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Numerical simulations of the solar corona and Coronal Mass Ejections
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Numerical simulations of Coronal Mass Ejections (CMEs) can provide a deeper insight in the structure and
propagation of these impressive solar events. In this work, we present our latest results of numerical simulations
of the initial evolution of a fast CME. For this purpose, the equations of ideal MagnetoHydroDynamics (MHD)
have been solved on a three-dimensional (3D) mesh by means of an explicit, finite volume solver, where the
simulation domain ranges from the lower solar corona up to 30Rs. In order to simulate the propagation of a
CME throughout the heliosphere, a magnetic flux rope is superposed on top of a stationary background solar
(MHD) wind with extra density added to the flux rope. The flux rope is launched by giving it an extra initial
velocity in order to get a fast CME forming a 3D shock wave. The magnetic field inside the initial flux rope is
described in terms of Bessel functions and possesses a high amount of twist.
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1. Introduction

It is generally accepted that coronal mass ejections
(CMEs) originate from the so-called ‘closed’ magnetic re-
gions on the Sun, consisting of thousands of magnetic
loops. Such ‘closed’ magnetic fields can be found in ac-
tive regions, filaments, and transequatorial interconnection
regions. The latter regions are most likely to appear dur-
ing solar minimum, when the active regions are located, on
average, much closer to the equator. Cremades and Both-
mer (2004) studied 124 structured CME events and anal-
ysed the relation between the source region characteristics
at the solar surface and the morphology of the correspond-
ing CME observed with LASCO. They concluded that
structured CMEs can be interpreted as three-dimensional
magnetic field entities that arise in a self-similar manner
from pre-existing small-scale loop systems. Jing et al.
(2004) made a statistical study of more then 100 filament
eruptions and found that 56% of the investigated events cor-
responded with a CME. Gilbert et al. (2000) performed
also a statistical study of prominence activity and developed
definitions of active and eruptive prominences. These au-
thors came to the conclusion that eruptive prominences are
more strongly associated to CMEs (viz. 94% of the investi-
gated events) than active prominences (only 46%), and that
probably all CMEs associated with eruptive prominences
possess the three-part front-cavity-core structure. In gen-
eral, filaments are believed to form in magnetic fields of
the shape of sheared arcades and that the prominence ma-
terial is suspended in the corona by concave upward mag-
netic fields, possibly possessing some twisted topology (e.g.
Kippenhahn and Schliiter, 1957; Kuperus and Raadu, 1974;
Manchester, 2001; Karpen et al., 2001; Low and Zhang,
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2004).

Axisymmetric (2.5D) MHD models can be used to nu-
merically simulate CME propagation (e.g. Wu et al., 1999).
Chané et al. (2006) demonstrated that 2.5D simulations
with a simple CME model, consisting of a high-density
plasma blob including a magnetic flux rope, can predict the
flow variables at 1 AU for a specific CME event reason-
ably well. Remark that Jacobs et al. (2007) made a detailed
comparison of these 2.5D simulation results to a similar 3D
simulation and showed that the 2.5D simulation yields ac-
ceptable results provided the momentum of the initial CME
is chosen in a proper way. However, it is straightforward to
see that the effect of the CME depends on the angular posi-
tion of the observer and that the assumption of axial symme-
try poses severe restrictions to the possible magnetic field
configuration in the magnetic cloud. In the present paper,
the three-dimensional (3D) extension of this 2.5D model
is presented. The strategy followed for simulating a CME
event is the same as in Chané et al. (2006), but in stead of
launching a spherical plasma blob, a more advanced mag-
netic flux rope model, with an enhanced density, is flung
into the interplanetary medium by giving it an initial veloc-
ity profile. The initial magnetic configuration in the flux
rope is a modification of the Lundquist equilibrium for con-
stant « force-free fields in cylinder geometry and will be
presented in the next section.

2. Simulation Set-up

The ideal MHD equations have been solved in spherical
coordinates (7, 6, ¢) on a three-dimensional spherical mesh,
covering a complete sphere, i.e. 0 € [0, 7] and ¢ € [0, 27].
The magnetic field is kept divergence-free by using the
vector potential on the nodal points. The computational
domain covers the region between the lower corona and
30Rg, using a grid resolution of 324 x 95 x 184 cells,
including two ghost cells at each boundary. The grid shows
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an accumulation of cells both towards the solar surface and
towards the solar equator, where the grid size varies from
Ar = 0.02Rg near the solar surface to Ar = 0.25Rg
at the outer boundary and from A6 = 4° near the poles
to A6 = 0.8° at the equator. The grid was taken to be
equidistant in the azimuthal direction. The simulation was
executed on the VIC-cluster of the K.U.Leuven. To reach
a time of + = 10 h in the code, 35382 iterations were
needed. The run was finalised in about 21.5 h by using
120 processors simultaneously.

