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Statistically predicting Dst without satellite data
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In this paper we construct a regression relationship for predicting Dst 1 hour ahead. Our model uses only
previous Dst values. This regression is totally unbiased and does not rely on any physical model, except for the
fact that Dst somehow contains the information on the recurrent geomagnetic storms. This regression has the
prediction efficiency of 0.964, linear correlation with official Dst index of 0.982, and RMS of 4.52 nT. These
characteristics are inferior only to our other model, which uses satellite data and provides the prediction efficiency
of 0.975, linear correlation with official Dst index of 0.986, and RMS of 3.76 nT. This makes it quite suitable for
prediction purposes when satellite data are not available.
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1. Introduction
Space weather prediction is one of the main tasks of mod-

ern space research. The necessity of such activities was
well understood for a long time (Marubashi, 1989). Space
weather prediction activities divide into two large cate-
gories: prediction of space weather directly in space, and
prediction of space weather manifestations on the Earth.
The first category is mostly important for planning of
space missions, predicting and evading hardware failures
of spacecraft due to arcing in electronic components, and
assuring astronaut safety with respect to radiation hazard.
These tasks mainly require prediction of energetic particle
fluxes. The second category deals with influence of space
weather on power grid operation, radio communications,
and health of people, especially those with cardiovascular
diseases. These tasks mainly require prediction of geomag-
netic disturbances. This article will focus on space weather
prediction on the Earth.

There are many quantitative indices of geomagnetic ac-
tivity. The most widely used of them are storm-time distur-
bance Dst and planetary geomagnetic activity index Kp. Dst
is more convenient for prediction purposes, because it di-
rectly equals the disturbance of H -component on the Earth
measured in gammas (1γ = 10−4 Gs = 1 nT). It is aver-
aged over several low- and mid-latitude magnetometer sta-
tions and is usually associated with the westward ring cur-
rent, which appears during the storm at 4–8RE, although
this association was strongly criticized by e.g. Campbell
(1996). At the same time, Kp is an integral and more arti-
ficial characteristic of the overall level of geomagnetic dis-
turbance. In this paper Dst is used for space weather pre-
diction.

Space weather prediction is a challenging and nontrivial
activity (Joselyn, 1995; Li et al., 2003). Since Burton et
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al. (1975) published their pioneering work, many authors
tried to forecast space weather indices. Papers (Kugblenu
et al., 1999; Watanabe et al., 2002; Wing et al., 2005;
Pallocchia et al., 2006) featured neural network approach;
papers (Zhou and Wei, 1998; Balikhin et al., 2001; Harrison
and Drezet, 2001) incorporated adaptive filtering; papers
(Rangarajan and Barreto, 1999; Oh and Yi, 2004; Wei et al.,
2004; Johnson and Wing, 2004) applied statistical methods;
papers (Burton et al., 1975; Valdivia et al., 1996; O’Brien
and McPherron, 2000a, b; Temerin and Li, 2002; Ballatore
and Gonzales, 2003; Cid et al., 2005; Siscoe et al., 2005;
Temerin and Li, 2006) used empirical models; and papers
(Dryer et al., 1984; Raeder et al., 2001) developed global
MHD simulations.

The best results for 1-hour prediction were achieved by
Temerin and Li (2002, 2006), who used an empirical model.
They achieved the prediction efficiency of 0.91, linear cor-
relation of 0.95 and RMS of 6.4 nT. Neural network ap-
proach provides short-term predictions up to 4 hours in the
paper (Wing et al., 2005). It experiences significant difficul-
ties predicting geomagnetic storms with Kp > 5, though.
Adaptive filtering seems more successful being able to pro-
vide 8-hour predictions in the paper (Harrison and Drezet,
2001). However, in the papers, which incorporate adaptive
filtering, the volume of the dataset usually does not exceed
6 months of data (4380 points), which is not enough to cor-
rectly describe long-time variations in geomagnetic activity,
caused, e.g., by 11-year solar cycle. Statistical methods give
interesting results, but were rarely used for prediction, and
much more often for developing and constraining empirical
models (Johnson and Wing, 2004). Empirical models were
the most often used, and provided some of the best 1-hour
predictions. Most of them are improvements of the empir-
ical relationship proposed in a pioneering paper by Burton
et al. (1975), who analysed the ring current injection and
decay. However, their model suffered from the lack of solar
wind data and poor physical understanding of solar wind-
magnetosphere interaction at that time. Global MHD simu-
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Fig. 1. Scatter plots of measured Dst versus Dst 1 hour ago (on the left) and versus predicted Dst (on the right).

lations give the longest prediction times but fail to correctly
describe kinetics in boundary layers and ballooning insta-
bilities, which are believed to be responsible for the sub-
storm onset.

