
Earth Planets Space, 61, 1143–1161, 2009

A theory of rock core-based methods for in-situ stress measurement
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The behavior of the inelastic strain of rocks under the loading of compression reflects the history of stresses
applied to the rocks. A number of methods based on this rock property of stress memory have been proposed
for measuring in-situ stress. The magnitudes of in-situ stress can be determined from drilled core samples by
deformation rate analysis (DRA); in other words, rocks do have the property of in-situ stress memory. In general,
the inelastic strain of rocks increases with an increase in applied stress difference. The Keiser effect observed in
laboratory experiments is explained as the behavior of the inelastic strain of this well-known mode. However,
this effect cannot be the mechanism of the in-situ stress memory because the effect does not potentially allow us
to determine the magnitudes of previously applied stress. Here, I theoretically show that rocks exhibit another
mode of inelastic strain under axial loading of compression—if locally concentrated stresses in rocks relax to
some extent under in-situ stress at depth. The magnitudes of in-situ stress can be determined from the behavior
of this mode of inelastic strain under axial loading. The results of DRA suggest that this hypothesis is actually
valid and that it is not only valid for the DRA, but also for the other rock core-based methods used for measuring
in-situ stress.
Key words: In-situ stress, stress memory, deformation rate analysis (DRA), stress measurement, inelastic strain,
acoustic emission (AE), Kaiser effect.

1. Introduction
When uni-axial loading of compression is applied to a

rock specimen in a laboratory, acoustic emission (AE) ac-
tivity starts just at the point as which the applied stress
exceeds the peak of stress previously applied to the spec-
imen or the previous stress (e.g., Kurita and Fujii, 1979;
Yoshikawa and Mogi, 1981). This phenomenon is known
as the Kaiser effect. The memory of the previously ap-
plied stresses are found not only as the change in AE ac-
tivity but also in the strain rate for rock specimens under
uni-axial loading of compression at a constant loading rate
(Kuwahara et al., 1990; Yamamoto et al., 1990). This prop-
erty together with the Kaiser effect is called the rock prop-
erty of stress memory.
Kuwahara et al. (1990) proposed a model for the inelas-

tic deformation of rock specimens under axial loading of
compression to explain the Kaiser effect. According to
Kuwahara et al. (1990), there are many potential micro-
cracks in a rock specimen, and the strengths of fracturing
are specific to respective potential cracks in terms of ap-
plied stress to the specimen. If the applied stress is in-
creased to a certain magnitude, all of the potential micro-
cracks with fracture strengths smaller than the applied stress
should move—that is, propagate or deform. When the ap-
plied stress is increased again after unloading, new micro-
fractures hardly occur at first, and the preexisting cracks
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produced in the previous loading steadily move with an in-
crease in applied stress until the applied stress reaches the
peak of the previously applied stress. New micro-fractures
begin to occur only after the applied stress has reached at
the previous stress.
It is generally understood that the strength of potential

cracks is determined not only by the axial stress but also by
other stress components, such as confining pressure. There-
fore, the behavior of micro-cracks under uni-axial loading
should change depending not only on the previous axial
stress but also on these other components of stress that have
been acting during the time when the previous axial stress
has been applied. Consequently, if the model by Kuwahara
et al. (1990) is the only model that can explain the mech-
anism of the stress memory, the memory under uni-axial
loading does not always have the same stress magnitude as
the previous stress.
Since rock has been subjected to in-situ stresses for a

long time on location, it may not be ridiculous to expect that
rocks have some memories of the stress that they have been
subjected to by the in-situ stresses. Kanagawa et al. (1977)
and Yoshikawa and Mogi (1981) proposed the AE method
and Yamamoto et al. (1983, 1990) proposed deformation
rate analysis (DRA) as valid and reliable techniques for es-
timating in-situ stresses associated with the rock property of
stress memory. The AE method and DRA were developed
to detect the change in AE activity and the change in strain
rate, respectively, for rock specimens under the uni-axial
stress of compression being increased at a constant rate.
The stress memory found at the point at which the ap-

