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Latitudinal dependence of the solar wind density derived from remote sensing
measurements using interplanetary Lyman o emission from 1999 to 2002
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The interplanetary Lyman « backscattered emission is an effective tool for remote sensing of the global
structure of the solar wind proton flux. This paper reports an attempt to derive the latitudinal dependence of
the solar wind density by combining the interplanetary Lyman o measurements of the Nozomi spacecraft for
the period 1999-2002 with the solar wind speed data derived from interplanetary scintillation measurements.
This approach successfully revealed the slow and dense solar wind over the poles during the period of the solar
maximum. Data on the polar solar wind density indicate a significant growth from the middle of 2000, and the
polar values of solar wind density are close to those of the equatorial values as a result of the disappearance
of the coronal hole. A marked density depletion occurred in the middle of 2001, which can be ascribed to the
development of fast winds from the polar coronal hole. To evaluate the remote sensing method, we considered
solar wind density data from in situ measurements obtained by the Ulysses spacecraft. We conclude that our
method basically agrees with in situ measurements, although we found a significant (a factor of 2) difference

between these in the middle of 2001.
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1. Introduction

The Sun is located in a warm (~6500 K) and partly ion-
ized cloud of interstellar gas, called the local interstellar
cloud (LIC), and the heliosphere surrounding the Sun is
formed by the interaction between the expanding solar wind
and the components of the LIC (Fig. 1). This interaction
has a complex structure in which the solar wind, interstel-
lar neutral atoms, galactic and anomalous cosmic rays, and
pickup ions all play roles (Fahr, 1996; Zank, 1999; Fahr
et al., 2000; Izmodenov, 2004; Baranov, 2006; Izmodenov
and Baranov, 2006). Based on a great number of space- and
ground-based observations over the century, significant ad-
vances have been booked in our understanding of the inter-
action between the three-dimensional heliosphere and the
ambient interstellar medium. Although these achievements
have spurred the development of increasingly sophisticated
models attempting to describe various aspects of the physics
underlying the interaction between the solar wind and the
interstellar medium (Fahr, 1996; Zank, 1999; Fahr et al.,
2000; Izmodenov, 2004; Baranov, 2006; Izmodenov and
Baranov, 2006), to our knowledge no direct observations
of the different components of the LIC within the helio-
spheric interface and beyond have been reported to date.
It is also difficult to understand the global structure of the
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heliosphere using one-point measurements.

The global three-dimensional structure of the solar wind
is little understood owing to the shortage of observational
data—with the exception of the recent in situ observations
of the Ulysses spacecraft (e.g., Phillips et al., 1995; Mars-
den et al., 1996; McComas et al., 2002, 2003) and inter-
planetary scintillation (IPS) observations that indicated the
changes in the global structure of the solar wind speed ac-
cording to the solar activity cycle (e.g., Kojima and Kak-
inuma, 1987, 1990).