In order to construct a background solar wind model, the
full set of (ideal) MHD equations has been solved in a co-
rotating frame along with an extra added gravitational force
as well as an additional heating/cooling source term, very
similar to the term that was used by Groth et al. (2000).
This wind model shows no dependence on the azimuthal di-
rection and provides a good approximation for the roughly
axisymmetric wind occurring at solar minimum.

Romashets and Vandas (2003) present an expression for
the magnetic field in toroidal geometry, reading:
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where (+/, ¢’, 6") represent the toroidally curved cylindrical
coordinates, Jy and J; are Bessel functions of the first kind
(of order 0 and 1, respectively), and R, denotes the major
axis of the torus. The minor axis is indicated by r’ = ry
and the constant ¢ is determined by Jo(arg) = 0. In this
way, the magnetic field lines are confined within the torus.
This solution for the magnetic field satisfies the solenoidal
constraint and approximates the force-free condition in the
limit of a large aspect ratio, i.e. in the limit Ry/ro > 1.
Next, the Romashets and Vandas solution is subjected to
the transformation r —> r — a (Gibson and Low, 1998),
stretching space inward, towards the origin. The transfor-
mation deforms the shape of the original flux rope, resem-
bling an already rising prominence. The stretch factor a is
set to a value of 0.3R and the top of the flux rope is at a
height of 0.7Rs above the solar surface. The transformed
flux rope solution is then superposed on top of the station-
ary background wind model discussed above. To keep the
analogy with previous work (e.g. Jacobs et al., 2005; Chané
et al., 2006) some extra density and velocity is added to the
flux rope. The additional density and velocity profiles are
both dependent on the toroidal coordinates r’ and ¢’. In
doing so, we have control over the added amount of mass,
energy, and momentum, and as such over the propagation
of the CME.

Prominences are always observed above photospheric re-
gions where the magnetic field changes sign. Since in the
applied (axisymmetric) background coronal model for so-
lar minimum the only polarity inversion line coincides with
the equator, the flux rope solution is placed above the so-
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Fig. 1. Initial magnetic field configuration. The solar surface is coloured
with the radial magnetic field strength. Inside the flux rope the isosur-
face of p = 2p, is plotted, with p, the surface density. The isosurface
is coloured with the radial velocity.

lar equator in the present simulation. From observations
it is known that filaments lie in a highly sheared fashion
over the inversion line, making an angle of ~20° (Leroy
et al., 1984). Also according to Leroy et al. (1984), most
quiescent prominences are of inverse polarity. The initial
configuration of the flux rope was taken such that the ob-
servational constraints were satisfied. The magnetic field
strength in a quiescent prominence is typically between 5
and 40 Gauss. In the model, the value for the toroidal field
in the centre of the flux rope was set to By = 1.44 Gauss.
This is lower than what is observed, but remember that
the initial condition represents a prominence that is already
erupting. The maximum velocity inside the flux rope was
set t0 Ueme = 4000 km s~! and the total amount of mass
added equals 4 x 10" g. A visualisation of the initial state
is shown in Fig. 1.

3. Results

Figure 2 shows contours of the radial velocity at t =
15 min after the onset of the CME event. The initially
highly twisted magnetic field in the flux rope reconnects
with the overlying magnetic field, but the magnetic field
lines in the CME remain connected to the solar surface.

Figure 3 illustrates the longitudinal variation in the den-
sity and the velocity. This plot shows the density and ra-
dial velocity in the cross-section of three meridional planes
and the equatorial plane. The three meridional planes are
located at a constant azimuthal position of ¢ = 150°,
¢ = 165°, and ¢ = 180°. The velocity and density pro-
file in the original undisturbed background solar wind are
indicated on the plots with at dashed line. From these plots
it is clear that a strong shock is propagating ahead of the
CME. Since the CME is launched along the negative X-
axis, the part of the CME in the plane ¢ = 180° moves the
fastest.