plied stress is equal to the absolute magnitude of in-situ
stress is called the memory of in-situ stress from here on
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in this article. Directly associated with Kanagawa et al.’s
(1977) suggestion that the magnitudes of the in-situ stress
can be estimated by the AE method is the elementary ques-
tion of whether or not rocks actually do have the property of
in-situ stress memory. In order to provide an answer to this
elementary question, Yamamoto et al. (1995) measured the
memory of the vertical component of in-situ stress, that is,
the memory of overburden pressure, by DRA to investigate
this memory in relation to the sampling depth of the speci-
men. Based on their results, they concluded that rocks have
the property of in-situ stress memory.
According to Yamamoto et al. (1990, 1995), if a cyclic

uni-axial loading is repeated on a rock specimen at an inter-
val of about 1 week, in-situ stress memory can be repeatedly
found for that specimen. Yamamoto et al. (1997) pointed
out further that in-situ stress memory can be found for rocks
even after they have been left standing in air for a period of
more than 1 year after their recovery. Seto et al. (1999) re-
ported that the time interval, up to 7 years, does not strongly
influence the in-situ stress determination by the AE method
of repeated loading. On the other hand, Goodman (1963)
demonstrated that the Kaiser effect in AE activity begins
to fade out within a short time of about 10 h after the ap-
plied stress has been removed. Yamamoto (1991) reported
that the memory of the previous stress applied experimen-
tally, which is observed by DRA, shows the fading behavior
similar to the Kaiser effect. These results suggest that in-
situ stress memory a long-term property, while the so-called
Kaiser effect is a short-term one. In-situ stress memory has
been defined as the memory that has the same magnitude
as in-situ stress. The memory stress by the Kaiser effect
does not necessarily have the same magnitude as the previ-
ous stress. Thus, we have as yet no convincing models for
the property of in-situ stress memory.
In this paper, I briefly review DRA and present evidence

proving that in-situ stress memory is one of the rock prop-
erties. I then propose a hypothesis to elucidate the property
of in-situ stress memory. This hypothesis will show that
DRA is one of the most logically acceptable methods for
the estimation of in-situ stress magnitudes from rocks.

2. In-situ Stress Memory
2.1 Deformation rate analysis
Here, I use the term elastic strain to be that strain rep-

resented as a one-valued function of applied stress and the
term inelastic strain to be that strain remaining after the re-
moval of the elastic strain from the observed strain. The
term inelastic strain rate means an increment in the inelas-
tic strain for a unit increase in the applied stress when the
applied stress is increased at a constant rate.
When a rock specimen is loaded by uni-axial stress of

compression, many micro-fractures are induced in the spec-
imen, generating AE events and producing micro-cracks.
Kuwahara et al. (1990) modeled a micro-crack as a shear
crack accompanied by tensile cracks, as proposed by Brace
et al. (1966). This crack is produced by shear micro-
fracturing. Deformation of the cracks is basically con-
trolled by the shear displacement on a shear crack surface.
The shear displacement of existing cracks increases and de-
creases against frictional resistance on the crack surface in

Fig. 1. Schematic illustration of the deformation rate analysis (DRA).
The upper figure shows the axial stress σ as a function of time applied
for DRA. The lower left explains the definition of the strain difference
function �εi, j (σ ) on the stress-strain curves obtained by cyclic loading.
The right schematically demonstrates the behavior of �εi, j (σ ) and the
definition of folding point.