Observations of the interplanetary Lyman « emission
backscattered resonantly by interplanetary neutral hydro-
gen atoms are useful for improving our knowledge of the
solar wind out of the ecliptic plane, since these provide re-
liable information on the latitudinal dependence of the so-
lar wind proton flux in the inner heliosphere. Joselyn and
Holzer (1975) first determined the latitudinal dependence of
the solar wind proton flux using backscattered interstellar
hydrogen Lyman o emission. Several subsequent attempts
have been made to investigate the global structure of the so-
lar wind proton flux from interplanetary Lyman o observa-
tions based on the concept that the interplanetary Lyman o
emissions observed in the inner heliosphere are influenced
mainly by the ionization due to charge exchange with solar
wind protons. The ionization data obtained from these stud-
ies indicate that the solar wind drastically changes its global
structure during the solar activity cycle (e.g., Bertaux et al.,
1995; Summanen, 2000; Nakagawa et al., 2003; Pryor et
al., 2003; Quémerais et al., 2006). Kumar and Broadfoot
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(1979) and Lallement et al. (1985) predicted the presence
of large decreases in solar wind proton flux from the eclip-
tic plane toward the poles. Kyrold et al. (1998) estimated
that the reduction of the particle flux from the equator to
the poles is 18% on average at the solar minimum. Naka-
gawa et al. (2003) have shown that during the ascending to
the maximum activity phase, the total ionization rate of in-
terstellar hydrogen becomes gradually isotropic over almost
the entire range of heliolatitudes. Recently, Quémerais et al.
(2006) derived the latitudinal dependence of the ionization
rate over a 10-year period using observations obtained by
the solar wind anisotropy instrument (SWAN) at the Solar
and Heliospheric Observatory (SOHO) and computed the
Lyman « distribution using the hot model (Lallement et al.,
1985). Their results clearly show that the anisotropic ion-
ization rate pattern changes to an isotropic pattern as the
solar activity increases. In the solar maximum phase, the
polar values of the ionization rate are very close to the equa-
torial values, and the isotropic pattern can be ascribed to the
uniform distribution at the solar maximum phase.
Although the latitudinal dependence of the ionization
rate and the variations in its solar cycle have been well in-
vestigated, the conversion of ionization rate data to solar
wind density has not yet been attempted. The main pur-
pose of this study was to investigate the latitudinal depen-
dence of the solar wind density and its long-term varia-
tion (3 years) around the solar maximum using Lyman o
emission data, with the aim of gaining an understanding of
the three-dimensional structure of the solar wind parame-
ters and evaluating the remote sensing method. We derived
the solar wind density from a comprehensive study that fo-
cused on Lyman « data obtained from Nozomi spacecraft
and solar wind speed data obtained from IPS observations
by the Solar-Terrestrial Environment Laboratory (STEL) of

Schematic drawing of the heliosphere, which is formed by the interaction between the expanding solar wind and the local interstellar cloud
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Fig. 2. Ecliptic plane projections of the orbits of Nozomi (solid line) and
Earth (dashed line). The numbers on the lines represent the months
during 2000. The cross marks the position of the spacecraft and the
diamond that of the Earth on April 5, 2000, corresponding to Figs. 3
and 4. The line of sight of the Lyman « observations discussed in the
text are almost always perpendicular to the line connecting the Nozomi
spacecraft and Earth. Note that the orbit of Nozomi is inclined at a small
angle to the ecliptic plane.

Nagoya University (Kojima et al., 1998). We also com-
pared the derived density data with in situ measurements
obtained by the Ulysses spacecraft. In Sections 2-6, we
describe the remote sensing methods used for deriving the
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Fig. 3. Circular tracks of the lines of sight of the Nozomi UVS (solid) instrument on April 5, 2000, projected on a sky map. The directions of the
spin axis and Earth are shown by the cross and the diamond, respectively, and are practically identical. The upwind and downwind directions of the
interstellar neutral hydrogen are shown by the double circles. The numbers at the line of sight contour of UVS correspond to the spin angle.
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Fig. 4. The intensity of the Lyman « emission observed by the UVS
instrument on April 5, 2000 that corresponds to the Fig. 3. The units
of the intensity are Rayleighs. The solid line shows the original data,
and the broken line shows the data corrected by low- and medium-pass
filtering, both of which reduce noise and the star contamination seen,
for example, at —59° in the heliographic latitude.

latitudinal dependence of the solar wind density. The latitu-
dinal dependence of the solar wind density derived here is
discussed in Section 7, and the solar wind density derived
from our method is compared with that from the Ulysses
measurements in Section 8. Our conclusions are presented
in Section 9.

2. Observations

The Nozomi spacecraft was in the Mars transfer orbit
with perihelion at 1 AU and aphelion at 1.5 AU (Fig. 2). The
observations were performed during the cruise period in the
Mars transfer orbit. Nozomi is a spin-stabilized spacecraft
with a high gain antenna fixed to its top. Its spin axis was
always directed toward the Earth. The Lyman o emission
of neutral interstellar hydrogen at 121.6 nm was recorded
by the ultraviolet imaging spectrometer (UVS) instrument
from March 1999 until April 2002.

