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A new approach to the hourly mean computation problem
when dealing with missing data
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Geomagnetic observatory records are unavoidably affected by primary data interruptions which, in turn, may
have possible effects on the accuracy of the definitive data derived from them. One of the products most widely
used by the scientific community is the mean hourly values, immediately obtained from the primary minute values
of the geomagnetic field. Although some precepts have already been proposed and used, a definitive criterion
regarding the procedure to follow when dealing with missing data has not yet been established. This could be
seen in the last IAGA meetings and workshops, where several constructive opinions were put forward in this
respect. The present discussion is devoted to analyzing the effects that different amounts of missing data have
upon the accuracy of the means, a necessary step before establishing a definitive rule as to how to deal with these
situations. In this statistical approach, we propose a new criterion based on the relative value of the root mean
square error (between actual and computed means) with respect to the natural magnetic field variations of the
original hourly interval.
Key words: Mean hourly values, uncertainty, geomagnetism, accuracy, confidence level, missing data, data
processing, statistics.

1. Introduction
The mean hourly values of the Earth’s magnetic field el-

ements as recorded by ground-based observatories are used
in a number of studies dealing with medium term varia-
tions, such as those related to the Sq system of currents
(Green, 1972; Torta et al., 1997) or the EEJ (Rangarajan,
1982). They are also employed in magnetic field modelling
(Walker et al., 1997), indexing (Martini and Mursula, 2006;
Svalgaard and Cliver, 2007), and even in the study of Sq

trends (Le Mouël et al., 2005; Torta et al., 2008). They
provide representative values of the magnetic field within
the hours of interest, which are useful when dealing with
intermediate timescale magnetic features. Regarding the
cases of long and short timescales, high time resolutions
are required when studying shorter timescale magnetic phe-
nomena such as Pi2 (1-second data) or Sfe (1-minute data),
while low time resolutions are used in the study of longer
timescale phenomena such as magnetic jerks (monthly val-
ues) or secular variation (annual values).

A moderate time resolution also implies that high accu-
racy in the magnetic field magnitude is simply not required
for many purposes. Hence we are faced with the question as
to what the required level of accuracy for the hourly means
is. For practical reasons the answer to this question should
be as general as possible, although it probably depends on
several factors, such as the type of study carried out by each
particular data user. Likewise, it seems clear that the degree
of magnetic field disturbance in the relevant hourly inter-
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val also plays an important role. Suppose, for instance, that
the magnetic field variation during a given disturbed hourly
interval is 500 nT. For many purposes it will probably be
meaningless to provide a mean hourly value (MHV) with
an accuracy of 1 nT, since it will not add substantial infor-
mation to our study. An accuracy of 50 nT may well suffice.
On the contrary, an hourly variation of 5 nT will certainly
require a more accurate mean to distinguish the fine natu-
ral variations we may be interested in, such as those related
to the Sq. Following this reasoning, we hereafter suggest
establishing a criterion based on the standard deviation of
the magnetic field variations computed from the (original)
minute values in the hour, rather than establishing one def-
inite, clear-cut value for accuracy. Thus, the question to
be addressed to MHV data users is: What fraction of the
standard deviation represents the required MHV accuracy?
The answer to this question requires a deep analysis of the
diverse uses of MHVs that we, as data providers, will not
attempt to undertake here.

The problem of missing data within the hourly intervals
is related to this issue. An absence of data is frequently
a consequence of acquisition problems, or is derived from
the data post-processing itself. There are several opinions
regarding the most adequate procedure to follow in the pres-
ence of data gaps, as shown in the last IAGA meetings
and workshops. One of the fundamental questions to be
addressed is: How many minute data can be lost in one
hour without the hourly mean losing significance? This is
directly related to the question addressed in the previous
paragraph regarding the required accuracy of the MHVs. If
the reported mean stays within the required accuracy de-
spite a given number of missing data, then this number is
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Table 1. Geomagnetic and geographic coordinates of the observatories used in this study.

Geomagnetic latitude Geomagnetic longitude Geographic latitude Geographic longitude
(◦N) (◦E) (◦N) (◦E)

College, CMO 65.4 261.7 64.9 212.2
Boulder, BOU 48.4 320.6 40.1 254.8
San Juan, SJG 28.3 6.1 18.1 293.8
Ebre, EBR 43.2 81.3 40.8 0.5
Livingston Is., LIV −52.6 8.6 −62.7 299.6

considered permissible. Of course, this question cannot be
answered a posteriori, since we would not be able to cal-
culate the actual or true mean (i.e., with the complete data
set). In this sense, the aim of the exhaustive works of Man-
dea (2002) and Schott and Linthe (2007) was to establish a
rule capable of, a priori, answering the following question:
Given a tolerable number of missing data, to what extent
does the estimated mean depart from the actual mean? In
their studies, these authors find major dependences on the
latitude of the analyzed observatory and on the underlying
magnetic field activity, which leave questions unanswered
regarding the MHV computation problem.