order to release locally concentrated shear stress caused by
the applied stress. This behavior of the cracks is thought to
contribute to the behavior of inelastic strain during loading
and unloading.
According to the above crack model, micro-fracturing

produces an additional increment of inelastic strain. When
no micro-fracture occurs, inelastic strain increases almost
at a constant rate under an applied stress being increased at
a constant rate because the displacement of existing shear
micro-cracks is approximately proportional to the applied
stress. Therefore, an increase in inelastic strain rate indi-
cates the occurrence of micro-fracturing. If the Kaiser effect
is observed in the inelastic strain behavior as well as in AE
activity, the inelastic strain rate should begin to be higher
at the point at which the applied stress is nearly equal in
magnitude to the previous stress.
In order to detect the strain rate change, Yamamoto et

al. (1983, 1990) proposed a function called the strain dif-
ference function �εi, j (σ ), which is obtained by cyclically
loading a specimen. The function �εi, j (σ ) is defined for a
pair of the i th and the j th loading cycle by

�εi, j (σ ) = ε j (σ ) − εi (σ ) j > i. (1)

Here, εi (σ ) denotes the axial strain of a specimen at an ap-
plied stress σ in the loading stage. Contraction and com-
pression are defined to be positive in sign. εi (σ ) is con-
tinuously measured from the beginning of the first loading.
The inelastic strain may include the components produced
by a number of different causes. Some of these components
may not vary with loading cycles, and these are removed
from the strain difference function by Eq. (1) together with
the linear and nonlinear components of elastic strain. Thus,
the value of the function mainly represents the difference in
the amount of inelastic strain at an applied stress between
the i th and the j th loading cycles.
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Fig. 2. Schematic illustration of the preparation of specimens from a core sample. In most cases, the specimens are sawed from a vertical core in order
that the longer axes are taken in the vertical and in the four horizontal directions of azimuths at an interval of 45◦. R indicates the reference azimuth.
The loading is performed along the longer axis.

Fig. 3. Apparatus used for the deformation rate analysis. The left figure shows a specimen set in a loading machine. A strain gauge is pasted on
each side of a rectangular specimen in order to measure the axial strain. The right figure illustrates instrumentation for measuring reduced strain. σ1
denotes the axial applied stress and εi the axial strain measured on each side of specimen.

The strain difference function is schematically illustrated
in Fig. 1. The negative derivative of �εi, j (σ ) with respect
to σ means that the inelastic strain rate in the i th loading is
larger than that in the j th loading. According to the model
proposed by Kuwahara et al. (1990), when applied stress
is smaller than the previous stress, the function is approxi-
mately linear to the applied stress. However, when the ap-
plied stress is larger than the previous stress, the derivative
of the function is negative. This latter effect is caused by
two factors: (1) the micro-fractures begin to occur at the
point at which the applied stress in the j th loading reaches
the previously applied peak stress and (2) the occurrence
of the micro-fractures causes the inelastic strain rate to in-
crease.
The previous stress magnitude may therefore be esti-

mated as the magnitude of the applied axial stress at which
the function begins to fold into the negative direction. The
folding point is defined in principle as the point in the func-
tion at which the continuous decrease in its derivative starts,
and folding stress or memory stress is the axial stress at

the folding point. Using uni-axial loading of compression,
Yamamoto et al. (1990) confirmed that the Kaiser effect is
detectable by the strain measurement as well as by the mea-
surement of AE activity.
In most cases of the measurement of in-situ stresses by

DRA, axial strain is measured on specimens cut from a core
sample in the vertical and in the four horizontal directions
at an interval of 45◦ in azimuth. Figure 2 illustrates such
specimens. They are sawed from boring core samples in
such a way that their axes lie along the vertical and the
four azimuths. The specimens from their longer axes along
the vertical are called vertical specimens, and those from
their axes in the horizontal are called horizontal specimens.
The memory stresses estimated from vertical and horizontal
specimens are called the vertical and the horizontal stresses
of memory, respectively. The data presented in this paper
were obtained from the specimens of a rectangular prism
with an approximate size of 15 (or 10) × 15 (or 10) × 38
(or 25) mm or from those of a cylinder with an approximate
size of 18 (φ) × 45 mm.
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(a) (b)

Fig. 4. Examples of an ordinary stress-strain curve and reduced stress-strain curve obtained from a siliceous slate specimen by four cycles of uni-axial
loading. (a) Ordinary stress-strain curve. (b) Reduced stress-strain curve.

