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Of the various conditions that affect space weather, Sun-driven phenomena are the most dominant. Cyclic
solar activity has a significant effect on the Earth, its climate, satellites, and space missions. In recent years, space
weather hazards have become a major area of investigation, especially due to the advent of satellite technology. As
such, the design of reliable alerting and warning systems is of utmost importance, and international collaboration
is needed to develop accurate short-term and long-term prediction methodologies. Several methods have been
proposed and implemented for the prediction of solar and geomagnetic activity indices, but problems in predicting
the exact time and magnitude of such catastrophic events still remain. There are, however, descriptor systems that
describe a wider class of systems, including physical models and non-dynamic constraints. It is well known that
the descriptor system is much tighter than the state-space expression for representing real independent parametric
perturbations. In addition, the fuzzy descriptor models as a generalization of the locally linear neurofuzzy models
are general forms that can be trained by constructive intuitive learning algorithms. Here, we propose a combined
model based on fuzzy descriptor models and singular spectrum analysis (SSA) (FD/SSA) to forecast a number
of geomagnetic activity indices in a manner that optimizes a fuzzy descriptor model for each of the principal
components obtained from singular spectrum analysis and recombines the predicted values so as to transform the
geomagnetic activity time series into natural chaotic phenomena. The method has been applied to predict two
solar and geomagnetic activity indices: geomagnetic aa and solar wind speed (SWS) of the solar wind index.
The results demonstrate the higher power of the proposed method—compared to other methods—for predicting
solar activity.
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1. Introduction

Most space weather phenomena are influenced by vari-
ations in solar activity (Vassiliadis et al., 2000). As such,
many of the changes that occur in space weather originate
from solar activity, which varies in an 11-year period, called
the solar cycle. The solar cycle consists of a period of ac-
tivity, the solar maximum, and a period of quiet, the solar
minimum. There are an increased number of flares during
the solar maximum, and these cause a significant increase in
solar cosmic ray intensity. The high-energy particles disturb
communication systems and affect the lifetime of satellites.
Coronal mass ejections and solar flares cause shocks in the
solar wind and geomagnetic disturbances in Earth’s mag-
netosphere. A high rate of geomagnetic storms and sub-
storms result in atmospheric heating and increased drag of
low earth orbit (LEO) satellites (Mirmomeni et al., 2006).
Accurate and reliable long-term solar activity forecasting is
especially useful to space mission centers because the or-
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bital trajectory parameters of satellites are greatly affected
by changes in solar activity.

Several methods have recently been proposed to predict
solar and geomagnetic activity (Haykin, 1994; Lillekjendlie
et al., 1994; Nelles, 2001; Leung et al., 2001). Given the
achievements in the field of chaotic systems, several such
methods can be used in the prediction of solar activity in-
dices, namely polynomial function approximation, recon-
structions using Lyapunov exponents, and the detection of
periodicity in chaotic time series (Vautard and Ghil, 1989).
Of these methods, the physical precursor (Brown, 1992;
Thompson, 1993; Joselyn et al., 1997) and solar dynamo
techniques (Schatten et al., 1978, 1996; Schatten and Sofia,
1987; Schatten and Pesnell, 1993; Sofia et al., 1998), which
are based on simple linear and nonlinear empirical studies,
seem to have superseded the numerical and black box tech-
niques in terms of user preference (Tong and Lim, 1980;
Weigend et al., 1992; Tong, 1996; Uluyol et al., 1998;
Lucas et al., 2003; Gholipour et al., 2003). In the black
box modeling technique, in comparison with the white box
modeling technique (both of which are fully derived by ap-
plying principles of physics, chemistry, biology, economy,
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etc.), both model structure and parameters are determined
from experimental modeling. In other words, to build a
black box model, no or very little prior knowledge is ex-
ploited (Nelles, 2001).

In comparison, descriptor systems have attracted in-
creased interest from researchers during the past two
decades due to their many practical applications (Raouf
and Boukas, 2004; Yonchev et al., 2004; Mirmomeni and
Shafiee, 2005a, b). Such systems describe a wider class
of systems, including physical models and non-dynamic
constraints. The descriptor system is much tighter than
the state-space expression for representing real independent
parametric perturbations (Taniguchi et al., 2000; Lu and
Ho, 2003; Meng and Zhang, 2006). In addition, fuzzy de-
scriptor (FD) models as generalizations of Takagi-Sugeno
fuzzy models and locally linear neurofuzzy models are gen-
eral forms that can be trained by constructive intuitive learn-
ing algorithms. They fulfill the principle of network parsi-
mony, which results in high generalization property. These
models were first reported by Tadanari et al. (Taniguchi et
al., 1999a, b). The Takagi-Sugeno fuzzy model has been
proven to be a universal approximator of any smooth non-
linear systems that are first order differentiable (Taniguchi
et al., 2000). This property provides a strong basis for us-
ing the FD models in the prediction of some solar activity
indices, which have complex dynamics. In addition, the
application of spectral analysis for eliciting the main pat-
tern of a time series is useful for determining a number of
long-term trends in solar activity indices. In turn, these in-
dices can be used for making long-term predictions by a
number of data-driven approaches. One of the well-known
methods in spectral analysis is singular spectrum analysis
(SSA). This method was originally designed to extract in-
formation from short noisy chaotic time series, provide an
insight into the unknown dynamics, and enhance the signal-
to-noise ratio (SNR) (Vautard and Ghil, 1989; Vautard et
al., 1992). In addition, SSA performs a data adaptive filter-
ing in the lag coordinate space of data and yields the prin-
cipal components of time series which have narrow band
frequency spectra and obvious temporal patterns. The prin-
cipal components include linear or nonlinear trends, peri-
odic and quasi-periodic patterns, and some lower amplitude
signals that can be considered as colored noise. Most of
the narrow band periodic components can be estimated via
simple and optimal linear models, while there are always
a number of more complex patterns that present nonlinear
characteristics. Thus, when reconstructing the original time
series from the principal components, one should use both
linear and nonlinear techniques and also the linearity tests.