Interplanetary Lyman alpha emission

100 700
Rayleigh T T
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1999/03/02 - 2000/03/14
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Fig. 5. Full sky intensity map of the interplanetary hydrogen Lyman «
emission as derived from UVS instrument performed during 1 year,
from March 2, 1999 to March 14, 2000. The intensities are averaged
in each 5° x 5° grid.

The UVS instrument has two sensors: a grating spec-
trometer (UVS-G), operating at wavelengths between 110
and 310 nm with a spectral resolution of 2—3 nm, and a hy-
drogen and deuterium absorption cell photometer (UVS-P)
(Fukunishi et al., 1999). In this study, the H Lyman o emis-
sion intensity at 121.6 nm was derived from the UVS-G data
integrated over 110-130 nm in the period from March 2,
1999 to April 24, 2002. The field of view (FOV) of UVS-G
is perpendicular to the spin axis of the spacecraft directed
towards the Earth, which allows the UVS instrument to cap-
ture a full sky image during half of the revolution about the
Sun using the spin and orbital motion of the spacecraft. The
FOV in the plane perpendicular to the axis is equal to 0.09°
and in the plane including the spin axis, it is 0.29°. The spin
period (normally 8 s) is divided into 256 intervals for data
sampling. The spatial resolution of UVS is therefore 1.41°
in the plane perpendicular to the spin axis and 0.29° in the
plane including the spin axis. An example track of the line
of sight (LOS) of UVS on April 5, 2000 is shown in Fig. 3
as a solid-line oval, and the observations obtained from this



376

H. NAKAGAWA et al.: LATITUDINAL DEPENDENCE OF THE SOLAR WIND DENSITY

Table 1. Values of parameters used for the hot model of hydrogen.

Parameters Values Reference

Density of hydrogen at infinity 0.11 (cm—3) Gloeckler and Geiss (2001)
Velocity of hydrogen at infinity 22.0 (km/s) Lallement et al. (2005)
Temperature of hydrogen at infinity 11500 (K) Lallement et al. (2005)
Upwind direction of hydrogen 252.5°, 8.8° Lallement et al. (2005)

scan are shown in Fig. 4. One of the full-sky Lyman « in-
tensity maps, obtained by the UVS instrument during an ap-
proximately 1-year interval from March 2, 1999 to March
14, 2000, is shown in Fig. 5.

As shown in Fig. 3, each latitudinal scan of the sky is
yielded in the upwind and downwind hemisphere. The scan
in the upwind hemisphere is collected from opposite direc-
tions in the hemisphere to the other scan in the downwind
hemisphere. The scans can also be plotted as a function of
ecliptic latitude, as in Fig. 4. For the analysis presented in
this paper, we selected data from lines of sight located in
the upwind hemisphere. Details of the UVS instrumenta-
tion and the method used to construct full-sky images from
the UVS latitudinal scans are described by Taguchi et al.
(2000).

3. Calculations with the Hot Model

Interpretation of the observations was carried out with
the use of a hot model of neutral interstellar gas distribution
in the heliosphere. This model has been described by Fahr
(1978), Thomas (1978), Wu and Judge (1979), and Lalle-
ment et al. (1985), among others. In this study, a hot model
based on the investigations carried out by Wu and Judge
(1979) and Lallement et al. (1985) was used to calculate the
interplanetary neutral hydrogen distribution along the LOS
of the instrument. In this model, the Maxwell-Boltzman
distribution is assumed for the velocity distribution of hy-
drogen atoms at infinity, i.e., where the solar influence can
be neglected but where it is still inside the heliospheric in-
terface, characterized by the density n, temperature 7, and
the bulk velocity V' of the unperturbed gas. It should be
noted that the existence of the heliospheric interface and
hydrogen-proton coupling by charge exchange can induce
significant changes between the local conditions following
crossing of the interface region and the actual conditions of
the interstellar gas, as shown by Zank (1999), Miiller et al.
(2004), and Pogorelov et al. (2004). However, closer to the
Sun, both models describe the hydrogen atoms in a similar
manner.

