step NRM
vectors shown in the inset, the NRM vector can be seen to
deviate toward the −Z axis, which is the direction of the
laboratory field. For this specimen, α and dev were 7.3◦

and 9.2%, respectively.

5. Discussion
In Fig. 9 the new palaeomagnetic data obtained in this

study, shown in large red circles with error bars, are com-

pared with previously reported data from New Zealand and
eastern Australia for the past 21 Ka. Since all the previous
data, except for two, were retrieved from the data compi-
lation by Korte et al. (2005) in which the ages are in cali-
brated calendar years BP (cal. yr. BP), the C-14 ages were
converted using the program CALIB of Stuiver and Reimer
(1993) Version 5.0.
Australian archaeomagnetic and archaeointensity data

(Barbetti, 1977, 1983) were taken from AUS and AUI of
the Korte et al. (2005) data compilation and are shown in
small orange circles in the figure. Two volcanic data from
New Zealand (Tanaka et al., 1994) were taken from the
original paper and are shown with the same symbols. Cox
(1969), in his early study of palaeosecular variation in New
Zealand, sampled two sites which would be relevant to the
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present study. However Cox quoted only NRM directions;
he did not use any partial or progressive demagnetization to
check for or remove secondary components of magnetiza-
tion. Cox’s results are therefore not included.
A palaeosecular variation record for the past 2500 years,

compiled from the sediments of Lake Pounui, New Zealand
was reported by Turner and Lillis (1994). In Fig. 9 this
palaeosecular variation curve is shown in dark blue line: the
data were taken from POU of Korte data compilation.
Palaeosecular variation curves from eastern Australian

lake sediments are available for Lake Eacham (EAC) and
Lake Barrine (BAR) (Constable and McElhinny, 1985),
Lake Bullenmerri (BLM), Lake Keilambete (KEI), and

Lake Gnotuk (GNO) (Barton and McElhinny, 1981). All
data were taken from the Korte data compilation. In Fig. 9
the secular variation curves are shown in light green (BLM),
dark green (KEI), and aquamarine (GNO). Many discrete
data from EAC and BAR are shown in grey dots.
In Fig. 9, it is clear that, with the exceptions of the EAC

and BAR data, the palaeosecular variation curves from lake
sediments are in good agreement with each other. Incli-
nations from EAC and BAR are lower than other records,
which is obviously due to their low site latitude (17◦S) com-
pared to those of other sites (38◦S and 41◦S). In fact, all data
become scattered around the center when the palaeodirec-
tions are viewed relative to the axial geocentric dipole field
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direction of the site, so called Inc′ and Dec′ (or IT and DT),
which was first introduced by Turner and Thompson (1981)
to compare secular variation records from different latitudes
and used by Hoffman (1984) to view transitional records.
It should be noted, however, that the declination values of
EAC and BAR by Korte et al. (2005) were presented as
those of adjusted, because the sediment cores were not ori-
ented azimuthally. Due to their large scatter, the sedimen-
tary records of EAC and BAR are not further considered.
It is also recognized from Fig. 9 that there is little differ-
ence between the palaeosecular variation curves from New
Zealand (POU) and the other eastern Australian sites de-
spite the 30◦ difference in site longitude (175◦E vs. 143◦E).
The inclinations of the archaeomagnetic and volcanic

data for the last ten thousand years, including those in this
study, are in fairly good agreement with the sedimentary
records. On the other hand, the declinations from the former
are not in good agreement with those from the sediments:
two of the declinations from this study show particularly
large differences. This does not necessarily indicate that
the archaeo and volcanic data are less reliable. Some differ-
ences might be expected between the archaeo/volcanic data
and the lake sediments data because the former are discrete,
instantaneous recordings of the palaeomagnetic field, while
the latter include a certain amount of filtering, or smooth-
ing, even for lake sediments with high sedimentation rates.
In Fig. 9, model predictions from CALS7K (Korte and

Constable, 2005) at (38.0◦S, 176.5◦E) are shown in orange
lines. It is recognized that the lake sediments data show
very good agreement with the model predictions especially
in inclination curves. This must be the result of modelling

CALS7K in which larger weight must have been given to
the lake sediments data although any subjective judgments
were not involved in the analysis by Korte and Consta-
ble (2005). On the other hand, the archaeo and volcanic
palaeointensities show quite large discrepancies from the
model prediction. This fact is puzzling because these ar-
chaeo and volcanic data (AUI) are the only palaeointensity
data from the Australian region used in the analysis of Korte
and Constable (2005).
On the other hand, the palaeointensity obtained from site