Our approach differs slightly in that, given a number of
missing data, we are interested in finding out by what frac-
tion of the standard deviation (of the original data) the es-
timated mean departs from the actual mean. For now, let
us refer to this concept as relative accuracy. For the same
reasons as those set out above, we think this is a more phys-
ically significant parameter than an absolute lower limit for
the accuracy (e.g., 1 nT). Obviously, there are so many
possibilities of different distributions of gaps within the
hour, and the level of magnetic activity of the lost data,
that the outcome will be a distribution of probability. If
the aforementioned required relative accuracy were well-
established, the question of missing data could be addressed
in the following way: What is the maximum number of
missing data we can permit, while being reasonably confi-
dent that the (pre-established) required relative accuracy is
still achieved? We will situate this confidence level at 95%
probability; in other words, we will say we are reasonably
confident that the required limit of relative accuracy will not
be surpassed if its probability of occurrence is less than 5%.
Because it is useful for error propagation, we are also in-
terested here in the relative standard deviation between the
estimated and actual means.

Given that we will not assume any pre-established rela-
tive level of accuracy for the MHVs, in the following sec-
tions we will invert the previous question and try to provide
an answer to the equivalent one: What is the relative ac-
curacy of the estimated MHV when dealing with different
numbers of missing data, whether they be 2, 10, 35, 50...?
Once the required relative accuracy has been determined
(by others), the answer to the last question will immediately
allow us to set the maximum number of missing data.

2. Procedure and Results
The answer to the last question demands a statistical anal-

ysis based on real data. Given a complete test hour (i.e.,
with no missing data), how does the mean respond to the
(artificial) extraction of minute values? As pointed out be-

fore, it will depend on the way these data are extracted.
Among other interesting points, the work from Schott and
Linthe (2007) performs a complete analysis on the real dis-
tribution of data and gap segments within the hourly inter-
vals of a given station (PAF). It concludes that the prob-
ability of having more than one gap segment per hour is
relatively small (of the order of 10% or less); likewise, our
calculations for the Ebro Observatory for the period 2001–
2005 yield a 94% probability for a 1 gap segment and 6%
for 2 gap segments, with cases of 3 or more segments be-
ing virtually non-existent. In fact, Mandea (2002) takes as a
working hypothesis a single gap segment of variable length.

In this work we will proceed by following two scenarios:
in the first one data are extracted randomly to simulate
randomly scattered missing data, while in the second one
data are extracted as a continuum to simulate one single gap.
As a rule, and assuming a fixed number of missing data,
the greater the number of gap segments within the hourly
interval, the closer both the estimated and actual means are.
We can see this intuitively as the information lost with a
short gap segment can, to a certain extent, be interpolated
by the neighbouring minutes. Hence, although the first case
is generally unlikely, it will be useful to show how different
the results from both situations are. Finally, an upper limit is
established for the uncertainty of the estimated mean when
dealing with a realistic distribution of missing data, i.e.,
considering the adequate proportion of gap segments.

The real data used in this study are taken from geo-
magnetic stations at different latitudes: College (CMO) at
high latitude, Boulder (BOU) at mid-latitude, and San Juan
(SJG) at low latitude, for which the X magnetic element
was analyzed. Furthermore, we have made use of the H
element of the observatories run by the authors, namely the
Ebro (EBR) and Livingston Island (LIV) ones, see Table 1.
The use of these magnetic elements is due to their greater
impact in indexing and modelling practices. The data have
also been selected in such a way that they cover different
magnetic activity levels: active, A (local K -index = 8),
moderate, M (K = 5) and quiet intervals, Q (K = 0).
24 hours have been used for a given observatory and dis-
turbance level, so that a total of 360 (5 stations × 3 activity
levels × 24 h) hourly intervals have been analyzed.

Our immediate objective is to obtain the uncertainty of
the mean computed when possessing 60 − g data points,
where g is the number of missing data. We will proceed
by following a Type A evaluation, as defined in the Guide
to the Expression of Uncertainty in Measurement (‘GUM’,
ISO, 1993), in accordance with the subsequent steps:

(1) From our set of 360 hourly intervals we choose one
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Fig. 1. X -component minute values of the disturbed hourly interval recorded at the CMO observatory on January 17th, 2005, 09:00–10:00 UT. The
standard deviation σ and the RMS value obtained after random extraction of 5 data points are also displayed.

complete hourly interval for testing.
(2) g minute values are deleted from the selected hourly

interval and the new (or estimated) mean 〈x〉−g is com-
puted

(3) The actual mean 〈x〉0 (i.e., with no deletions) is sub-
tracted from 〈x〉−g .

(4) The preceding steps are repeated for different extrac-
tion combinations of g data points within the same
hourly interval. The values 〈x〉i

−g − 〈x〉0 are thus
obtained, where the i index denotes each particular
choice of extraction.

(5) The root mean square of these differences is computed
by means of Eq. (1):

RMS−g =

√√√√√√

l∑

i=1

(〈x〉i
−g − 〈x〉0

)2

l − 1
(1)

(6) The 95th percentile of the distribution of the differ-
ences obtained in step 4 is computed, giving rise to
the so-called ‘uncertainty at the level of confidence of
95%’, U 95

−g (see ISO, 1993).
(7) The quotients RMS−g/σ and U 95

−g/σ are computed,
where σ is the standard deviation of the geomagnetic
data in the original hourly interval and gives an idea of
the natural magnetic field activity.