Radiation pressure compensates for the solar gravity to
an extent depending on the intensity of solar radiation in
the Lyman « line and the trajectories of hydrogen atoms
are hyperbolic, with eccentricities and semi major axes de-
termined by the ratio u of solar radiation pressure to solar
gravity. The ionization rate of the interplanetary hydrogen
B, which is a measure of the loss process in the neutral hy-
drogen atoms on its approach to the Sun, was expressed
as a function of heliographic latitude b and distance from
the Sun r. The ionization rate was calculated at each point
along the path of a hydrogen atom during its travel through
the solar system. The probability of survival of the atom
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Fig. 6. Time variations in solar radiation pressure normalized by solar
gravity, as used in the hot model. Monthly averages are computed for
each moment of the Nozomi observations from a time series of the solar
Lyman « flux returned by the SOLAR2000 model.

until it reaches a given point in space was calculated by in-
tegrating the ionization rate probability over the entire path
from infinity to the given point.

The parameters of the gas at infinity were adopted as
follows: the upwind direction of interstellar neutral hydro-
gen was adopted as determined based on the SOHO/SWAN
observations by Lallement ef al. (2005) (252.5°, 8.8°) in
the ecliptic coordinates, and the bulk velocity (22.0 km/s)
and temperature (11500 K) based on also Lallement ef al.
(2005). The density (0.11 cm™?) was adopted as determined
based on Ulysses in situ observations of interstellar hydro-
gen by Gloeckler and Geiss (2001). The parameters used in
the model are summarized in Table 1.

The most important feature of this calculation is that both
the ionization rates and radiation pressure are based on ac-
tual observations. Figure 6 shows the monthly averages of
radiation pressure expressed in units of solar gravity, com-
puted for each moment of the Nozomi observations. These
monthly averages are used to compute the simulated inten-
sities corrected for fluctuations of the solar illumination.
The model is fitted to the Lyman o time series obtained
from SOLAR2000 (Tobiska et al., 2000). For simplifica-
tion, the solar line profile was assumed to be flat, so that the
radiation pressure does not depend on the radial velocity of
the atoms. In reality, the solar line profile is not flat and
corresponds to approximately a ca. 10% change in neutral
hydrogen density.

The ionization processes of the interplanetary hydrogen
are simulated as a sum of the charge-exchange of hydro-
gen atoms with solar wind protons, photoionization, and
electron impact, as summarized by Bzowski et al. (2008).
Here, the electron impact ionization rate is neglected due
to its smallness. Thus, the ionization rate of the hydro-
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gen atom is described as B = Bc. + Bpn Where B is the
charge exchange ionization rate, and B, is the photoion-
ization rate. Daily charge-exchange rates (B..) were cal-
culated using daily in situ observation parameters provided
by the OMNI-2 data (OMNI WEB, Goddard Space Flight
Center, NASA; http://omniweb.gsfc.nasa.gov/ow.html) us-
ing the formula:

nvoce (v) _ Foe(v)

ﬂce = =

2 2

(D

where v is the solar wind velocity, 7 is the solar wind den-
sity, F is the solar wind flux, r is the distance from the Sun,
and o (v) is the cross-section for charge exchange, which
was calculated following Lindsay and Stebbings (2005)
from the formula:

ay \ 4.5
0 (V) = (a1 — az log E(v))? (1 - e_) ®)

where E(v) is the projectile energy in keV. a; = 4.15,
a, = 0.531, and a3 = 67.3 are coefficient parame-
ters. Thus, oc(v) is a function of the relative veloc-
ity between the atoms and the solar wind protons. The
photoionization rate B, was derived from measurements
made with the solar extreme ultraviolet monitor (SEM) on
board the SOHO spacecraft at wavelengths of 0.1-50 nm
(see http://www.spaceunibe.ch/soho/data.html). The spec-
tral profile of solar EUV radiation (0.1-91.2 nm) was calcu-
lated using the SOLAR2000, and the cross-section for pho-
toionization was calculated following the method of Crud-
dace et al. (1974). The photoionization rate in the ecliptic
plane is then given by