NK02, Tapahoro lava flow, dated at 5730 cal. yr. BP is in
good agreement with the model. The palaeointensity from
site NK05, Hainini lava dome, dated at 8270 cal. yr. BP, is
also concordant with the world-wide trend in which there is
a moderate high at 7–8 Ka (Yang et al., 2000). As discussed
in the previous section, the sample mean palaeointensity of
NK09, the 1886 AD Tarawera basalt dyke, is some 11%
larger than the expected value, suggesting a possible bias.
Relatively poor fit of the volcanic palaeointensity data

with CALS7K model values is observed over the wider
Pacific region. In Fig. 10 we show the data complied by
Korte et al. (2005) compared with the CALS7K model
for the three areas of Japan, New Zealand and Australia
and Hawaii. The CALS7K curves were calculated at three
representative locations, (35◦N, 136◦E), (38◦S, 176.5◦E),
(19.5◦N, 155.5◦W), and are shown as thick solid lines. Thin
lines and small dots indicate sedimentary records and vol-
canic (including archaeomagnetic) data respectively, also
from the data compilation of Korte et al. (2005).
Very good agreement is recognized between the

palaeodirection data and the CALS7K curves for all three
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Appendix. Specimen palaeointensity results

Specimen T1 T2 n −r −b σb DRAT CDRAT MAD α dev f g q FL F ± �F
(◦C) (◦C) (%) (%) (◦) (◦) (%) (μT) (μT)

NK01 (11 Ka): No results (N/N0 = 0/1)

NK02 (5 Ka): (N/N0 = 6/9)
NK02-1-1 500 560 6 0.999 0.925 0.022 5.8 7.0 2.0 0.9 0.9 0.90 0.76 28.8 30 27.7 ± 0.7
NK02-4-1 540 580 6 1.000 0.851 0.010 5.1 8.5 1.3 0.8 0.8 0.75 0.70 45.5 40 34.0 ± 0.4
NK02-5-1 500 560 6 0.997 1.180 0.043 2.9 3.5 4.4 1.4 1.7 0.58 0.73 11.5 30 35.4 ± 1.3
NK02-6-1∗ 540 580 7 0.998 0.971 0.027 5.8 9.7 1.6 0.7 0.5 0.82 0.79 23.6 30 29.1 ± 0.8
NK02-6-2 535 580 7 0.999 0.756 0.014 4.8 4.8 2.1 0.6 0.5 0.75 0.69 27.2 40 30.2 ± 0.6

Sample mean of NK02-6 (n = 2) 29.7 ± 0.8
NK02-8-1 535 580 7 0.996 0.704 0.029 4.5 5.4 1.2 0.2 0.1 0.73 0.64 11.3 40 28.2 ± 1.2

NK05 (7.5 Ka): (N/N0 = 5/10)
NK05-9-2 300 560 10 0.992 1.138 0.051 4.0 2.2 3.0 0.5 0.5 0.78 0.84 14.6 50 56.9 ± 2.6
NK05-10-1 500 560 7 0.998 1.331 0.040 3.5 5.0 4.4 2.1 1.7 0.59 0.69 13.4 50 66.5 ± 2.0
NK05-10-2 400 570 10 0.995 1.408 0.050 4.2 8.0 2.2 1.2 0.9 0.74 0.86 17.8 40 56.3 ± 2.0

Sample mean of NK05-10 (n = 2) 61.4 ± 7.2
NK05-12-1 480 560 8 0.995 1.189 0.047 6.3 4.1 4.4 0.6 0.6 0.57 0.59 8.5 50 59.4 ± 2.3
NK05-12-2 480 560 8 0.998 1.054 0.026 1.6 3.3 3.5 2.0 1.8 0.64 0.70 18.4 50 52.7 ± 1.3

Sample mean of NK05-12 (n = 2) 56.1 ± 4.8

NK09 (1886 AD): (N/N0 = 10/10)
NK09-1-1 20 560 11 0.999 0.950 0.013 2.5 7.9 2.2 0.4 0.4 0.98 0.85 60.4 65 61.7 ± 0.9
NK09-1-2 20 560 14 0.999 1.437 0.015 2.9 3.5 2.1 0.5 0.4 1.00 0.90 85.7 50 71.9 ± 0.8