We can interpret RMS−g as a representative value of the
deviation of the new mean (after the extraction of g data
minutes) from the actual mean. Note that the RMS value
obtained from Eq. (1) is not stricto sensu the standard devi-
ation of the distribution of the differences as, in general, the
mean of the different 〈x〉i

−g (with respect to i) is different
from 〈x〉0. Our aim is to study the statistical response of ap-

plying steps 1 to 7 (with different g values) to the different
360 hourly intervals.
2.1 Random extraction

In this case, the data in our test hourly interval are elimi-
nated in a random way, so that for each number g of miss-
ing data, 1000 different extraction combinations are made
(i.e., l = 1000 in Eq. (1)). For example, for g = 5 a first
choice of deletions (l = 1) might correspond to minutes 12,
18, 31, 44 and 57, for l = 2 the deleted minutes might be
00, 07, 23, 24 and 44, and so on. A series of tests indi-
cate that l = 1000 provides a sample large enough to obtain
significant results. This will give rise to a distribution of
the differences between estimated and actual means, which
we will show to be well-approximated by a normal distri-
bution centred at zero. This fact will permit us to note that
(only for the case of random extraction) the RMS/σ value
is effectively the same as the relative standard deviation of
the distribution. After many observations we will arrive at
the important result that, whatever the hourly interval we
consider (regardless of the latitude or activity level), this
relative standard deviation is constant for a given number
of missing data. With these results, we will infer the 95%
confidence level to be the value given by twice the RMS/σ .
Finally, we will provide a plain statistical justification that
approximates the results we find.

Figure 1 shows the minute values of the active (A)
hourly interval corresponding to January 17th, 2005, 09:00–
10:00 UT as recorded at the CMO observatory. The differ-
ences of the means after randomly extracting 5 data minutes
are distributed as shown in Fig. 2. Note that Fig. 1 also dis-
plays σ , the standard deviation of the 60 minute values of
the geomagnetic field, and RMS−5 obtained from the distri-
bution of Fig. 2.

The middle row of Table 2 shows the RMS−g values en-
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Fig. 2. Histogram showing the distribution of the 1000 differences of the means obtained after random extraction of 5 data points for a high-latitude
observatory (CMO) and high activity level (A); hourly interval: January 17th, 2005, 09:00–10:00 UT.
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Fig. 3. Distribution of the 1000 means after random extraction of 5 data points for the hourly interval 00:00–01:00, Nov 16th, 2005, for SJG Q (quiet).
Note that the Gaussian curve does not fit the observed data well. The striped structure of the distribution is an effect of the limited resolution of the
primary minute data applied to such an extremely quiet interval.

countered for the hourly interval of our example when ap-
plying different values of g. It is worth mentioning that the
RMS value as computed from Eq. (1) is 3.38 nT (Table 2),
which coincides with the standard deviation of the distribu-
tion of the estimated means (fit results in Fig. 2). This is
not only the case for the hourly interval of Fig. 2 but, rather,
it is a general result observed whenever dealing with ran-
dom extraction, due to the fact that the distribution is well
centred at 〈x〉0 (〈〈x〉i

−5 − 〈x〉0〉 = −0.06 nT from Fig. 2).
The reader can find another example in Fig. 3. As stated

in the introduction of Section 2, this assertion is not valid
in general, as we will see when dealing with the case of
continuous extraction (Section 2.2).

In order to illustrate the results, we can say that after
many random extractions of 5 data minutes from the hourly
interval of our example, the standard deviation of the new
mean with respect to the actual one is 3.38 nT (see Table 2
or the fit results from Fig. 2). In other words, ‘on aver-
age’, the new mean will be 3.38 nT away from the actual
one. As observed, the distribution of Fig. 2 is well ad-
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Table 2. Root mean square (Eq. (1)) of the computed means after g random deletions, and percentages with respect to σ . Application to the hourly
interval of Fig. 2.

Missing data g 0 5 10 15 20 25 30 35 40 45 50 55 59

RMS−g (nT) 0 3.38 5.04 6.47 7.95 9.42 11.20 13.13 15.80 19.55 24.94 37.24 86.48

RMS−g/σ (%) 0 3.89 5.80 7.44 9.15 10.83 12.89 15.11 18.18 22.49 28.68 42.83 99.47

Table 3. Relative values of the root mean square (RMS−g/σ (%)) after extraction of g data points for a wide sample of stations and activity levels (A
active, M moderate, Q quiet). Note the relatively constant value in a given column, even for hours with different σ values.

Missing data g 0 5 10 15 20 25 30 35 40 45 50 55 59

CMO A Jan 17, 2005 16:00–17:00
0 3.91 5.77 7.47 9.17 10.94 12.91 15.29 18.20 22.55 28.89 42.32 98.36

(σ = 702.0 nT)

CMO Q Mar 22, 2005 08:00–09:00
0 3.85 5.69 7.51 9.00 10.87 12.97 15.39 18.22 22.53 28.79 42.65 99.31

(σ = 1.01 nT)

BOU M Jan 12, 2005 03:00–04:00
0 3.86 5.71 7.53 9.27 10.94 13.07 15.37 18.29 22.49 28.84 42.71 99.77

(σ = 18.9 nT)

SJG A Oct 29, 2003 07:00–08:00
0 3.88 5.76 7.42 9.17 11.10 12.78 15.26 18.49 22.24 28.78 42.86 99.48

(σ = 71.9 nT)

SJG Q Nov 16, 2005 08:00–09:00
0 3.87 5.65 7.67 9.30 10.84 13.17 15.49 18.28 22.39 28.97 42.37 105.89

(σ = 0.13 nT)

EBR M Jan 1, 2005 18:00–19:00
0 3.90 5.77 7.51 9.06 10.97 12.95 15.17 18.13 22.41 28.87 42.32 99.76

(σ = 20.38 nT)

LIV Q May 14, 2004 12:00–13:00
0 3.88 5.78 7.49 9.15 10.96 12.97 15.27 18.54 22.07 28.89 42.75 100.28

(σ = 2.40 nT)

Table 4. Relative uncertainty at the level of confidence of 95%, U 95−g/σ , after random extraction of g data minutes. The values are roughly twice those
of Table 3.