Here, we propose a new method that combines FD mod-
els with SSA, denoted here as FD/SSA, for the long-term
prediction of solar activity indices. First, SSA is used to
elicit the main patterns of the solar and geomagnetic ac-
tivity indices. After these main patterns or principal com-
ponents of the original time series have been elicited, a
FD model is trained by an incremental learning algorithm,
which is called Generalized Locally Linear Model Tree
(GLoLiMoT) algorithm, for each principal component to
make an intuitive nonlinear black box modeling technique
(which is based solely on measurement data) applicable to
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the long-term prediction of solar and geomagnetic activity
indices. To demonstrate the advantage of this method, we
compare the performance of the FD model with singular
spectrum analysis to several neural and neurofuzzy models
for predicting two geomagnetic activity indices: solar wind
speed (SWS) of the solar wind index and the geomagnetic
aa index as a proxy indicator of the “new” magnetic field.
Our results demonstrate the excellent performance of this
combined model in predicting solar activity as compared to
other neural and neurofuzzy models.

This paper is structured as follows. Section 2 briefly
introduces the nonlinear descriptor system, describing its
characteristics compared to regular systems and addressing
a number of complex phenomena that can be used for some
good test beds to show the performance of such systems
in describing the characteristics of such phenomena. Sec-
tion 3 introduces SSA and FD models and discusses their
characteristics. Section 4 is devoted to describing the learn-
ing methodology that is used for FD models to predict solar
activity indices. In Section 5, the FD model and SSA are
used to predict SWS and geomagnetic aa indices to show
the performance of this method in comparison with other
methods. The last section contains the concluding remarks.

2. Characteristics of Nonlinear Descriptor Sys-
tems
A singular implicit differential equation is an implicit
ordinary differential equation which takes the form of

F(x(@),x(@),u(r),1) =0, (M

X (f) = xo

where x is an n-dimensional state vector, u is an m-
dimensional control vector, ¢ is time, and the Jacobian ma-
trix g—f is singular (Xiaoping, 1995). A system which is de-
scribed by a singular implicit differential equation is called
a singular system (Campbell, 1980; Newcomb, 1981). Sin-
gular systems are often referred to as differential algebraic
equations because they frequently are a mixture of differ-
ential and algebraic equations; that is, they take the form

of
x(@) = f(x,u,t)

2
0=g(x,u,t) @
One can define a matrix £ such that
Ex(t) = F(x,u,t),
10
| f&xu,t)
F(x,u,t) = [g(x,u,t)

This general form of the differential equation is used as
a canonical form of nonlinear singular systems in many
papers. These systems are also called descriptor systems
(Luenberger, 1977) because they are the way in which the
system is initially described. Other names for descriptor
systems are constrained systems (Xiaoping, 1995), degen-
erate systems (Pandolfi, 1981), generalized state-space sys-
tems (Verghese et al., 1981), semi-state systems (Dziurla
and Newcomb, 1979), non-canonic systems (Xiaoping,
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expansion

Fig. 1. Hypothetical cusp catastrophe manifold that was expected to
approximate the sub-storm dynamics of the magnetosphere according
to the model (Lewis, 1991). The evolution of an isolated sub-storm is
shown by dashed arrows.

1995), and differential equation on a manifold (Xiaoping,
1995). These systems appear during the study of robotics,
optimal control, economics, large-scale interconnected sys-
tems, among others (Dziurla and Newcomb, 1979; Kang
and Tang, 2005; Shafiee and Amani, 2005).