Sample mean of NK09-1 (n = 2) 66.8 ± 7.2
NK09-3-1 300 560 13 0.999 1.150 0.014 3.8 7.1 2.8 0.2 0.2 0.95 0.90 69.1 50 57.5 ± 0.7
NK09-4-1 440 560 10 0.996 1.081 0.034 4.0 7.2 1.7 0.2 0.2 0.87 0.88 24.6 50 54.1 ± 1.7
NK09-5-1 300 560 10 0.998 1.020 0.022 4.6 5.3 0.9 0.4 0.3 0.84 0.87 33.9 65 66.3 ± 1.4
NK09-5-2 420 550 10 0.999 1.404 0.025 4.0 3.5 1.7 0.3 0.2 0.83 0.86 40.6 50 70.2 ± 1.2
NK09-5-3∗ 20 560 11 0.997 0.922 0.022 2.3 4.2 1.2 0.1 0.1 1.01 0.87 36.3 65 59.9 ± 1.4

Sample mean of NK09-5 (n = 3) 65.5 ± 5.2
NK09-6-2 20 550 13 0.998 1.323 0.023 2.3 0.2 2.1 0.5 0.5 1.00 0.90 50.9 50 66.2 ± 1.2
NK09-8-1 20 540 12 0.996 1.495 0.044 2.2 3.8 1.1 1.0 0.4 0.97 0.66 21.6 50 74.7 ± 2.2
NK09-8-2∗ 300 560 10 0.997 0.931 0.026 2.1 1.6 1.6 0.7 0.5 0.92 0.87 28.3 65 60.5 ± 1.7

Sample mean of NK09-8 (n = 2) 67.6 ± 10.1

NK10 (0.7 Ka): No results (N/N0 = 0/3)

NK11 (15 Ka): No results (N/N0 = 0/4)

NK19 (9 Ka): No results (N/N0 = 0/12)
Note:
T1, T2, lower and upper temperatures for the linear segment; n, number of data point included in the linear regression; r , correlation coefficient of the linear segment; b, slope of the segment; σb , standard
error of b; DRAT, CDRAT, maximum PTRM difference over the linear segment and their accumulation; MAD, maximum angular deviation of the NRM vector corresponding to the linear segment; θ , dev,
difference angle and deviation of the selected NRM component from the origin on the orthogonal plot; f , g, q, quality parameters after Coe et al. (1978); FL, laboratory field strength; F , �F , palaeointensity
and its standard error; (∗), the experiment included AFD with 20 mT for all steps.
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areas, although the volcanic data show significant scatter.
On the other hand the poor fit of CALS7K to the New
Zealand and Australia palaeointensity data is also evident
in Hawaii, while better agreement is observed in Japan.
It is difficult to identify the reason for this disagreement;
whether it is due to the sparcity of data or other deficiencies
in the modelling process, a general bias of palaeointensity
determinations to high values, or some anomalous feature
of the geomagnetic field in the Pacific region. Future mod-
elling, with more reliable palaeointensity data is necessary
in order to solve the problem.
The new palaeointensity data presented in this study,

though a small contribution, meet the most stringent re-
cently adopted criteria for palaeointensity determination
and will form an important addition to the southern hemi-
sphere millennial scale palaeosecular variation record.

6. Conclusions
Samples from the Okataina Volcanic Centre, New

Zealand, comprising rhyolitic lavas, pyroclastics and one
basalt dyke, showed a wide range of magnetic hysteresis
properties on the Day plot. Most of the flows, includ-
ing some lavas with MD property, showed high stability
of remanences. Exceptions were two pyroclastics and one
tephra with MD natures in which the remanences were un-
stable. Rejecting these three sites, 14 reliable palaeodirec-
tions were obtained for 0.1–21 Ka. Of the 7 flows show-
ing the highest stability of remanence and SD to PSD rock
magnetic properties, only 3 yielded successful results in
the Thellier’s palaeointensity experiments. The new data
together with other archaeo- and volcanic data from New
Zealand and eastern Australia were compared with those
from lake sediments for the last 10 kyr. Agreement between
the two datasets was good in inclination but not so good
in declination. Although the sedimentary records show
an excellent agreement with the model predictions from
CALS7K, disagreement of palaeointensity data with the
model was observed for the larger Pacific region. This indi-
cates the importance of further additional reliable palaeoin-
tensity data. The 14 new palaeodirections together with 3
palaeointensities of this study make a small, southern hemi-
sphere contribution to the worldwide database of palaeosec-
ular variation.
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