Missing data g 0 5 10 15 20 25 30 35 40 45 50 55 59

U 95−g/σ (%) 0 7.8 11.5 15 18 22 26 31 37 45 58 85 ≈200

justed by a Gaussian curve. This agreement has also been
checked for many other hourly intervals; as expected, the
least favourable cases are found with quiet intervals, when
g is either small or large (see Fig. 3). Nevertheless, regard-
ing the parameters we are interested in, a normal (Gaus-
sian) distribution is still suitable even in this case. A test
for this is the value of U 95

−g as the observed 95th percentile
of the distribution: should the data be normally distributed,
the 95th percentile (= 0.0379 nT in the case of Fig. 3, ob-
tained after the elimination of the tail-most 5% of the dis-
tribution) must coincide with twice the value of the RMS−g

parameter (2 · RMS−5 = 0.0377 nT, where RMS−5 is the
standard deviation displayed in the fit results of Fig. 3). In
summary, we infer that the normal distribution is adequate
to quantify our problem, and thus (only for the case of ran-
dom extraction), we will work with the hypothesis that the
resultant means following random extraction are normally
distributed around the actual mean, regardless of the num-
ber of missing data or activity level.

If we continue analyzing Table 2 we realize that, as ex-
pected, the root mean square increases with g, the number
of missing data. As stated, our approach consists in normal-
izing the RMS−g values with respect to the standard devi-
ation σ of the original data (with no deletions). If we do
so and multiply by 100 to obtain the percentages, we obtain
the last row of Table 2.

A similar table has been obtained for each of the 360 an-
alyzed hours to cover a wide spectrum of activity levels and

observatory latitudes. After this, we observed that although
the different RMS−g vary, the percentages RMS−g/σσσσσσσσ

are practically the same, even if we put different sta-
tions and activity levels together. Table 3 illustrates this
important result with an assorted representation of latitudes
and magnetic activities.

Let us refer to RMS−g/σ as the ‘relative standard uncer-
tainty’ of the estimated mean after the extraction of g data
points. However, it should be clarified that relative in this
context means with respect to σ .

Assuming a normal distribution of the means (obtained
after random extraction) around the actual mean, the prob-
ability that a given mean is within 2 · RMS−g/σ is 95%,
which establishes our confidence level, so the values in Ta-
ble 3 must be duplicated to obtain U 95/σ , which will be
referred to as the ‘relative uncertainty at the level of confi-
dence of 95%’. In other words, after the random extraction
of 5 data minutes, we can say it is reasonably unlikely that
the error in the newly computed mean surpasses 2 × 3.9%
= 7.8% (see column g = 5 in Table 3) of the standard devi-
ation σ of the original hourly data. In conclusion, if we had
pre-established the required relative accuracy, the penulti-
mate question in the introduction, regarding the maximum
number of missing data acceptable, would then immedi-
ately be answered with the help of Table 4, which is valid
for any latitude and activity level.

Finally, we can provide a certain explanation for the re-
sults encountered in this section, especially in relation to the
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Fig. 4. Observed relative standard deviation after random extraction of g
data points, together with approximations for large and small g values.

values of the RMS−g/σ parameter (Taylor, 1982). Suppose
that instead of being continuous, the magnetic field values
were distributed around the actual mean 〈x〉0 according to
a random distribution with standard deviation σ (the actual
standard deviation of the original data). After the random
elimination of 59 points from our original hourly interval,
the mean deviation of the remaining 1 point with respect to
the true mean is just the standard deviation σ of the sam-
ple, so RMS−59/σ = 1 (i.e., 100%), which roughly coin-
cides with the results displayed in the last column of Ta-
ble 3. Likewise, we know from fundamental statistics that
after the elimination of 55 data points, the standard uncer-
tainty of the mean obtained with the remaining 5 data points
is σ/

√
5, so RMS−55/σ = 1/

√
5 (i.e., 44.7%), which is

similar to the corresponding column with header g = 55
in Table 3. In general, in possession of n data points, the
mean relative deviation with respect to the actual mean is
RMS−g/σ = 1/

√
n = 1/

√
(60 − g). Of course, in the

real case we are limited to n = 60, where both actual and
estimated means must converge, so it is expectable that the
deviation with respect to the true mean decreases faster than
1/

√
n. At the opposite extreme (small value of g), after the

deletion of g data points, the best estimate of the sum of
the extracted data is g〈x〉0, with a standard uncertainty of
σ
√

g. This must coincide with the uncertainty of the sum
of the available data, where the best estimate for this sum is
(60−g)〈x〉0. The new mean equals the sum of the available
data divided by the number of available data, 60 − g. Con-
sequently, the standard uncertainty of the new mean will be
(σ