912
Bph = / FyopndX (3)
0

where oy, (v) is the cross-section for photoionization, F; is
spectral flux, and A is wavelength. Figure 7 shows the vari-
ations in the rate of ionization for the period from March
1999 to April 2002. It is assumed that all of the variations
in the factors affecting the ionization rate propagate instan-
taneously. While such an assumption is fully justified in the
case of photoionization, it is not fully accurate in the case of
the charge-exchange process (it takes approximately 1 year
for a disturbance in the solar wind to propagate from 1 AU
to the termination shock). Since, however, the maximum
of the backscattered Lyman o signal comes from about 3—
5 AU from the Sun and since most of the ionization losses of
neutral interstellar hydrogen occur inside ~10 AU from the
Sun, where the solar wind propagation time does not exceed
~1.5 months, the assumption of instantaneous propagation
does not introduce serious discrepancies.

The backscatter intensities were calculated using the op-
tically thin, single-scattering approximation, which means
neglecting multiple scattering of the Lyman « photons on
the heliospheric gas atoms (Quémerais, 2000). The solar il-
luminating flux is by no means spherically symmetric, and
it fluctuates on time scales comparable to the solar rotation
period. Hence, the non-radial LOS of Nozomi/UVS cannot
be assumed to be illuminated by a spherically symmetric
flux. The scale of the fluctuations can be observed in the
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Fig. 7. Time variations in the rate of total ionization rate (solid), charge
exchange ionization rate (broken line), and photoionization rate (dotted
line) in the ecliptic plane used in the hot model for the period from
March 1999 to April 2002.

SOLAR2000 time series, which was used to derive the nor-
malized radiation pressure, as shown in Fig. 6.

Latitudinal asymmetries of the solar flux in the far ultra-
violet (FUV), and H Lyman « were discussed in Cook et
al. (1981), Pryor et al. (1992), and Auchere et al. (2005a,
b). According to Cook et al. (1981), the latitudinal struc-
ture of the solar EUV irradiance can be approximated by
the following function:

Fy(a) = Fs1 + (Fy — Fy1) cos’ 4)

where Fy and Fg, are the solar Lyman « flux within the
ecliptic plane and over the Sun’s poles, respectively, and
a is the solar equatorial latitude. Although the latitudinal
structure according to Cook et al. (1981) describes the pho-
ton flux in the FUV region, we extend the same structure to
the solar H Lyman « flux because the anisotropy of the H
Lyman « solar flux has not yet been explored. The flux ratio
of the solar H Lyman « above the ecliptic plane to over the
pole is assumed to be 0.8, which was estimated by Pryor et
al. (1992) at the solar maximum period. Coincidentally, the
photoionization rate is assumed to have the same anisotropy
(i.e., 0.8).

4. Latitudinal Anisotropy of the Ionization Rate

The most important feature of this study is that the lat-
itudinal anisotropy of the ionization rate of the charge-
exchange is the only free parameter that is proportional to
the solar wind proton flux and the cross section for charge-
exchange, as shown in Eq. (1). Hence, if the cross section is
known, the solar wind proton flux can be derived from the
ionization rate. Summanen (1996) suggested the following
formula to describe the ionization rate 8 (b, r), which de-
pends on an anisotropy constant A.:

2
B(b,r) = o (1 — Ac sin(ch))?) & (—40° < b < 40°)
r

)
Bb.r) = Po(l — Ac>'r—; (1] > 40°)
®)

where By is the ionization rate at 1 AU from the Sun and
at the equator in heliographic latitude, . is 1 AU, A. is an
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Fig. 8. Assumed latitudinal dependence of the ionization rate on the
ionization rate for A = —0.6, —0.5, —0.4, —0.3, —0.2, —0.1, 0.0,
0.1, 0.2, 0.3, and 0.4 from the upper line to the lower line when the
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Fig. 9. The calculated intensity profiles of interplanetary Lyman « emis-
sion with multiple anisotropy of the ionization rate (color lines) are com-
pared with the observational intensity profile obtained for April 5, 2000,
corresponding to Fig. 4 (black line). Note that the data in the upwind
hemisphere is shown. Ac = —0.6, —0.5, —0.4, —0.3, —0.2, —0.1, 0.0,
0.1, 0.2, 0.3, and 0.4 correspond to the shift in the color of the lines from
blue to red.