Here we use the same method as in our other article
(Parnowski, 2008), which combines statistical and empir-
ical approaches. We payed attention mostly to 1-hour pre-
diction, though we obtained a 9-hour prediction as well. We
predicted Dst 1 hour ahead because the temporal resolution
of the dataset was 1 hour, so we just predicted the next value
in the series. Besides, longer prediction times resulted in
predicted value being shifted in time. For prediction we
use only that information, which is available at the moment
when prediction is made, i.e. 1 hour prior to the predicted
value. We will reference to this value as “1 hour ago”. We
determine the quality of prediction by 3 values: residual
mean square (RMS), prediction efficiency (PE), defined as
[1 − (mean squared residual)/(variance of data)] (Temerin
and Li, 2002), and the linear correlation coefficient (LC)
between the prediction and Dst. In the article (Parnowski,
2008) we constructed a regression relationship, which pro-
vides PE = 0.975, LC = 0.986, and RMS = 3.76 nT.

However, this relationship requires satellite data to be
continuous for the previous 20 hours. Thus, when the data
contain a gap for some reason, we are unable to predict Dst
for the next 20 hours. For this reason, we need an ‘emer-
gency’ regression, which would operate without satellite
data. Besides, satellite data are often missing during very
strong geomagnetic storms, which are the most interesting
events. Such a regression will be constructed in this article.

2. Data, Routine and Results
We used the OMNI 2 database, available at NSSDC

(http://nssdc.gsfc.nasa.gov/omniweb/). It contains IMF, so-
lar wind and geomagnetic data, averaged over 1-hour inter-
vals (49 parameters in total, starting from Jan 1, 1963). The
complete 43-year Dst time series given therein is continu-
ous and features an eye-visible 27-day and 11-year period-
icity, which hints for strong dependence on solar activity.

We seek Dst in a regression form

Dst( j) =
∑

i

Ci xi ,

where j is the current step (number of hours since Jan 1,

1963), Ci are the regression coefficients, and xi are the
regressors, which are functions of input quantities and their
combinations. Values of Ci are determined by the least
square method with equal statistical weights of all points,
and the statistical significance of the regressors–by Fisher
test (Fisher, 1954; Hudson, 1964).

The initial number of regressors was deliberately exces-
sive to let Fisher test select the most statistically significant
of them. This was done in the following way. After pro-
cessing the data with the least square method, Fisher sig-
nificance parameter F was determined for each regressor.
All F values were compared to the values 2.7055, 3.84,
5.02, 6.635, 7.879, 10.83 and 12.1, which correspond to
statistical significance of 90, 95, 97.5, 99, 99.5, 99.9 and
99.95% respectively. Then, insignificant regressors were
rejected and the routine was repeated until all the regres-
sors were significant. We chose the minimal significance
level of 90%. In contrast to empirical models we do not
add fitting parameters and all the regressors have obvious
physical meaning. The described routine was applied to the
complete 43-year dataset sans rejects. More details on the
routine can be found in the paper (Parnowski, 2008).

First, we determined which previous Dst values are sta-
tistically significant. For this purpose, we constructed a re-
gression

Dst( j) = C0 +
N∑

i=1

Ci Dst( j − i),

where N is the oldest Dst value; we reached the value N =
900. We found that there are statistically significant values
as far as 801 hours ago (33 days and 9 hours). The statistical
significance of this oldest value is over 99.9%. However, it
is possible that there are even older statistically significant
values. A similar situation was reported by Johnson and
Wing (2004) regarding Kp: “the significance is often quite
large for extended periods of time (10–20 days)”. This
might be related in some way to recurrent geomagnetic
storms, but some additional research is required before final
explanation could be given to this phenomenon. This will
be done in a future article.

After determining which previous Dst values are statisti-
cally significant, we added nonlinear terms. We tried differ-
ent powers of the most significant terms and their products.
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Fig. 2. Experimental Dst index data and theoretical predictions from several models. Reprinted from (Cid et al., 2005). “Dst from Kyoto” stands for
the official Dst index from WDC-B.