√
g)/(60 − g), or RMS−g/σ = √

g/(60 − g). Both ap-
proximations for small and large g values are displayed in
Fig. 4, together with the observed results.
2.2 Continuous extraction

Things are not so simple when considering the most com-
mon case—that of one single gap. The procedure we follow
in this case is exactly the same as with the previous one, but

instead of random extractions, we will consider a continu-
ous extraction of variable length. The number of possible
ways a single gap of length g can be extracted from a given
hour is reduced to c = 61 − g, which allows an analysis
based on all the possible cases. Firstly, we will see that
the approximation consisting in identifying RMS (Eq. (1))
with the standard deviation of the differences between esti-
mated and actual means is, in general, no longer valid for
the case of one single gap. Secondly, we will investigate
the behaviour of the RMS/σ and U 95/σ parameters and see
that, unlike the previous case, they are not constant over dif-
ferent hourly intervals. This will hinder our objectives, and
force us to adopt uncertainty intervals for the corresponding
relative uncertainties themselves (i.e., RMS/σ and U 95/σ ).
However, we will not find a significant dependence of these
two parameters on the observatory latitude or magnetic ac-
tivity level, and this will allow us to set (universally) com-
mon bounds for these intervals.

Figure 5 shows the distribution of the 41 differences of
the estimated means with respect to the actual (or true)
mean for the case of LIV M, hourly interval: January 9th,
2004, 18:00–19:00 UT, after extracting 20 running minutes
(c = 61 − 20 = 41).

It is clear that the histogram of Fig. 5 is far from a normal
distribution. Moreover, the mean computed after extracting
20 data minutes does not coincide, on average, with the ac-
tual mean 〈x〉0. This is due to the distribution of the mag-
netic field values along the hourly interval, and to the fact
that, with a continuous gap, the central minutes are more
likely to be extracted than those at both ends of the inter-
val. This also implies that the RMS value evaluated from
Eq. (1) (3.5 nT in our example) is slightly different from
the standard deviation of the distribution of the differences
〈x〉i

−20 − 〈x〉0 (3.1 nT), especially when dealing with long
gaps. Despite this, in the interests of readability we will
continue to refer to RMS−g/σ as the relative standard un-
certainty.

We are now interested in the distribution of the relative
standard uncertainties RMS−g/σ over different hourly in-
tervals. Given a gap length g, is the RMS−g/σ value con-
stant regardless of the magnetic activity and observatory
considered, as it was for the random case considered in the
previous section? If it were, we would be able to construct
a table similar to Table 3 and provide the typical accuracy
of the mean estimated in the absence of g continuous data
points. Figure 6 shows the distribution of the 24 RMS−g/σ

values corresponding to LIV M (moderate activity) for gap
lengths g = 5, 15, 25 and 40.

The same experiment of Fig. 6 for the case of random
extraction (Section 2.1) would have shown δ-like distribu-
tions. Thus, for example, all the 24 points corresponding to
g = 5 would be clustered around 3.9%, those for g = 15
around 7.5%, and so on (see Table 3). Unfortunately, this
is not the case for the continuous extraction, so instead of a
spot value, the data are now distributed in a finite interval;
alternatively, we can understand this interval as reflecting
the uncertainty of the parameter we are trying to evaluate,
RMS−g/σ , which in turn is also an uncertainty. In our ex-
ample, for a gap length g = 15, RMS−g/σ (%) = 25%
± 5% (where the ± sign introduces the standard deviation
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Fig. 5. Histogram showing the distribution of the 41 possible differences of the means after extraction of 20-minute-long gaps from the hourly interval
18:00–19:00 UT, January 9th, 2004, station LIV.
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Fig. 6. Distribution of the individual RMS−g/σ values (g = 5, 15, 25 and 40) for the 24 hourly intervals of LIV M (moderate magnetic activity). For a
gap length g = 15, for example, most of the 24 estimated means are between 20 and 30% of σ away from the actual mean.

of the distribution associated to the relative standard uncer-
tainty itself).

So far we have dealt with the particular case of LIV M, a
mid-latitude observatory (as regards magnetic coordinates),
but does the abovementioned interval increase with increas-
ing latitude or activity level? Table 5 shows a poor or null
dependence of the RMS−g/σ interval on the observatory
latitude.

In addition to this, Fig. 7 aims to show the dependence

of the RMS−g/σ values on the degree of magnetic activity,
quantified here with the standard deviation σ of the original
hourly data.

The plots on Fig. 7 deserve special attention. The most
apparent features are:

- The data distribution suggests a linear relationship be-
tween the relative standard uncertainty RMS−g/σ and
the logarithm of the standard deviation of the original
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Table 5. Dependence of the RMS−g/σ (%) interval on the observatory latitude. Observatories are arranged in order from higher to lower geomagnetic
latitudes. For the computation of the RMS−g/σ intervals in a given observatory, the three magnetic activity levels (A, M and Q) have been taken
together.

