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Proxy for the ionospheric peak plasma density reduced
by the solar zenith angle
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The F2 layer peak plasma density Nm F2 is reduced by the factor constructed from the relative changes in the
Sun’s zenith angle χ for a particular local time and the local noon value χ0. Proposed transformation yields
a proxy for the peak plasma density which coincides with the source observation at noon but apart from the
latter is gradually reduced towards the night. Hourly observations at 8 ground based ionosondes for the solar
maximum (2000) and minimum (2006) are analyzed for inter-stations and inter-seasonal correlation of the peak
plasma density and the proxy values. The proxy values show improved correlation between the data at different
locations and improved inter-seasonal correlations for a particular location due to greater homogeneity of results
throughout the year contributing to improved evaluation of the ionospheric weather indices.
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1. Introduction
Diurnal and seasonal changes of the plasma density and

temperature in the ionosphere depend directly on the illu-
mination of the upper atmosphere by the Sun. The fea-
tures of the peak plasma density, Nm F2, m−3, proportional
to square of the ionospheric critical frequency fo F2 can be
made more uniform if the effect of the solar grazing inci-
dence on the plasma density in the F region could be re-
duced with a proper transformation.

Earlier, the relevant relations of the noon F2 layer criti-
cal frequency have been investigated for the magnetic con-
jugate locations at the ends of the magnetic line of force
assuming that daytime temperature of the neutral gas is
proportional to the cosine of the Sun’s zenith angle at lo-
cal noon (Rotwell, 1962). The correction factor deduced
for such relation, so called “M-factor” has been used for
constructing the global model of the noon fo F2 critical fre-
quency from the data of global network of ionosondes (Be-
sprozvannaja, 1970, 1987) and the monthly ionospheric in-
dex M F2 (Mikhailov and Mikhailov, 1995). However, this
approach is valid only for the local noon while relevant
transformation for all times throughout the day is required.

The solar zenith angle determines proportions of daytime
and nighttime conditions in the ionosphere at different alti-
tudes over the Earth (Gulyaev and Gulyaeva, 1984) with
relevant plasma density and temperature controlled by the
energy transmitted from the Sun in the form of an electro-
magnetic wave radiation in the UV/EUV ranges to the up-
per atmosphere (Chapman, 1931). The solar zenith angle
dependence as predicted by the Chapman ionization theory
cannot thoroughly explain spatial and temporal variations
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of the ion density by the factors such as plasma produc-
tion due to UV/EUV alone, differential loss due to varying
recombination rate, transport, neutral winds, atmospheric
composition. The energy input from the magnetosphere in
the form of electric fields and charged particle precipita-
tion due to the solar wind also contributes significantly to
the changes of the peak plasma density (Lal, 1997). If the
dominant effect of the solar zenith angle on the ionospheric
plasma density could be reduced by a proper transforma-
tion, an improved metric of the solar-controlled behaviour
of the plasma around the peak of the F2 layer can be ob-
tained.

In the present paper, the variations in the Sun’s zenith
angle are used to produce a proxy for the peak plasma den-
sity, Np F2, by multiplying the observed peak plasma den-
sity Nm F2 by a factor related with the solar zenith angle χ at
a particular time and the local noon value χ0. This process
is evaluated with the data of eight ground based ionosondes
at solar minimum (2006) and maximum (2000) to illustrate
the advantages of the reduced peak plasma density as com-
pared with the source observations that will be useful for
applications in the ionosphere modeling and forecasting.

2. Technique of Inversion of the F2 Layer Critical
Frequency by the Solar Zenith Angle

The solar zenith angle χ reaches peak at the local mid-
night tending to a minimum at the local noon. Impact of the
local conditions of the Sun’s illumination can be excluded
by normalizing the peak plasma density Nm F2 by the solar
zenith angle χ in radians. Change of the normalizing fac-
tor 1/χ from day to night is shown by the dashed line with
triangles in Fig. 1.

The multiplier 1/χ is larger when the solar zenith angle
gets smaller and in the limit of noon between the north and
south tropics as χ approaches zero, 1/χ tends to infinity.
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Fig. 1. Correction factor deduced from the solar zenith angle.

To avoid this singularity, we introduce the second order
polynomial approximation of the best least square fit to 1/χ

for the angles of χ > 1 rad. as follows:

z(χ) = γ (x2 − βx + α) (1)

where x = χ◦/100, α = 3.8749, β = 3.5402, and γ =
0.4444 and z(χ) is given in solid line in Fig. 1.

Multiplying Nm F2 by the coefficient z(χ) yields reduced
nighttime and sunrise/sunset values but tends to increase the
daytime values, particularly in summer towards the equator
when z � 1. To equilibrate such opposite effects for day
and night we replace multiplier in Eq. (1) by the normaliz-
ing factor C(χ, χ0) equal to the ratio of the coefficient of
Eq. (1) for given local time to the value for local noon:

C(χ, χ0) = z(χ)/z(χ0). (2)

With the normalizing factor defined in terms of coef-
ficients α and β we obtain the proxy Np F2 for the peak
plasma density Nm F2 by multiplying the latter by C(χ, χ0):

Np F2 = C(χ, χ0) × Nm F2. (3)

The resultant Np F2 coincides with the source value Nm F2

at noon (C0 = 1) but it is essentially reduced towards
the night when coefficient C(χ, χ0) tends to zero depicting
a reduced maintenance of nighttime ionization compared
with its noon value. Thus, all regularities of the noon peak
plasma density Nm F2 (Besprozvannaja, 1987; Williscroft
and Poole, 1996) are valid for Np F2. However the reduced
values of Np F2 at other times are significantly changed.