If E is regular, the implicit ordinary differential equa-
tion (ODE) (Eq. (3)) is equivalent to the explicit ODE:
x(t) = E7'F(x(t), u(t)). This case has been comprehen-
sively studied and is now rather well understood. When
E is singular in (Eq. (1)), resulting in what we shall term
a generalized state-space system or descriptor system, this
behavior is considerably modified. In contrast to the regu-
lar state-space system, we find that the number of degrees
of freedom of the system, i.e., the number of independent
initial values that x(0_) (here the x(0_) means the states
of the system before the beginning of the process; in other
words, 0_ means before the time zero) can take is now evi-
dently reduced to

f=rankE <n 4)

The term generalized order has been proposed for f
(Verghese et al., 1981). Therefore, in such systems, state
spaces have to satisfy some constraints, and state variables
have to be on a manifold in state space. In addition, it has
been proven that the output of such systems may include
some impulsive motions even if there is no impulse input
to the system (Verghese et al., 1981). Such characteristics
show the power of descriptor systems in describing com-
plex phenomena. For example, in modeling the sub-storm
dynamics of the magnetosphere, the long-term prediction
of which is the aim of this paper, both the surface and the
corresponding circulation flows turn out to be surprisingly
close to a very simple low-dimensional scheme of the mag-
netospheric sub-storm as a cusp catastrophe, which was first
proposed by Lewis (1991) and illustrated in Fig. 1 (where
the z Parameter is the state parameter and c¢; and ¢, are the
control parameters) (Sitnov et al., 2001). Cusp catastrophe
is one of the seven basic catastrophic forms which belong to
nonlinear dynamics, with exotic characteristics introduced
by René Thom in his fascinating “Catastrophe theory” in
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1972. This theory, as a qualitative mathematical method,
is a very effective means for increasing the interaction be-
tween engineers and physicians. Catastrophe theory is a
mathematical method for describing the evolution of forms
in nature. It was created by René Thom, who wrote a revo-
lutionary book “Structural stability and morphogenesis” in
1972 expanding the philosophy behind the concepts. (For
more detail, refer to Zeeman (1977) and Saunders (1980)).

3. Combined (FD/SSA) Long-term Predictor

In this section, we first present a statement on the prob-
lems involved in the long-term prediction of daily time se-
ries of solar and geomagnetic activity indices. We then
briefly describe the characteristics of singular spectrum
analysis and FD models as the extension of neurofuzzy
models. Finally, we provide a short description of the proce-
dure of applying the proposed combined algorithm to solar
and geomagnetic activity time series.
3.1 Problem statement

The ultimate goal of a space physics model is to be able to
predict space weather extreme events. Relative to terrestrial
forecasting, space weather forecasting is still in its infancy.
One reason for this difference are the difficulties encoun-
tered in gathering space weather data. In comparison with
terrestrial data, space weather data are sparse because there
is only one point outside the magnetosphere (L1) and only
several points inside the magnetosphere that record space
weather data. In contrast, terrestrial data are measured ev-
ery 6 h (about 10 different parameters) at 10* to 10° ob-
serving points, which are interpolated onto more than 10°
points of a three-dimensional (3-D) grid used by the numer-
ical prediction model. Consequently, modern space weather
forecasters rely on a great variety of forecast systems, rang-
ing from simple nonlinear models to complex information-
based (empirical approaches) physical, and hybrid models
(Bothmer and Daglis, 2007). Over the last two decades,
which was when real-time data began to be available on-
line, data-driven approaches, such as artificial neural net-
works (Bothmer and Daglis, 2007), neurofuzzy modeling
(Gholipour et al., 2005, 2007), Kalman filtering (Bothmer
and Daglis, 2007), among others, have been shown to per-
form well in space weather forecasting. Space weather fore-
casting can be classified into five classes according to the
forecasting frame-time:

Nowcasting: 0-2 h

Short-term forecasting: 2-36 h.

Mid-term forecasting: 36-20 h.

Intermediate-term forecasting: 5 days to several solar
rotation

e Long-term forecasting: several solar rotations to the
solar cycle (Tascione et al., 1988; Bothmer and Daglis,
2007)

Each level of forecasting has its difficulties. Solar and geo-
magnetic activity indices that belong to the first three frame-
times are very agitated time series, showing chaotic char-
acteristics which vary over time (Mirmomeni and Lucas,
2009). Therefore, the long-term prediction of these solar
and geomagnetic activity indices is very difficult. Note that
the use of “long term” in this paper refers to the multiplicity
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of the time steps and not to the standard time frame in the
space weather forecasting categorization described above.
This multiplicity of the time steps makes the forecasting
difficult due to the difficulty in getting closer to the predic-
tion possibility in the chaotic time series.

Various numerical prediction techniques have been used
for geomagnetic activity forecasting, such as Fourier analy-
ses, curve fitting, artificial intelligence, and neural networks
(Gholipour et al., 2003). However, although these methods
are suitable for making short-term predictions (here short
term means one step or two steps ahead of the prediction),
they are not reliable for the long-term predictions that are
necessary for a powerful alarm/warning system. Predic-
tion, which refers to a variety of mathematical methods for
estimating parameters of a model beyond its proven valid-
ity domain, is usually tightly linked with the evolution of
stochastic systems, which in turn demonstrate trends and
periodicities hidden by the superimposed random noise.