Observatory (geom. lat.) g = 5 g = 10 g = 15 g = 20 g = 25

CMO (65.4◦N) 8.0±0.8 15±3 22±5 29±8 35±10

LIV (52.6◦S) 8.2±1.0 16±3 24±5 32±8 40±10

BOU (48.4◦N) 8.2±0.7 16±2 23±5 30±8 38±10

EBR (43.2◦N) 8.2±1.0 16±3 24±6 32±8 40±11

SJG (28.3◦N) 8.2±0.8 16±2 24±4 32±6 40± 8
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Fig. 7. Relative standard uncertainty, RMS−g/σ , as a function of σ for the 360 hourly intervals after extraction of gap segments of length g = 5, 15
and 25.

data, log10(σ ), with the slope increasing with the gap
length.

- Simultaneously, the noticeable scatter enhancement
experienced for increasing gap lengths, g, greatly over-
shadows the σ dependencies, resulting in small corre-
lation coefficients (R-squared in the figure).

- For a given gap length g, the scatter is slightly reduced
with increasing σ .

- For a given gap length, the data are not symmetrically
distributed around the mean, and the tail of the distri-
bution is elongated towards low values of RMS−g/σ .
On the contrary, an accumulation of data points is ob-
served in the upper part of the distribution, which is
more evident for small g values.

In conclusion, σ bears little influence on the relative stan-
dard uncertainty. This result is also important for our pur-
pose of establishing an overall criterion irrespective of the
activity level.

In summary, the data used to produce Fig. 7 reveals that,
when a gap segment of 5 data points is present in an hourly
interval, the ‘standard error’1 of the mean computed with
the available data falls in the interval 0.023σ–0.092σ (min-
imum and maximum RMS−5 values of the total 360 test
hourly intervals), with an important part of the probabil-
ity (68%) ranging between 0.076σ and 0.088σ . This lim-
ited interval allows us to place narrow bounds for the ‘stan-

dard error’ in this case. Similarly, a gap length of 10 min-
utes yields a ‘standard error’ ranging (68% probability) be-
tween 0.135σ and 0.183σ . As observed, this interval in-
creases with the gap length, losing its usefulness beyond,
say, g = 25. For g = 30, for example, this (68%) interval
is 0.35σ–0.58σ , which is much too wide to establish a re-
liable criterion. An important conclusion from Table 5 and
Fig. 7 is that the exact value for the standard error in these
hourly intervals depends on the particular distribution of the
magnetic field values within each specific hour, rather than
on the observatory latitude or activity level.

However, in addition to the relative standard uncertainty
of the estimated mean, we are also interested in the relative
uncertainty at the level of confidence of 95%, U 95

−g/σ ; i.e.,
the relative error which will hardly ever be surpassed. A
similar set of results applies in this case, whereby Fig. 8 is
equivalent to Fig. 7 for the 95th percentile.

Again, U 95
−g/σ slightly increases with σ , although the

scatter overshadows this increment, maintaining it as rel-
atively insignificant. In this case, the data are even more
scattered than those of Fig. 7. Table 6 shows the central
68% interval of the distribution of U 95

−g/σ values for each
gap length g from 0 to 25 (5 by 5).

In order to illustrate the results, we can say we are reason-

1Although it is preferable to use ‘standard uncertainty’ for the reasons
extensively put forward in the ‘GUM’ (ISO, 1993), at this point we use
‘standard error’ to ease reading.
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Fig. 8. Equivalent to Fig. 7 for the 95th percentile case.

Table 6. Upper and lower limits of the central 68% accumulated probability for U 95−g/σ . Values are percentages. Alternatively, this interval can be

understood as the standard uncertainty interval associated to the parameter U 95−g/σ .

Gap length g → 0 5 10 15 20 25

Upper and lower limit of the 68% central interval 0–0 12–17 23–31 31–44 37–57 43–70

ably confident (at the 95% level) that the mean computed
with an absence of 5 running minutes will not be off the
actual mean by more than 0.14σ±0.02σ (see Table 6, col-
umn with header g = 5). The stated uncertainty (±0.02σ )
arises from the dependence of the U 95

−g/σ on the distribu-
tion of the magnetic field values within the specific hourly
interval considered, rather than on the observatory latitude
or activity level itself, so that 68% of the analyzed hours
(i.e., 0.68 × 360 = 245) have this 95% level within 0.02σ

around 0.14σ . Again, this differs from the case of random
extraction, where we had spot values for U 95

−g/σ instead of
an interval.

The above results are based on analysing each individual
hourly interval separately. The relative standard and 95%
confidence level uncertainties are obtained for each hour,
and the figures are based on the probability that a (new)
hourly interval, with its particular number of missing data,
has a certain value of uncertainty. Let us refer to it as the
‘individual’ approach. Nevertheless, we can go one step
further by placing the statistics of all the stations and activ-
ity levels together, i.e., the 360 analyzed hourly intervals.
We will refer to this as the ‘simultaneous’ approach so as to
differentiate it from the previous one. To a certain extent,
we believe this to be an appropriate and correct approach
since we have shown that the observatory or magnetic ac-
tivity in question bear little, if any, influence on the results.
Thus the new procedure will be:

(1) Consider all the possible ways of extracting g running
minutes from an individual hourly interval and com-

pute the different means, 〈x〉h,i
−g , where the h index

stands for the specific hourly interval and i for a par-
ticular extraction combination.