Gopalswamy et al. (2005) studied the arrival times of
several historical fast events and these authors argue that
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Fig. 2. Snapshot at + =15 min showing the radial velocity contours
(colour) and the magnetic field lines (black). The solar surface is
coloured with the radial magnetic field strength. Top: velocity contours
in the equatorial plane; bottom: velocity contours in the xz-plane.

the maximum initial speed of a CME may not be much
higher than ~3000 km s~'. In the present simulation, the
plasma blob was given an initial speed in order to mimic the
eruption. Since no initiation mechanism was considered,
also the mechanism for accelerating CME:s is not captured
well in this simulation and the plasma cloud will experience
a strong deceleration in the initial phase of the simulation.
Therefore, the v.me parameter is set to a quite high velocity
of 4000 km s~!'. However, remark that this high velocity
is only reached in one single point of the flux rope and the
average amount of extra velocity added corresponds to a
value of only ~600 km s~!. The deceleration of the CME
is made clear in Fig. 4, where the position of the CME front
in the equatorial plane is plotted versus time. The figure
shows the height-time plots for the CME front in the three
meridional planes discussed above. The plot shows also the
height-time profile for the centre of mass, being defines as
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Fig. 3. Cut along the equator of the radial velocity (top) and the density
(bottom) at three azimuthal positions, 2 h 15 min after the launch of the
CME. The dashed line indicates the steady state wind value.
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Fig. 4. Height-time curves for the position of the CME front along the
equator in three meridional planes and for the centre of relative mass
(CRM).

The centre of mass is calculated by using the relative den-
sity p, which is a measure for the excess or depletion of the
density with respect to the background solar wind density.
Since a CME is defined as an outward motion of a new, dis-
crete, bright, white light feature in the coronagraph field of
view, only those locations with an enhancement in density
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Table 1. Average velocity and acceleration of the CME front and of the
centre of relative mass (CRM).

@ = 150° ¢ = 165° @ = 180°
(v) 1059 km s~! 1411 km s~! 1594 km s~!
(a) —213ms2 —485ms2 —78.8ms2

of at least 10% with respect to the background density were
taken into account in the calculation of the centre of mass.

The height-time curves were fitted with first and sec-
ond order polynomials to obtain the average velocity and
acceleration. The measured quantities for the average ve-
locity and acceleration are summarised in Table 1. The
CME front (in the ¢ = 180°-plane) shows a strong de-
celeration of 79 m s~2. The extensive statistical study of
Yashiro et al. (2004) pointed out that, on average, the accel-
eration of CMEs with average velocity (v) > 900 km s~!
is —15 m s72. The strong deceleration of 79 m s~ of the
CME front is rare, but not un-occurring.

4. Conclusions

A three-dimensional time dependent MHD simulation of
a CME event has been performed, where the simulation
domain ranged from the lower corona up to 30Rg. The
CME was mimicked by launching a high density flux rope
in the solar wind, where the used model for the background
wind represents solar minimum conditions. The magnetic
field topology of the flux rope was the Romashets and Van-
das (2003) solution in toroidal geometry. By applying the
transformations of Gibson and Low (1998), the flux rope
was stretched towards the solar surface, imitating a rising
prominence. The simulation presented in this paper is the
3D generalisation of the 2.5D models described in earlier
work (e.g. Jacobs et al., 2005; Chané et al., 2006). Three-
dimensional CME simulations provide the ability to investi-
gate the three-dimensional nature of CMEs. With the recent
launch of the STEREO mission, it will become possible to
check the outcome of the models with the multiple view
point observations made by STEREO.

The model presented here is different from the simula-
tions of e.g. Roussev et al. (2003) and Manchester et al.
(2004) in the sense that we add an extra amount of momen-
tum and energy to the flux rope, in order to have more con-
trol over its propagation. Roussev et al. (2003) used the flux
rope model of Titov and Démoulin (1999) and by removing
the overlying line current, the flux rope became unstable,
causing an eruption. In case no extra density or velocity is
added, the magnetic field of the flux rope in our model sim-
ply reconnects with the overlying coronal field, not causing
a violent eruption. This might be due to the low magnetic
field strength inside the flux rope and a higher magnetic
field strength might be desirable. Another weakness of the
simulation is the background wind model. The medium in
which the CME is propagating influences the evolution of
the CME. A more realistic wind model with input from
magnetograms and/or empirical laws (e.g. Wang and Shee-
ley, 1990) for the solar wind is then also necessary if the
model wants to be used to simulate specific CME events.
For future studies it might be interesting to investigate the
effect of the initial parameters like the amount of added ve-
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locity, density, and magnetic field on the CME evolution.
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