Loading is performed along the longer axis of specimen.
The set-up for measuring strain is schematically illustrated
in Fig. 3. Uni-axial stress of compression is cyclically ap-
plied at a constant increasing rate of between 3 and 5 MPa
per minute using a servo-controlled apparatus. The peak of
applied stress is usually taken to be 1.5- to 2.5-fold higher
than the target stress that has been estimated by the prelim-
inary measurements.
In the case of hard rock specimens, of which the Young’s

modulus is>50 GPa, the strain is required to be measured at
a resolution <10−7 in order to obtain the meaningful strain
difference functions. The outputs of the four strain gauges
are averaged to reduce those noises generated electrically
and mechanically. The linear trend, of which the gradient
is approximated to the Young’s modulus of the specimen,
is subtracted from the averaged strain in the way shown
in Fig. 3 to detect the strain rate change with sufficient
resolution. The strain remaining after the subtraction is
called the reduced strain. Figure 4(a) and (b) shows the
relations of the applied axial stress to the axial strain and to
the reduced strain, respectively, measured on a specimen of
granitic rock.
The outputs for the averaged strain and the reduced strain

are digitized at 200 Hz sampling by a 12- or 16-bit A/D
converter together with the output of the load. The num-
ber of sampling points reaches more than 80,000 at most in
the loading stage per cycle. The number of data points is
reduced to about 200 by averaging. This averaging proce-
dure provides resolution of the strain difference functions
smaller than the circuit noises of strain amplifiers. There-
fore, the quality of data is almost the same either from the
12-bit or the 16-bit A/D converter. The strain difference
functions are calculated using the reduced strain data thus
processed.
2.2 Modes of inelastic strain
Using DRA, Yamamoto (1991) investigated the time-

effect of previously applied stresses on the deformation of
specimens. Figure 5 shows an example of the results. The
experiments were performed on vertical specimens from
grano-diorite cores obtained from a depth of about 200 m.
Figure 5(a) schematically illustrates the loading history.

The first loading is performed to impress the previous stress
of constant magnitude σp to specimens. τ0 is the duration
time for applying the previous stress. After unloading the
stress for the impression, the specimen is allowed to rest
under ambient conditions for the period of τ . The strain
difference functions in Fig. 5(b) are obtained from the spec-
imens that have been subjected to the same previous stress
of 8 MPa (σp = 8 MPa), where τ0 is taken to be 1 min for
all specimens and τ ranges from 10 min to 150 h.
Let us denote the strain difference function �εi, j (σ ) by

(i, j) for the sake of simplicity. The functions (1, 2) in
Fig. 5(b) clearly fold near 8 MPa in axial stress when τ

is shorter than 1 h. This is understood to be the Kaiser ef-
fect that is observed in inelastic strain behavior. The folding
becomes obscure with the rest time τ . The functions (2, 3)
and (3, 4) do not fold near 8 MPa but near 5 MPa in axial
stress, which is common for all cases of τ . Although the
gradient change near 5 MPa in (2, 3) and (3, 4) is not as
distinct as that observed near 8 MPa in (1, 2), the degree of
the folding appears invariable with τ . This probably means
that (1, 2) and the others respectively reflect the behavior
of different modes of inelastic strain. Since the strain dif-
ference function represents the difference in inelastic strain
behavior between two loading cycles in a pair, the differ-
ence implies that the predominant mode of inelastic strain
is different between the first cycle and the other cycles of
loading. It may therefore be concluded that the inelastic
strain of rock specimens consists of at least two different
modes.
If it is assumed that rocks have the property of in-situ