(2) Divide the differences between the estimated and ac-
tual means by σ (of that particular hour), so that the
relative differences (〈x〉h,i

−g − 〈x〉h
0)/σ

h are obtained.
(3) Repeat this process for the 360 hours (h = 1 to 360).
(4) Finally, we put all these relative differences together.

Thus, for a gap length g = 5, a total of 360 × (61 − 5) =
20160 relative differences are obtained, see Fig. 9. It is then
straightforward to obtain the 95th percentile of this distribu-
tion. As well as this, the RMS−g/σ value is obtained from
Eq. (1) replacing (〈x〉i

−g − 〈x〉0) with (〈x〉h,i
−g − 〈x〉h

0)/σ
h .

The results are summarized in Table 7 and Figs. 10 and 11.
As seen in Fig. 10 for the relative standard uncertainty,

except for g = 59, the results of both methods (solid and
discontinuous lines) roughly coincide. The solid line in the
right-hand part of Fig. 10 is a linear (through the origin)
fit of the relative standard uncertainty obtained with the si-
multaneous analysis method for small and moderate gap
lengths. The empirical relationship between both magni-
tudes is found to be:

RMS−g

σ
≈ 0.0158g (2)

The results from both methods are not so close for the case
of U 95

−g/σ (Fig. 11), especially for g > 15. The solid line
in the right-hand part of Fig. 11 is a quadratic (through the
origin) fit of U 95

−g/σ as obtained by the simultaneous ap-
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Fig. 9. Distribution of the 20160 relative differences obtained as a result of a simultaneous analysis for the whole set of hourly intervals for a gap length
g = 5.

Table 7. RMS−g/σ and U 95−g/σ of the overall distribution of the relative differences for the 360 hourly intervals being studied after extraction of gap
segments of different lengths (simultaneous analysis). Values are percentages.

Gap length g → 0 5 10 15 20 25

RMS−g/σ of the global set 0 8.1 16 24 31 39

U 95−g/σ of the global set 0 14 28 41 54 67

proach for small and moderate gap lengths. The empirical
relationship between both magnitudes is:

U 95
−g

σ
≈ 0.0289g − 0.0000942g2 (3)

Thus, for an hourly interval with a continuous gap segment
of 6 minutes in length, which means 10% of the data is
missing, the estimated mean will have a relative standard
uncertainty of the order of 9% (result from Eq. (2)). Fur-
thermore, we can be confident of our mean within a relative
uncertainty of the order of 17% (result from Eq. (3)).

Finally, it may be of interest to note that a value for both
the absolute root mean square, RMS, and 95% confidence
limit, U 95, may be obtained by multiplying Eqs. (2) and (3)
by σ . Of course, we do not know the exact value of this
parameter when dealing with missing data (since it is de-
fined for the complete data set), but to a first approximation
we can evaluate σ with the available data. Furthermore, it
is worth mentioning that it is probably meaningless to ob-
tain a mean with an accuracy higher than the resolution the
MHVs will finally be reported with. In this sense, care must
be taken when obtaining U 95 via Eq. (3) when dealing with
extremely quiet intervals.
2.3 Comparison between the random and continuous

extraction approaches
A direct comparison of Tables 3 and 4 with Table 7 shows

that the random extraction method is not appropriate for
outlining the results of the MHV problem, since data are

unlikely to be missing in a randomly distributed way over
a real hourly interval. One continuous gap is, by far, the
most common way that minute values are absent. Cases
with 2 gaps are the second most common situation (Schott
and Linthe, 2007). A study of the number of gap segments
per hour would yield slightly different results in each obser-
vatory. Nevertheless, we can take the results for the EBR
observatory as an orientation. The results show that a 1 gap
segment (i.e., one continuous gap) has a 94% probability,
while 2 gap segments account for virtually all the remain-
ing 6% of cases. Thus, in a real situation the results for the
uncertainties will be somewhere between those obtained in
the two preceding subsections. In the following part we will
try to find out how far this 6% can affect the results given in
Section 2.2.

It is worth mentioning that, as expected, the uncertainty
associated with a single gap is much greater than the uncer-
tainty of randomly distributed gaps; thus, for a given num-
ber of missing data, the estimated mean will be closer to the
actual one in the latter case. Let us suppose that the assump-
tion stated at the beginning of Section 2 is a general rule: for
a fixed number of missing data, long gaps (i.e., fewer seg-
ments) are less reliable than short gaps (greater number of
segments) when considering the mean computation.

Let us now consider the ‘simultaneous’ approach taken
at the end of Section 2.2, for which the 20160 relative dif-
ferences for g = 5 are shown in Fig. 9. These corre-
spond to the case of one gap, so when introducing the rela-
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Fig. 10. The left-hand graph shows the standard uncertainty of the relative differences after extraction of different gap lengths g, whereas the right-hand
plot shows a zoom for small and moderate g values. Discontinuous lines show the distribution of the relative standard uncertainties and error bars on
them bound the central 68% of analyzed hours (results from the ‘individual’ analysis); solid lines correspond to the standard uncertainty determination
of the overall distribution of the relative differences (results from the ‘simultaneous’ analysis).
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Fig. 11. Same as Fig. 10 for the relative 95% confidence level. Uncertainty bounds have been placed around the ‘individual’ approach central values,
so as to include the 68% of the analyzed hourly intervals (i.e., 245). As an example, the correspondence between a particular value of U 95−g (20% of
σ ) and its associated gap length (between 6 and 9, with a maximum probability corresponding to 7) is outlined.