In this paper, we consider the long-term prediction (sev-
eral days ahead) of daily solar and geomagnetic activity in-
dices that belong to the third frame-time category. The pro-
posed long-term predictor is a data-driven approach based
on spectral analysis and FD models as an extended version
of regular neurofuzzy modeling (Mirmomeni et al., 2006).
3.2 Singular spectrum analysis

SSA has been defined as a new tool to extract information
from short and noisy chaotic time series (Vautard et al.,
1992). It relies on the Karhunen-Loeve decomposition of
an estimate of covariance matrix based on M lagged copies
of the time series. Thus, as the first step, the embedding
procedure is applied to construct a sequence (X (1)} of M-
dimensional vectors from time series {X () : t =1,..., N}

XO)=X@),X(t+1),...., X1t +M-=1)),

t=1,....,N, N=N-M+1 (5

The N’ x M trajectory matrix (D) of the time series has
the M dimensional vectors as its columns. In the second
step, the M x M covariance matrix Cy is calculated, and its
eigenelements can be determined by singular value decom-
position (SVD).

The eigenelements {(Ag, or) : k = 1,..., M} of Cyx are
obtained from

Cx pr = Ak pr (6)

Each eigenvalue, A; estimates the partial variance in the
direction of p;, and the sum of all eigenvalues equals the
total variance of the original time series. In the third step,
the time series is projected onto each eigenvector, yielding
the corresponding principal components.

M
Aty =) X+ j— Dpe())

J=1

@)

As the fourth step, the time series is reconstructed by
combining the associated principal components

1

U
Re() =523 > At = j + D))
! keK j=L,

®)
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The normalization factor (M,), and the lower (L,) and
upper (U;) bounds of the reconstruction procedure differ for
the center and edges of the time series and are defined by the
following formula

(4. 1.1), l<t<M—1
(M, L;,Up)= (ﬁ,l,M), M<t<N'
(i t—~N+M M), N +1<t<N
©)

The singular spectrum plot (the logarithmic scale plot of
singular values of the covariance matrix in decreasing or-
der) can be used to enhance the SNR. The principal com-
ponents related to the lower singular values can be omitted
in the reconstruction stage to obtain adaptive noise cancel-
lation. On the one hand, if all the components are used in
reconstructing the time series, no information is lost. On
the other hand, using the components that have character-
istics like noise, which cause the components to be unpre-
dictable over the long term, reduce the performance of the
long-term predictor. Therefore, it is better to consider these
components (which provide a little information on the orig-
inal time series) as noise—and not use them for prediction
purposes. (For further details, refer to Vautard et al. (1992)
and Mirmomeni et al. (2006, 2007)).

3.3 Structure of FD models

Here, we consider the mathematical formulation of FD
models (Taniguchi et al., 1999a, b). The fundamental ap-
proach with such systems is to divide the input space into
small linear subspace with FD functions and their appro-
priate linear descriptor systems. The FD model is defined
as

Rulei:Ifzy(t)is My; and ... and z,,(¢) is M,,;
E,‘X(l‘) = A,')C(l‘) + B,‘u(l‘)

Then:
- {y(r) = Cix(t)

10)

where x(t) € R",y € R?, u(t) € R™. M;;, is the fuzzy
set. x(t) € R" is the state vector, u(t) € R™ is the input
vector, y € R? is the output vector, E;, € R"*", A; € R"*",
B; € R and C; € RP*". z(t) ~ z,(t) are the premise
variables.

The overall fuzzy model is achieved by fuzzy ‘blend-
ing’ of the linear descriptor subsystems. Given a pair of
(x(t), u(t)), the final output of the fuzzy system is inferred
as follows:

M M
D GiO)ER() =Y ¢i(z())(Aix (1) + Biu(1))

i=1 i=1

y (11)
Y0 =Y ¢i(z()Cix(1)
i=1

where M is the number of if-then rules. In Eq. (11),
$iz1) = w;z0)) DL wi(z(1) where wi(z(1) =
[Tj=) Mji(z;(1)). #i(z(t)) can be regarded as the normal-
ized weight of each if-then rule. M ;(z;(¢)) is the member-
ship if z;(¢) in Mj;. Defining x*(¢) = xT () xT()]7, the
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PC1 J—b( FD1 )—p multi-step
prediction
Decomposition
H FD 2 )_> multi-step
prediction
|_>( FD3 )—b multi-step
prediction \
: H Reconstruc
: : ted
) : Predicted
Time Series /' Time Series
H FD 12 }—p multi-step
prediction

Reconstruction

Unimportant
Components

Fig. 2. The proposed method consists of four steps: (1) decomposition of the time series to nonlinear and periodic principal components by SSA
stages 1-3; (2) FD modeling of the principal components; (3) multistep prediction of the reconstructed principal components; (4) reconstruction of
the prediction of time series by combining the predicted principal components by SSA stage 4.