anisotropy constant, ¢ = 9/4 is a scaling factor for a smooth
connection at 40°, and r is the distance from the Sun. Previ-
ous studies have shown that A, depends on the solar activ-
ity phase (Kumar and Boardfoot, 1979; Ajello et al., 1994;
Pryor et al., 2001). In the case of A, = 0.4, interplane-
tary hydrogen atoms at the equator are more ionized than at
the poles. The case of A, = 0.0 corresponds to an ioniza-
tion rate that is independent of the ecliptic latitude. A wider
range of A is allowed in our calculations than in those of
Summanen (1996), who adopted values of between 0.0 and
0.4. We investigated negative A., which corresponds to the
case of interplanetary hydrogen atoms at the poles being
more ionized than those at the equator. Overall, we eval-
uated values of A, between —0.6 and 0.4 in steps of 0.1.
Figure 8 shows the assumed latitudinal dependences of the
ionization rate for the 11 values of A. studied: —0.6, —0.5,
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—-04, -0.3, —0.2, —0.1, 0.0, 0.1, 0.2, 0.3, and 0.4; these
correspond to the polar ionization rate normalized by the
equatorial ionization rate R = 1 — A of 1.6, 1.5, 1.4, 1.3,
1.2, 1.1, 1.0, 0.9, 0.8, 0.7, and 0.6, respectively. We de-
rived the intensity of the interplanetary hydrogen emission
using the calculated ionization rate for these 11 cases of A..
The calculated intensity profile is shown in Fig. 9 compared
with the intensity profile observed for April 5, 2000.

5. Chi-Square Fit
The calculated intensities are normalized by the observed
average as follows:

ZIN=1 Lobs
N (6)
2 izt feal

where N is the number of data points for each day (N =
256) and Iy and I, are the calculated intensity and obser-
vational intensity, respectively, for each LOS. Model calcu-
lations for various values of A. are compared with the UVS
data using the residual Xz, which is defined as

I = Ica X

2
0;

N 2
2 (Iobs.i - Clcal,i)
X = E -
1
(7

1 N

Iobs,i
Ly e

Ical,i

C:

where o is the root mean square (RMS) deviation of /s,
and C is a scaling factor. The values of x? are computed
for the 11 cases, and the value of A. corresponding to the
smallest x2 is adopted as the best fit solution. Finally, the
latitudinal distribution of the ionization rate is computed
for each day. To evaluate the procedure, we compared
the observed and calculated Lyman « intensities; examples
on April 5, 2000, corresponding to Fig. 9, are shown in
Fig. 10. Note that the x? analysis is performed for data
taken only in the upwind hemisphere. In Fig. 10, x? values
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Fig. 10. Example of comparisons between observed intensity profile and
calculated intensities. X2 values corresponding to A = —0.6, —0.5,
-04,-0.3,-0.2,—-0.1,0.0,0.1,0.2,0.3,and 0.4 (R (= 1 — A.) = 1.6,
1.5,14,1.3,1.2,1.1, 1.0, 0.9, 0.8, 0.7, and 0.6) are shown.
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corresponding to the 11 cases for A. (or R) are shown by
filled circles. For reference (i.e., April 5, 2000 observation),
the value of R(1 — A.) was determined to be 0.8.

6. Determination of Solar Wind Density

Once the anisotropy of the ionization rate A. is deter-
mined, the anisotropy of the total ionization rate B(b, r)
and that of the charge exchange ionization rate B, can
be derived, due to the assumption of photoionization rate
Bpn- The latitudinal dependence of the solar wind velocity
is needed to derive the latitudinal dependence of the solar
wind proton flux and density using the charge exchange ion-
ization rate B, as shown in Eq. (1). The IPS observations
conducted by the STEL of Nagoya University (Kojima and
Kakinuma, 1990; Kojima et al., 1998) were used to obtain
the solar wind velocity v (and hence the cross-section of
the charge-exchange o (v)) in Eq. (1). This enabled ac-
curate determination of the global distribution of the solar
wind speed. The computer-assisted tomography method is
employed to obtain the global distribution of the speed data
from the STEL IPS observations.