stress memory, the folding in (2, 3) and (3, 4) may be con-
sidered to be caused by the in-situ stress memory, because
the stress at the folding point is close to the magnitude of
the overburden pressure. If this interpretation is correct, the
results in Fig. 5 mean that in-situ stress memory remains
after the first loading, while the Kaiser effect can be eas-
ily erased by the first loading. Further, the results suggest
that in-situ stress memory is a long-term property, while the
Kaiser effect is a short-term one. Since this article focuses
on in-situ stress memory only, the folding point stresses ob-
served in the strain difference functions from the pairs of
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Fig. 5. Change in behavior of the strain difference function with loading history. (a) Axial stress as a function of time. τ0 and τ indicate the duration
time of holding the axial stress constant and the duration time of specimens being kept under atmospheric pressure after unloading, respectively. σp
and σex are the previously applied stress and the peak of applied stress for DRA, respectively. (b) The change in the behavior with τ in the case of
loading time τ0 = 1 min. Symbols (i, j) are the same as �εi, j (σ ). Sensitivity of the strain is denoted in 10−6/division (ppm/div). Arrows are the
folds that are taken as in-situ stress memory. The vertical offset given to the data of each �εi, j (σ ) is arbitrary. (After Yamamoto, 1991).

loading cycles after the first are of concern. The rocks tested
have probably been subjected to various kinds of temporal
loads up to the time of measurement. The contamination to
in-situ stress memory due to the temporal loads may have
faded out during a time after the removal of the loads or
have been wiped off by the first loading.
2.3 Evidence for in-situ stress memory
There may be a number of ways to verify the existence of

the rock property of in-situ stress memory. One of these is
to compare the memory stresses obtained by DRA with the
in-situ stresses measured by established methods. Compar-
isons with an over-coring method have been carried out for
depths shallower than about 20 m. The results of the com-
parisons show that the stresses determined by DRA are in
good agreement in terms of both orientation and magnitude
with those obtained by the over-coring method (Koide et al.,
1986). The overburden pressures at these depths are only
about a few tenths of MPa. When the effect of the topog-
raphy around the sites and the errors of stress measurement
are taken into account, the depths can be considered to be
too shallow to draw the conclusion that the measured mag-
nitudes of memory stress are not the relative but the absolute
ones of in-situ stress. For the reason, further investigations
have been carried out for greater depths (Yamamoto et al.,
1995).
Although over-coring methods and hydraulic fracturing

techniques have been established as the “gold standards”
for in-situ stress measurement, these methods are based on

a number of assumptions. Their results may be more or less
affected by the anisotropy of elasticity and the non-uniform
distribution of the fracture-strength of rocks. The vertical
in-situ stress is expected to have a magnitude equivalent to
the overburden pressure, which can be estimated from the
depth and the density of the overburden rocks. The effect
of the topography near the site on the vertical stress may
decrease with an increase in depth. The vertical stresses
at great depths are thus expected to be the best standard
reference for calibrating the measured stresses. If stress
memory corresponds to in-situ stress, the vertical stress
of memory should have a magnitude close to that of the
overburden pressure at the sampling depth. Further, this
should vertical stress of memory should be independent
of the stress field regime at the site, reverse, strike-slip or
normal fault regime.
Let us define a Cartesian coordinate system (x, y, z)

for a stress field and introduce a new coordinate system
(x ′, y′, z′) by rotating (x, y, z) clockwise around z-axis by
θ . The normal stress σ(θ) ≡ σx ′x ′ on the plane whose nor-
mal lies in the direction θ is expressed by,

σ(θ) ≡ σx ′x ′ = 1

2

(
σxx + σyy

) + 1

2

(
σxx − σyy

)
cos 2θ

+σxy sin 2θ (2)

where σxx , σyy , and σxy are the stress component in
(x, y, z). This expression holds for the arbitrarily oriented
stress field. When the z-axis is taken vertically downward,
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Table 1. Densities and rock type of the cores obtained from the sites where the vertical memory stresses have been measured.