Fig. 3. Our prediction for the same period of time as on Fig. 2. Satellite data is missing in the left part of the plot.

Thus, we constructed a regression, which consisted only of
Dst terms and a constant regressor. Its characteristics are:
PE = 0.964, LC = 0.982, RMS = 4.53 nT.

To illustrate predictive capabilities of our model we
present several figures: Fig. 1 shows scatter plots of mea-
sured Dst versus Dst 1 hour ago (it is the simplest possible
prediction model) on the left and versus prediction on the
right; Fig. 2 shows predictions by Cerrato et al. (2004),
Fenrich and Luhmann (1998), O’Brien and McPherron
(2000b), and Burton et al. (1975) for Jul 15–19, 2000; Fig. 3
shows our prediction for the same period of time.

More comparison with other models can be found in the
paper (Parnowski, 2008).

3. Conclusion
It appeared possible to predict Dst 1 hour ahead using

only its previous values. This hints for recurrent behaviour
of geomagnetic activity. In terms of prediction efficiency
and linear correlation with the official Dst index this model
is inferior to the model, which uses satellite solar wind data.
However, satellite data is often missing during strong geo-
magnetic storms and this model can be used to fill the gap
in predicted Dst time series. Thus, a combination of a re-
gression model using satellite data with the model obtained
in this article can provide accurate on-line operational Dst
forecast.

Of course, larger prediction times are desirable, but 1-
hour prediction is still useful. For example, magnetometers

can be switched to high temporal resolution mode, sensitive
equipment can be turned off, etc.

4. Summary
In this article we obtained the following results:

1. We derived a regression, which relies only on previous
Dst values.

2. It allows predicting Dst 1 hour ahead with PE = 0.964,
LC = 0.982 and RMS = 4.53 nT. Thus, it is very
convenient for on-line Dst prediction when satellite
data are not available.

3. Previous Dst values are statistically significant up to
801 hours ago and possibly more.

4. Nonlinear terms appeared to be very significant.

Acknowledgments. Author is grateful to the National Space Sci-
ence Data Center for the OMNI 2 database.

References
Balikhin, M. A., O. M. Boaghe, S. A. Billings, and H. St. C. K. Alleyne,

Terrestrial magnetosphere as a nonlinear resonator, Geophys. Res. Lett.,
28, 1123–1126, 2001.

Ballatore, P. and W. D. Gonzalez, On the estimates of the ring current
injection and decay, Earth Planets Space, 55, 427–435, 2003.

Burton, R. K., R. L. McPherron, and C. T. Russell, An empirical relation-
ship between interplanetary conditions and Dst, J. Geophys. Res., 80,
4204–4214, 1975.

Campbell, W. H., Geomagnetic storms, the Dst ring-current myth and
lognormal distributions, J. Atm. Terr. Phys., 58, 1171–1187, 1996.



624 A. S. PARNOWSKI: STATISTICALLY PREDICTING DST WITHOUT SATELLITE DATA

Cerrato, Y., E. Saiz, C. Cid, and M. A. Hidalgo, Geomagnetic storms: their
sources and a model to forecast Dst index, in Lecture notes and essays
in Astrophysics, pp. 131–142, 2004.

Cid, C., E. Saiz, and Y. Cerrato, Physical models to forecast the Dst index:
comparison of results, Proc. Solar Wind 11—SOHO 16 “Connecting
Sun and Heliosphere”, Whistler, Canada 12–17 June 2005 (ESA SP-
592, September 2005), 116–119, 2005.

Dryer, M., S. T. Wu, G. Gislason, S. M. Han, Z. K. Smith, J. F. Wang, D. F.
Smart, and M. A. Shea, Magnethydrodynamic modelling of interplan-
etary disturbances between the Sun and Earth, Astrophys. Space Sci.,
105, 187–208, 1984.

Fenrich, R. R. and J. G. Luhmann, Geomagnetic response to magnetic
clouds of different polarity, Geophys. Res. Lett., 25, 2999, 1998.

Fisher, R. A., Statistical methods for research workers, Twelefth edition,
London, Oliver and Boyd, 1954.

Harrison, R. F. and P. M. Drezet, The application of an adaptive non-
linear systems identification technique to the on-line forecast of Dst
index, Proc. Les Woolliscroft memorial Conf. / Sheffield Space Plasma
Meeting: Multipoint measurements versus theory, Sheffield, UK, Apr
24–26, 2001 (ESA SP-492), 141–146, 2001.