7. Results

The amplitude of the ionization rate anisotropy and its
variation for 3 years from 1999 to 2002 are shown in
Fig. 11. The variation in both hemispheres was mostly sim-
ilar, except for the enhancement of the flux in the southern
hemisphere on June, 1999. The shift from an anisotropic
ionization rate pattern at solar minimum to an isotropic pat-
tern at solar maximum was clearly visible. Although the
ionization rate at the equator was larger than that at the pole
before the middle of 2000, the polar-to-equatorial ioniza-
tion rate ratio increased toward the solar maximum, and the
latitudinal dependence of the ionization rate roughly shows
an isotropy. During this period of solar cycle, fast and slow
solar winds are mixed at all latitudes. Thus, the ioniza-
tion rate-by-charge exchange with the solar wind proton is
mostly constant with heliographic latitude. Within the mar-
gin of statistical error, the polar ionization rate did not sig-
nificantly exceed the equatorial ionization rate even in the
solar maximum period. Once the ionization rate ratio was
far below R = 1 in the last half of 2001, its ratio began to
increase again from the beginning of 2002 onwards. This
behavior is very similar to the activity of the solar cycle,
as represented by the variation of the solar Lyman o flux
or radiation pressure in Fig. 6. The polar ionization rate
normalized by the equatorial ionization rate correlates well
with solar cycle activity.

Using the ionization rate data, we derived the solar wind
proton flux from 1999 to 2002. These data are plotted in
a latitude versus time diagram in Fig. 12 (top). The solar
wind speed derived from STEL observations and the solar
wind density determined by our method are also shown in
Fig. 12 (middle and bottom, respectively). It is evident from
Fig. 12 that we successfully observed the slow and dense
solar wind over the poles during the solar maximum period.
The polar solar wind density indicates a significant growth
from the first half of 2000 in both hemispheres, and the
polar values of solar wind density are close to the equatorial
values. This result is due to the disappearance of the coronal
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Fig. 11. Amplitude of the ionization rate anisotropy and its variation. The
blue lines show the variation of the asymmetry of the ionization rate in
the northern hemisphere and the red lines show the same in the southern
hemisphere. The vertical axis represents the polar-to-equatorial ioniza-
tion rate ratio. The horizontal axis represents the month in the period
from March 1999 to April 2002.
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Fig. 12. A latitude-vs.-time diagram of the solar wind speed (middle)
derived from STEL observations, solar wind proton flux (top), and
density (bottom) made by our method.

hole. In addition, a marked density depletion occurs in the
middle of 2001 in both hemispheres, which is ascribed to
the development of fast winds from the polar coronal hole.
After 2002, the polar solar wind density increased again due
to the disappearance of the polar coronal hole.

8. Discussion

We have shown how the latitudinal dependence of the
ionization rate and solar wind changes during the solar
maximum period. The variation in the latitudinal depen-
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Fig. 13. Comparisons between the solar wind speed derived from STEL
observations and that measured by the Ulysses in 2001. The top three
panels correspond to latitude-vs.-time diagrams of the solar wind speed
derived from STEL observations. The red lines represent the trajectory
of the Ulysses spacecraft. The middle panels show the time variation of
the solar wind speed density measured along the trajectory of Ulysses.
The broken and solid lines represent the Ulysses measurements and
STEL observations, respectively. The bottom panels show the ratio of
STEL observations divided by Ulysses measurements for the solar wind
speed. The horizontal axis indicates the month in 2001 and the vertical
axis represents the heliographic latitude.