Table 8. Maximum percentage reduction of the 95th percentile for a realistic gap segment distribution with respect to the 95th percentile obtained when
considering only continuous gaps (Table 7).

Missing data g 0 5 10 15 20 25 30 35 40 45 50 55 59

% reduction 0 0.2 0.2 0.2 0.3 0.3 0.4 0.6 0.7 0.9 1.6 1.7 0.7

tive differences obtained with 2 (or more) gap segments in
the proportion 6/94 (= probability of 2 or more gap seg-
ments over 1 gap segment), the number will increase to
20160 × 100/94 ≈ 21447. The new 1288 added points will
be distributed in the histogram of Fig. 9. However, if we
make the assumption stated in the previous paragraph, the
corresponding relative differences will be closer to 0 than
those of the continuous case, so they will accumulate in

the central part of the histogram. Computing the 95th per-
centile of the new distribution involves rejecting the 5% of
the cases corresponding to the greatest relative differences,
which in the worst case will not affect the added points.
This means we must reject 0.05 × 21447 = 1072 points of
the former distribution tail, which corresponds to retaining
94.68% of the original 20160 points. In summary, the lower
limit for the real 95th percentile (i.e., considering both one
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and more than one gap segments in adequate proportions) is
equivalent to applying the 94.68th percentile to the distribu-
tion of the continuous extraction case; obviously, the upper
limit constitutes the former 95th percentile. Based on this,
Table 8 summarizes the maximum reductions with respect
to the last row of Table 7, assuming that the proportion 6/94
is maintained for each number of missing data, g.

As seen, the reductions are imperceptible in most cases.
The same can be seen even when the proportion of 2 or more
gap segments is considerably greater than 6%, so we can
take the results obtained for the continuous case (Table 7)
as sufficiently good approximations, rather than those given
in Tables 3 and 4.

3. Conclusions and Future Work
The degree of accuracy of the MHVs is related to the

(natural) magnetic variability of the respective hour. Thus,
rather than using a fixed parameter, in our discussion we
have referred to the standard deviation of the original data.

Our analysis set out to provide a general answer to the
penultimate question posed in the introduction: When com-
puting an MHV, what is the maximum number of missing
data we can permit in an hourly interval, and still be rea-
sonably confident that the (pre-established) required rela-
tive accuracy is still achieved? The answer to this question
is not a simple figure and needs qualification. We analyzed a
total of 360 hourly intervals from observatories at different
latitudes and diverse magnetic activity levels, and we con-
cluded that the answer depends principally on the particular
distribution of the magnetic field values within the hourly
interval, rather than on a specific observatory or magnetic
activity at that time. This important fact allowed us to es-
tablish a general rule roughly valid for any location and ac-
tivity level; nevertheless, the mentioned dependence on a
given distribution of the minute values within the hour gives
rise to a certain ‘range of possible answers’ to the question
posed above. In this sense, the uncertainty (corresponding
to a confidence level of 95%) of the mean of our hourly
interval in question, with a given amount of missing data,
may fall within a finite interval. As the number of missing
data increases (g > 25) the answer to our question becomes
increasingly vague, since the analyzed hours show increas-
ingly disparate outcomes, or equivalently, the referred inter-
val is too large for a practical purpose. However, the results
presented for shorter gaps are quite consistent, and at least
we have an order of magnitude for the uncertainty associ-
ated to greater gaps

In this paper we provide some useful tools relating rel-
ative accuracy and number of missing data. Thus, once a
data user has established their required relative accuracy,
our procedure provides a range for the maximum number
of missing data to be permitted in the MHVs of their study.
Let us consider the example of a data user requiring an er-
ror in the estimated mean of, at most, 20% of the standard
deviation of the original data (i.e., 0.2σ ). From our anal-
ysis, it is probable to obtain this result with a maximum
number of missing data ranging from 6 to 9 minutes (this
stems from the uncertainty bounds displayed in Fig. 11),
depending, again, on variables which cannot be controlled
a priori, such as the particular distribution of the minute

values in each specific hourly interval. Given that the max-
imum probability in this case is reached near 7 (Eq. (3) or
Fig. 11 again), we suggest this figure as the optimum max-
imum tolerable number of lost data in the hourly intervals
of the analysis. In this way, it is easy to implement a simple
algorithm which rejects hourly intervals with less than 53
minutes of data, ensuring (at the level of confidence of 95%)
that its MHVs will not be off the true mean by more than 0.2
standard deviations of the original data set. As an alterna-
tive to a self-computed threshold for each particular MHV
user, if a general consensus is attained as regards the ‘av-
erage’ relative accuracy required by data users, the IAGA
association can establish a maximum number of missing
data in the hourly intervals for computation of the observa-
tories’ MHVs. Furthermore, as suggested in the last IAGA
Workshop, it would even be possible to report an estimation
of the standard uncertainty of each computed MHV; this
would be achieved by multiplying Eq. (2) by the σ value
obtained with the available data in each hourly interval.

Although X and H are the most widely-used magnetic
elements in modelling and magnetic field indexing, we en-
courage the undertaking of an analysis for Y and Z as well,
although similar results are expected a priori.
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