FD system (Eq. (11)) can be written as

M
E*5*(6) = ) i (z(1)) (Ajx™(t) + B u(1))
i=1

y (12)
YOy =Y ¢z K@)

i=1
where

I0
00

0
B;

0 1
A —E;

e =
B;‘:[

In this paper, the validity functions are chosen as normal-
ized Gaussians. When validity functions are chosen as nor-
malized Gaussians, it is possible to split the input space into
only two parameters: the mean and the variance for each
Gaussian. Mean parameters are tuned easily by choosing
the center of a special region for the mean of the normal-
ized Gaussian, as described in next section, and the vari-
ance parameters have to be tuned on the basis of intuition.
Therefore, the use of such validity functions increases the
simplicity of the algorithm, which is the ultimate goal of
the proposed algorithm in this paper. In addition, it has to
be noted that the use of other forms for validity functions
that are used in different kind of locally linear models (Klir
and Folger, 1988) is not ruled out.

Each Gaussian validity function has two parameters, cen-
ter ¢;; and standard deviation o;;. There are M.m parame-
ters for the nonlinear hidden layer. In addition, in this pa-
per, the FD model is used to predict solar activity in terms
of natural chaotic dynamics. Therefore, in this application,
the dynamic system does not have control input u(¢). The

o

| er=teio)

}

FD model for prediction application can be written as

E** () =) ¢i(z(1) (A7x*(1))

i=1

; (13)
Y(6) =" $iz())Cx* (1)
i=1

3.4 Combined (FD/SSA) long-term prediction method

Figure 2 shows the block diagram of the proposed long-
term prediction method. As can be seen, we first apply SSA
to the chaotic solar and geomagnetic activity indices with
time-varying characteristics that vary rapidly, especially in
storms and sub-storms, with the aim of eliciting the main
patterns of the original time series. We then use the se-
lected principal components related to higher singular val-
ues (includes the main patterns of the original time series)
for long-term prediction because of their simpler structures
in comparison with the original time series. To do so, we
train a FD model for each selected principal component for
the long-term prediction of these simple patterns of the orig-
inal time series. Optimization of the FD models for each
of the principal components is obtained using an incremen-
tal learning algorithm on separate training and validation
sets. The trained locally linear models are used as long-term
predictor models for the corresponding components, and
the long-term prediction of solar and geomagnetic activity
indices is simply reconstructed from the predicted princi-
pal components by the fourth stage of the SSA algorithm.
The total model consists of a relatively large number of pa-
rameters, but these parameters are optimized independently
for the principal components, and over-parameterization is
avoided by considering the error indices on separate valida-
tion sets. Therefore, all of the boxes denoted FD in Fig. 2
is a complete trainable predictor model and has been val-
idated statistically through the termination condition of its
learning procedure.
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4. Learning Methodologies

This section is devoted to describing the new learning
method for FD models in order to be able to adjust its two
kinds of parameters. As mentioned earlier, the consequent
part of a FD model is a linear descriptor subsystem that on
its own is an improper system. An improper system is a
dynamic system in which the order of the numerator of its
transfer function is greater than the order of the denomi-
nator of its transfer function. In other words, an improper
system is a non-causal system, which means that the out-
put of the system is related to the future input of the system
(Campbell, 1980). Therefore, to adjust the parameters of
the consequent parts, an identification method is needed that
is appropriate for improper systems. Unfortunately, there is
no such a method to identify the parameters of a descriptor
system. Therefore, in this study, we first of all attempted
to develop a method that could identify the parameters of
descriptor systems. This new method is described below.
4.1 A quasi-static algorithm to identify the parameters

of a linear descriptor subsystem
Let us consider a linear descriptor system, such as

Ex(t) = Ax(t) + Bu(t)
y(@) =Cx()

The output and input under zero initial conditions (i.e.,
x(0_) = 0) are related by the transfer function, G (s), as
follows:

(14)

G(s)=CGEE—-A)"'B (15)

It is found that the transfer function G (s) may no longer
be strictly proper, in which case it may be written as the
sum of a strictly proper part, G(s), and a polynomial part,
D (s). Therefore, we have:

G(s) =G(s) + D(s) (16)
where
! B, strictly proper

G(s)=C (s] — A) (17a)

and

- -1
D(s)=C (1 —sE) B
=C (1 +5E 4+ s”E“) B, polynomial (17b)

A, B, C, E, C , and E result from a restricted standard
equivalence of the system (Eq. (14)). Here, v is less than

B(aVA(Q)  p=y1(K)

u(k)

=y2(k)

Fig. 3. A decoupled descriptor system.
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(a)

lu(k)

D(a)
y2(k)
u(k) fl\ y(k)
»| Bigq)VA » >
(qVA(q) { + )}
» Bq) AMg) |-
eARX(K)
(b)
u(k) eARX(k)
—p! D(q) >
—p D%(q)

Fig. 4. Descriptor system identification by decoupling method. (a) Ap-
proximating the parameters of the strictly proper subsystem, (b) ap-
proximating the parameters of the polynomial part after identifying the
strictly proper subsystem.

the size of E, since E is nilpotent (i.e., all eigenvalues = 0)
(Verghese et al., 1981). Figure 3 shows a linear descriptor
system that is decoupled to a strictly proper subsystem and
a polynomial part (in discrete domain).