Hudson, D. J., Statistics Lectures on Elementary Statistics and Probability,
Geneva, CERN, 1964.

Johnson, J. R. and S. Wing, A cumulant-based analysis of nonlinear mag-
netospheric dynamics, Report PPPL-3919rev, http://www.pppl.gov/
pub report/2004/PPPL-3919rev.pdf, 2004.

Joselyn, J. A., Geomagnetic activity forecasting—the state-of-the-art, Rev.
Geophys., 33, 383–401, 1995.

Kugblenu, S., S. Taguchi, and T. Okuzawa, Prediction of the geomagnetic
storm associated Dst index using an artificial neural network algorithm,
Earth Planets Space, 51, 307–313, 1999.

Li, X., M. Temerin, D. N. Baker, G. D. Reeves, D. Larson, and S. G.
Kanekal, The predictability of the magnetosphere and space weather,
EOS, 84, 2003.

Marubashi, K., The space weather forecast program, Space Sci. Rev., 51,
197–214, 1989.

O’Brien, T. P. and R. L. McPherron, Forecasting the ring current index Dst
in real time, J. Atm. Sol.-Terr. Phys., 62, 1295–1299, 2000a.

O’Brien, T. P. and R. L. McPherron, An empirical phase-space analysis
of ring current dynamics: Solar wind control of injection and decay, J.

Geophys. Res., 105, 7707, 2000b.
Oh, S. Y. and Y. Yi, Relationships of the solar wind parameters with the

magnetic storm magnitude and their association with the interplanetary
shock, J. Korean Astron. Soc., 37, 151–157, 2004.

Pallocchia, G., E. Amata, G. Consolini, M. F. Marcucci, and I. Bertello,
ANN prediction of the Dst index, Mem. S.A.It. Suppl., 9, 120–122, 2006.

Parnowski, A. S., Dst prediction using the linear regression analysis, Kos-
michna Nauka i Technologiya, 2008 (accepted, in Russian).

Raeder, J. et al., Global simulation of the Geospace Environment Modeling
substorm challenge event, J. Geophys. Res., 106, 381–396, 2001.

Rangarajan, G. K. and L. M. Barreto, Use of Kp index of geomagnetic
activity in the forecast of solar activity, Earth Planets Space, 51, 363–
372, 1999.

Siscoe, G., R. L. McPherron, M. W. Liemohn, A. J. Ridley, and G. Lu, Rec-
onciling prediction algorithms for Dst, J. Geophys. Res., 110, A02215,
doi:10.1029/2004JA010465, 2005.

Temerin, M. and X. Li, A new model for the prediction of Dst on the
basis of the solar wind, J. Geophys. Res., 107, 1472, doi:10.1029/
2001JA007532, 2002.

Temerin, M. and X. Li, Dst model for 1995–2002, J. Geophys. Res., 111,
A04221, doi:10.1029/2005JA011257, 2006.

Valdivia, J. A., A. S. Sharma, and K. Papadopoulos, Prediction of magnetic
storms by nonlinear models, Geophys. Res. Lett., 23, 2899–2902, 1996.

Watanabe, S., E. Sagawa, K. Ohtaka, and H. Shimazu, Prediction of the Dst
index from solar wind parameters by a neural network method, Earth
Planets Space, 54, 1263–1275, 2002.

Wei, H. L., S. A. Billings, and M. A. Balikhin, Analysis of the geomagnetic
activity of the Dst index and self-affine fractals using wavelet trans-
forms, Nonlinear Process. Geophys., 11, 303–312, 2004.

Wing, S., J. R. Johnson, J. Jen, C.-I. Meng, D. G. Sibeck, K. Bechtold,
J. Freeman, K. Costello, M. Balikhin, and K. Takahashi, Kp forecast
models, J. Geophys. Res., 110, A04203, doi:10.1029/2004JA010500,
2005.

Zhou, X.-Y. and F.-S. Wei, Prediction of recurrent geomagnetic distur-
bances by using adaptive filtering, Earth Planets Space, 50, 839–845,
1998.

A. S. Parnowski (e-mail: dyx@ikd.kiev.ua)


	1. Introduction
	2. Data, Routine and Results
	3. Conclusion
	4. Summary
	References