3. Validation of the Proxy for the Peak Plasma
Density with Ground Based Ionosonde Data

The above transformation is applied to daily-hourly ob-
servations at 8 ionospheric stations listed in Table 1 for the
solar maximum (2000) and minimum (2006). The solar
zenith angle was calculated for given day of year, geode-
tic coordinates of ionosonde site and local time with the
standard subroutine SOCO (McNamara, 1986) of the Inter-
national Reference Ionosphere code (Bilitza, 2001).

Figure 2 shows the monthly median at Chilton for the
source Nm F2 and reduced Np F2 for 4 seasons during the

Table 1. Geodetic and geomagnetic coordinates (latitude and longitude)
of the ionosonde stations providing data used in the present paper.

Geodetic Magnetic

Station Lat Lon Lat Lon
◦N ◦E ◦N ◦E

Sodankyla 67.4 026.6 63.6 120.8

Julius-Rugen 54.6 013.4 54.3 099.7

Chilton 51.6 358.7 54.1 083.2

Moscow 55.5 037.3 50.4 123.2

Tortosa 40.4 000.3 43.6 080.9

Rome 41.8 012.5 42.3 093.2

El Arenosillo 37.1 353.3 41.4 072.3

Wakkanai 45.4 141.7 35.5 207.3

Fig. 2. Monthly median of observed peak plasma density Nm F2 at Chilton
and proxy Np F2 reduced by the solar zenith angle for four seasons at the
solar minimum 2006.

solar minimum: spring (March), summer (June), autumn
(September) and winter (December) 2006. The source me-
dian and the proxy median coincide at noon. The diur-
nal curve of Np F2 become rather uniform throughout the
year gradually reduced from day to night which corresponds
to reduced income of the ionizing radiation from the Sun
(Gulyaev and Gulyaeva, 1984). The sunrise minimum of
Nm F2 is smoothed in the diurnal change of Np F2. The di-
urnal variation is particularly improved at summer when it
became similar to Np F2 variation for other seasons.

The hourly values of Nm F2 and Np F2 for four seasons are
used for each pair of stations of Table 1 and the mean of all
correlation coefficients are computed. In Table 2, the inter-
location correlation coefficient r2 is presented for selected
months at solar maximum (2000) and minimum (2006).
Improved correlation between the stations data is obtained
with the proxy values in all cases. The most appreciable
improvement of r2 is obtained for the summer solstice when
the dominant is daytime process of the ion production due
to solar illumination during the day.

While the improvement in the correlation of the data from
different stations has been the primary goal of implementa-
tion of Eq. (3), the results reveal also an improved the inter-
seasonal correlation coefficient r1 for each station in Ta-
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Table 2. Mean inter-station correlation coefficient for observed Nm F2
and proxy Np F2 for the peak plasma density at solar maximum and
minimum for four seasons/months.

Year 2000 2006

Month Nm F2 Np F2 Nm F2 Np F2

03 0.841 0.906 0.801 0.888

06 0.521 0.834 0.478 0.802

09 0.653 0.814 0.771 0.883

12 0.827 0.881 0.756 0.856

Table 3. Inter-seasonal correlation coefficient averaged for all stations for
Nm F2 and Np F2 at solar maximum (2000) and solar minimum (2006)
for two pairs of months.

Year 2000 2006

Months Nm F2 Np F2 Nm F2 Np F2

03∼12 0.824 0.938 0.641 0.880

06∼09 0.298 0.858 0.528 0.885

Fig. 3. Inter-seasonal relation for September versus June 2006 for ob-
served peak plasma density Nm F2 (upper panel) and for proxy Np F2
(lower panel) at Wakkanai.

ble 1. The averages of the correlation coefficients r1 are pro-
vided in Table 3 for all stations referring to selected months
of March–December and June–September at the solar max-
imum and minimum. The proposed technique brings im-
proved inter-seasonal correlations for Np F2 as compared
with Nm F2, particularly, for the June–September pair of
months due to the most appreciable changes in Np F2 for
the summer solstice.

Figure 3 illustrates inter-seasonal relation for June–
September at Wakkanai between the hourly values of Nm F2

(upper panel) and Np F2 (lower panel) at solar minimum,
2006. It is evident that regression between the data for 2
different seasons (summer and equinox) is improved in the
proxy data set as compared with the observed Nm F2. It is
expected that proposed transformation of the F2 layer peak
density depicting more uniform daily/seasonal variation as
compared with the observations would be helpful for the
modelling and forecasting purposes than the more sophis-
ticated day-to-day and hour-to-hour changes of the source
Nm F2 data.

The advantages of the proposed approach proved to be
useful for reconstruction of missed ionosonde observations
of the critical frequency fo F2 with the data of another sta-
tion using the cloning technique discussed in (Gulyaeva et
al., 2008) so that the complete daily/hourly data sets for se-
lected location/season/month are available for derivation of
the ionospheric weather indices.

4. Conclusion
In this study, a new technique for obtaining a proxy for

the ionospheric peak plasma density is proposed. The cor-
rection factor depends on ratio of the solar zenith angle at
the time of observation to its local noon value. The noon
values of the normalized peak plasma density coincide with
observations of Nm F2 but Np F2 is gradually reduced from
day to night throughout the year for all observations ana-
lyzed at eight ionospheric stations for the maximum and
minimum of solar activity. The normalization of the peak
plasma density improves not only the correlation coefficient
between the data of different stations but also the inter-
seasonal correlation for the data of a particular station.

The proposed technique of inversion of the peak plasma
density by the solar zenith angle presents physically justi-
fied replacement of the variable by a proxy value of signif-
icantly improved characteristics. The proposed proxy pa-
rameter exhibits diurnal/seasonal homogeneity of the peak
electron density which is one of the key parameters of mod-
ern ionospheric models.
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