It has to be emphasized that the variable £ in Fig. 3
(and in the following equations) is a discrete variable that
demonstrates the sampling time (in comparison with the
continuous variable 7, which demonstrates the time). It is
obvious that the polynomial subsystem in a discrete domain
will be a moving average subsystem. Fortunately, we were
able to identify each subsystem using classical identifica-
tion methods. Therefore, it was possible to adjust the pa-
rameters of a descriptor system by decoupling it into two
subsystems, and then adjust these parameters simultane-
ously. The quasi-static algorithm to identify parameters of
linear descriptor system is as follows:

e To identify the parameters of the strictly proper sub-
system, consider the output of the polynomial part
(which has not been identified yet) as a measurement
noise to the strictly proper part.

e Estimate an ARX (Auto-Regressive with eXogenous
input) model A(q)y(k) = B(q)u(k) + y,(k) from the
data {u(k), y(k)} by

Oarx = (X_TXY1 X"y (18)
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e Calculate the prediction error of this ARX model
earx(k) = A(q)y (k) — B(qu(k)

whose A(q) and E}(q) are determined by éARX-

e To identify the parameters of the polynomial part, con-
sider the output of the strictly proper part (which is
identified in this iteration) as a measurement noise to
the polynomial part.

e Estimate the d; parameters of the following FIR (Finite
Impulse Response) model by well-known least squares
technique (Ljung, 1987; Nelles, 2001)

earx (k) = D(q)u(k)

This algorithm can be iterated until the convergence is
reached. This quasi-static algorithm is given in Fig. 4.

This method yields the linear descriptor systems in the
frequency domain. This model has to be converted to the
state space model in order to be useful in FD models. This
can be done using the Silverman-Ho algorithm, which ob-
tains the state space model of the descriptor system through
its transfer function (Dai, 1989; Wang et al., 2004).

4.2 GLoLiMoT learning algorithm

In this subsection, the GLoLiMoT algorithm is intro-
duced to adjust the parameters of both the validity functions
and the locally linear descriptor systems (Halfmann et al.,
1999; Nelles, 2001).

This algorithm is simple and intuitive, but to achieve a
good performance one should tune some of the parame-
ters, such as the “splitting ratio” and “standard deviation”.
The number of neurons is also important and should be op-
timized to attain the most accurate model with maximum
generalization and to avoid over-fitting. A model over-fits
if it fits the particularities of the training set (noise, bias,
etc). Models which lose the generalization property show a
low training error and high testing error. In other words, the
operational performance measure for the trained model is
the error on future data outside the training set, also known
as the generalization error. This error may be undesirably
large when, for example, the size of the available training
data set is too small compared to the size of the model
parameter set (Karystinos and Pados, 2000). Therefore, a
complex model has more possibilities to over-fit data. In the
literature on artificial neural networks and nonlinear system
identification, the decrease in the generalization error exhib-
ited during the first few successive passes through the same
set of examples (usually called epochs) may be followed
by a steady increase. This phenomenon is usually referred
to as “over-fitting” (Brown and Harris, 1995; Karystinos
and Pados, 2000; Nelles, 2001). One approach to avoid-
ing over-fitting is to divide the available data set into three
subsets: the training data set, the testing data set, and the
validation data set. By using the validation data set to es-
timate the generalization error, it is then possible to detect
the over-fitting. In this paper, an appropriate fitness func-
tion or generalization error index is calculated on multiple
validation sets during training, and when the average error
index starts to increase, the algorithm is terminated to pre-
vent over-fitting.

The splitting ratio determines how one locally linear re-
gion should be divided into two new regions.

19)

(20)
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The GLoLiMoT algorithm is described in five steps:

1. Start with an initial model: start with a single LLDM
(Locally Linear Descriptor Model), which is a global linear
model over the whole input space with ¢;(z) = 1 and set
M =1.

2. Find the worst LLDM : Calculate a local loss function,
such as the MSE (mean squared error) for each of the i =
1, ..., M LLDMs, and find the worst performing LLDM.

3. Check all divisions: The worst LLDM is considered
for further refinement. Divisions in all dimensions are tried,
and following steps are carried out:

a. construction of the multi-dimensional membership
functions for both generated hyper rectangles;

b. construction of all validity functions;

c. system identification of linear descriptor systems for
both generated hyper rectangles by decoupling the
method introduced in the previous subsection;

d. construction of a new FD system according to new
linear descriptor systems in the state space form, which
is produced by Silverman-Ho algorithm;

e. calculations of the loss function for current overall
model.

4. Find the best division: The best of the p alterna-
tives checked in step 3 is selected, and the related validity
functions and LLDMs are then constructed. The number of
LLDM neurons is incremented to M = M + 1.