dence of the ionization rate shown in Fig. 11 is basically
similar to that reported previously (Nakagawa et al., 2003;
Quémerais et al., 2006). Quémerais et al. (2006) derived the
latitudinal dependence of the total ionization rate By from
the SOHO/SWAN measurements during a period of almost
10 years (1996-2006). Their results suggest that the ion-
ization was strongly asymmetric between 1996 and 2000,
with an excess of 70% in 1998, and that the ionization rate
was roughly symmetrical between the last half of 2000 and
2004, although even in this period the equatorial ionization
rate was still slightly larger than the pole values. These re-
sults have a good consistency with our results in Fig. 11.
The solar wind density data derived from this study are
compared with in situ measurements by the Ulysses space-
craft from 2001, with the spacecraft moving from the south-
ern high latitudes to the northern poles (a so-called “fast
scan”). Figs. 13—15 shows comparisons between our mea-
surements and those of Ulysses. The top panels of Figs. 13—
15 correspond to the latitudinal-vs.-time diagram of the so-
lar wind speed derived from STEL observations, proton
flux, and density derived from our method. The red line in
each plot represents the trajectory of the Ulysses spacecraft.
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The middle panels show the time variation of the solar wind
speed, proton flux, and density measured along the trajec-
tory of Ulysses. The Ulysses’ values are smoothed by the
27-day running mean method. The broken and solid lines in
the middle panels represent the values of Ulysses and those
of our method, respectively. The bottom panels show the
ratios of our method divided by Ulysses measurements for
the solar wind speed, proton flux, and density. The density
data obtained in this study basically show a good agreement
with the Ulysses data in a long-term trend. However, our
density data were systematically smaller than the Ulysses
data by a factor of approximately 2 from July to September
in 2001. Meanwhile, note that our method overestimated
both the density and the proton flux in the high latitudinal
region. One possible reason for this overestimation is that in
a highly variable phase of the solar activity the solar wind
structure is unstable in the solar maximum phase. More-
over, the Ulysses’ values reflect local conditions in the solar
wind, whereas our method reflects relatively global condi-
tions. The influence of coronal mass ejections (CMEs) may
also cause this difference. The effect of CMEs is neglected
in this study; it is necessary to explore CMEs in future in-
vestigations.

The main uncertainty in the analysis methods used here
can be considered to originate from the ambiguity of the
parameters assumed in the model calculations, such as the
radiation pressure, the ionization rate, the solar Lyman «
flux at all latitudes, and the density of the hydrogen atom.
Quémerais et al. (2006) reported that ionization rates de-
rived from in situ solar wind measurements are significantly
smaller than their results from interplanetary Lyman o mea-
surements at solar maximum. This discrepancy remains an
open question. A more accurate estimation of these param-
eters would be beneficial, although such a study is beyond
the scope of this work. We assume that a classical hot model
is appropriate for this work as a first step to a separate eval-
uation of the remote sensing method and model. A more
realistic model and the dynamic behavior on a much shorter
time scale can be investigated as the next step in future work
using time-dependent heliospheric models, such as those
of Rucinski and Bzowski (1995), Zank (1999), Fahr et al.
(2000), Miiller et al. (2004), Pogorelov et al. (2004), and
Izmodenov et al. (2008).

9. Conclusions

In this study, the interplanetary Lyman o emission ob-
servations of the Nozomi spacecraft are analyzed with the
aim of investigating the latitudinal variation of the ioniza-
tion rate of interplanetary hydrogen and its long-term evo-
lution during 1999-2002. The results show that the polar
ionization rate increases during the ascending phase and is
almost equivalent with the equatorial ionization rate at the
solar maximum, which coincides with previous results. We
successfully observed the slow and dense solar wind over
the poles during solar maximum period. Our calculations
of polar solar wind density indicates that it experienced a
significant growth from the middle of 2000 onwards. In ad-
dition, a marked density depletion occurred in the middle of
2001, and this is ascribed to the development of fast winds
from the polar coronal hole. A comparison with Ulysses in
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situ measurements suggests a roughly consistent—although
significant (a factor of 2)—difference between the Ulysses
measurements and our measurements in the middle of 2001.
The cause of this discrepancy is not understood and requires
further exploration in a future study.
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