5. Test the termination condition: If the termination
condition is met, then stop, otherwise go to step 2.

This algorithm overcomes the curse of dimensionality
(which refers to the exponential growth of the hypervolume
as a function of dimensionality (Bellman, 1961)) and pro-
vides a fast and efficient training procedure when there are
restrictions in computational resources and memory capac-
ity. The curse of dimensionality causes networks with lots
of irrelevant inputs to be behave relatively badly: the di-
mension of the input space is high, and the network uses
almost all of its resources to represent irrelevant portions of
the space. Even if there is a network algorithm that is able
to focus on important portions of the input space, the higher
the dimensionality of the input space, the more data may be
needed to find out what is important and what is not. There-
fore, the use of the GLoLiMoT algorithm with this property
can be useful for modeling solar and geomagnetic storms
for which the number of data sets is limited.

For further details, refer to Mirmomeni et al. (2006).

5. Simulation Results

Among the many solar and geomagnetic activity indices,
those of the disturbance storm time (Dy.), geomagnetic aa,
and SWS are extremely important for forecasting the dan-
gerous consequences of the solar and geomagnetic anoma-
lies. All of these indices reflect the severity of the geomag-
netic storm, and a knowledge of these in advance will assist
satellite operators and some surface technologies avoid ma-
jor disasters. Historical data for the training phase should
contain the relevant measurements of the related physical
parameters of solar flare and of unleashed coronal mass
ejection (CME) and the shock of X-ray and gamma-ray ra-
diation, radio bursts, and others. All mentioned parameters
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Singular Spectrum of Geomagnetic aa Index
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Principal Components

Fig. 5. Singular spectrum of the geomagnetic aa index time series by the SSA algorithm.
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Fig. 6. The first nine principal components of the geomagnetic aa index time series obtained by the SSA algorithm.

should be measured after a violent solar explosion that trig-
gers numerous physical processes, a part of which is respon- Table 1. The NMSE of the proposed FD/SSA model in comparison with

sible for the seomacnetic storm. Therefore. historical data the results obtained with some well-known models (MLP, RBF neural
g g : ’ networks, and the LLNF model) in terms of predicting the daily average

for training the geomagnetic aa and SWS estimator should geomagnetic aa index.
contain all of the mentioned parameters of solar flares ini-

tiating a significant or less significant geomagnetic storm Method NMSE in predicting geomagnetic aa index
MLP 0.1608
(GMS).
. . . .. RBF 0.2103
In this section, we consider the long-term prediction of
eomagnetic aa and SWS daily time series using a com LLNE 01204
geomag y g FD/SSA 0.0836

bined (FD/SSA) method. However, it is also possible to
use this method to model and predict other geomagnetic in-
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10 step ahead prediction of geomagnetic aa index, from 1980 to 1994 (test set)
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Fig. 7. Ten-step-ahead prediction of the geomagnetic aa index between 1980 and 1994 by the proposed FD/SSA model. Upper: predicted and real
values of test set; red curve shows the predicted aa index, and the blue curve shows the real aa index. Lower: prediction error.

Zoomed 10 step ahead prediction of geomagnetic aa index, from 1983 to 1985 (test set)
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Fig. 8. Zoomed ten-step-ahead prediction of the geomagnetic aa index between 1980 and 1994 by the proposed FD/SSA model. Upper: predicted and
real values of the test set (zoomed); red curve shows the predicted aa index, and the blue curve shows the real aa index. Lower: prediction error

(zoomed).

dices, such as Dy. or AE, in other time scales ranging from
minutes to hours.

After the principal components of the geomagnetic aa
and SWS indices have been extracted by SSA, one FD
model is automatically constructed for each of the chosen
principal components. Here, we have attempted to predict
the daily average of the geomagnetic aa index in the pe-
riod 1963-1994, which contains several important events
that are considered to be disastrous in terms of human tech-
nologies due to the effects of solar storms. For example, the

super-storm on 13 March 1989 shut down the power supply
system in Québec, Canada, and the effects of the CME on
11 January 1997 caused the failure of Telstar 401 satellite.
Figure 5 shows the singular spectrums of the geomag-
netic aa index. The window length is 100, and the first 20
components, related to the first 20 singular values, are cho-
sen to predict and reconstruct the original geomagnetic aa
time series. The first nine components are shown in Fig. 6
and the others, with singular spectrums smaller than 0.01
of the first principal component, are eliminated to enhance
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f Solar Wind Speed index
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Fig. 9. Singular spectrum of the SWS index time series obtained using the SSA algorithm.
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Fig. 10. The first nine principal components of the SWS index time series obtained using the SSA algorithm.

the SNR. A FD model is created via GLoLiMoT learning
algorithm for each principal component.

About 4,850 data sets (from 1963 to 1980) are used to ad-
just the parameters of the FD models and about 3800 (from
1980 to 1994) data sets are kept to test the performance of
the (FD/SSA) model in predicting the daily average of the
geomagnetic aa index. To select the most informative in-
puts among the lags of each principal component, we apply
the correlation analysis to each principal component, and
the most correlated lags to the predicted value are chosen

as the inputs of each FD model. For most of the principal
components, the validation error increases after eight runs
of the GLoLiMoT algorithm. Therefore, for most of the
principal components, a FD model with eight locally lin-
ear descriptor models is trained. Figures 7 and 8 show the
performance of the proposed model in predicting the daily
average of the geomagnetic aa index in test mode. It is
clearly evident that the proposed combined model performs
very well for the long-term prediction of the geomagnetic
aa index. It has to be emphasized that some fluctuations
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15 step ahead prediction of SWS3 index, from 1980 to 1994 (test set)
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Fig. 11. Fifteen-step-ahead prediction of the SWS index between 1980 and 1994 by the proposed FD/SSA model. Upper: predicted and real values of
the test set; red curve shows the predicted aa index, and the blue curve shows the real aa index. Lower: prediction error.
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Fig. 12. Zoomed 15-step-ahead prediction of the SWS index between 1980 and 1994 by the proposed FD/SSA model. Upper: predicted and real values
of the test set (zoomed); red curve shows the predicted aa index, and the blue curve shows the real aa index. Lower: prediction error (zoomed).

can be seen within a short period; these may caused by geo-
magnetic disturbances that did not exist in the training data.
However, the overall performance of the proposed method
is very good.

Table 1 contains the results of several methods that are
used for the long-term prediction of the daily geomagnetic
aa index: the RBF (radial basis function), MLP (multi-
layered perception), and LLNF (Locally Linear Neurofuzzy
Model) networks. It is once again evident that the perfor-
mance of the FD/SSA model is superior to that of the other
well-known methods tested here. The normalized mean

square error (NMSE) is used as the error index in Table 1
and is defined as

n

Y (-3)

i=1

-y

i=1

NMSE = 1)

v, ¥, and y are observed data, the predicted data, and the
average of observed data respectively.
The same approach used for the geomagnetic aa index
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was also used in an attempt to predict the daily average of
the SWS index between 1963 and 1994.

Figure 9 shows the singular spectrums of the SWS in-
dex. As in the first analysis, the window length is 100, and
the first 13 components, related to the first 13 singular val-
ues, are chosen to predict and reconstruct the original SWS
time series. The first nine components are shown in Fig. 10
and the others, with singular spectrums smaller than 0.01 of
the first principal component, are eliminated to enhance the
SNR. Again, for each principal component, the GLoLiMoT
algorithm is applied to give a FD for each principal compo-
nent.

About 4,850 data sets (from 1963 to 1980) are used to ad-
just the parameters of the FD/SSA models and about 3,800
data sets (from 1980 to 1994) are kept to test the perfor-
mance of the FD/SSA model in predicting the daily average
of the SWS index. Again, to select the most informative
inputs among the lags of each principal component of SWS
index, we applied the correlation analysis to each principal
component and then chose the most correlated lags to the
predicted value as the inputs of each FD model. It should
be noted that there are better approaches for input selection,
such as the mutual information tool, which gives the most
informative lags and which are nonlinearly related to the
predicted target; however, for simplicity, we used correla-
tion analysis for input selection. For most of the principal
components, the validation error increase after 12 runs of
the GLoLiMoT algorithm. Therefore, for most of the prin-
cipal components, a FD with 12 locally linear descriptor
models is trained. Figures 11 and 12 depict the performance
of the proposed model in predicting the daily average of the
SWS index in test mode. It is evident that the performance
of the proposed model in the long-term prediction of the
SWS index as well as its performance for aa index is very
good. The proposed combined model can clearly track the
rapid and large fluctuations in the SWS index because the
SWS data set is very rich and contains many rapid fluctua-
tions that are used in training.

6. Discussion and Conclusions

The long-term prediction of natural phenomena with a
limited number of observations is usually difficult. The
reconstruction of dynamics is restricted by limitations in
knowledge on physical processes and by the fact that the
most powerful tools of chaotic modeling, neural networks
and neurofuzzy models, can only be used in short-term pre-
dictions. Here, we have used a combined model based on
FD models and singular spectrum analysis (FD/SSA) for the
long-term prediction of the daily time series of two impor-
tant solar and geomagnetic activity indices: geomagnetic
aa and solar wind speed. Geomagnetic aa and SWS in-
dices were used in the daily average time scale to depict
the performance of the proposed combined long-term pre-
dictor (which is used for several step-ahead prediction of
these solar and geomagnetic activity indices) in modeling
the short-term behavior (daily frame time) of solar and ge-
omagnetic activity. It must be noted that this method can
be applied to model other geomagnetic indices, such as Dy
or AE in other time scales, ranging from minutes to hours.
Although forecasting based only on the time series of the

M. MIRMOMENI et al.: LONG-TERM PREDICTION OF SOLAR AND GEOMAGNETIC ACTIVITY

parameter to be predicted has limited success, incorpora-
tion of the measurements linked to the forecasted parameter
significantly improves the accuracy of the prediction. By
optimizing the number of neurons, the splitting ratio, and
the standard deviations, an accurate prediction is provided.
Due to its high generalization and low prediction error, this
method can also be used in predicting the solar and geo-
magnetic activity several days (or even several years if the
original index be a yearly index) in advance of other solar
activity indices.

Acknowledgments. The authors wish to thank the “National
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