Site Depth (m) Ns ρw (103 kg/m3) ρd (103 kg/m3) ρg (103 kg/m3) φ (%) Rock type
1)ABR 30–100 10 2.71±0.01 2.70±0.01 2.72±0.01 0.9±0.1 granodiorite
1)YST 77–78 5 2.65±0.01 2.64±0.01 2.67±0.01 0.8 granodiorite
2)Ohtaki-2 331–1160 6 2.64±0.03 2.63±0.03 2.66±0.01 0.8±0.2 dasite, porphyrite,

rhyolite, quartz diorite
2)Ohtaki-3 376–1193 3 2.66±0.02 2.65±0.03 2.68±0.01 0.9±0.6 siliceous sandstone, chert
2)Ohtaki-4 983–991 2 2.77±0.01 2.76±0.01 2.77±0.01 0.2 siliceous slate
2)Ohtaki-5 469–475 2 2.74±0.04 2.72±0.04 2.78±0.01 2.2±0.2 siliceous slate

Ns: Number of specimens used for the density measurement; ρw: Wet bulk density; ρg: Dry bulk density; ρd: Density of matrix; φ: Porosity.
1)Data after Yamamoto et al. (1990). 2)Data after Yamamoto (1991).

Table 2. Rock type, apparent Young’s modulus of specimens used for vertical stress measurement at respective depths.

Depth (m) Site Rock type Apparent Young’s modulus (GPa)

73 1)Esashi granodiorite 73–76

100 1)Esashi granodiorite 70–76

143 1)Yasato granodiorite 40–50

376 2)Ohtaki-3 siliceous sandstone 57–65

448 2)Ohtaki-2 porphyrite 65–78

475 2)Ohtaki-5 siliceous slate 55–58

600 2)Ohtaki-3 siliceous sandstone 76–78

705 2)Ohtaki-4 siliceous slate 71–76

842 2)Ohtaki-2 quartz diorite 37–71
1)Data after Yamamoto et al. (1990). 2)Data after Yamamoto (1991).

the normal stress in the horizontal specimens should be ex-
pressed by a sinusoidal function of the azimuth θ with a pe-
riod of π . If the measured stress magnitudes are the mem-
ory of in-situ stresses, the stresses measured on the horizon-
tal specimens can be fit on the curve of a sinusoidal func-
tion of azimuth. Although this is not the most direct way to
prove that the magnitudes of the memory stress are the ab-
solute ones of in-situ stresses, it does provide circumstantial
evidence that rocks have the memory of a stress field or in-
situ stresses.
Another way to confirm that the magnitudes of in-situ

stress memory is the absolute ones of in-situ stresses is
to investigate the effect of pore pressure on the measured
stresses because the in-situ stresses acting on a surface of
rocks are sustained not only by the stresses of the solid
part and but also by pore pressure. Therefore, the in-situ
stress magnitudes should be equivalent to the sum of the
integrated stresses over the solid part and the integrated
pore pressure over the pore space. If the measured stress
magnitudes are the absolute ones of in-situ stress memory
in the solid part, the relationship among measured stress
magnitudes, pore-pressure, and in-situ stress magnitudes is
one of the keys that would verify that the measured stress
magnitudes are the absolute magnitude. The pore pressure
effect will be described in Section 4.3.

2.3.1 Identification of in-situ stress memory by DRA
As described in Section 2.2, if in-situ stress memory exists,
the reliable memory should be detected in the strain differ-
ence functions from the loading cycles that follow the first
loading cycle. For this reason, uni-axial loading of three
to five cycles has to be performed on each specimen to de-
tect in-situ stress memory. The strain difference functions

thus obtained do not always show such simple behavior as
that schematically illustrated in Fig. 1, rather they often
show curvilinear behavior even for the applied axial stress
smaller than the folding stress. The curvilinear behavior
makes the identification of memory difficult. Nevertheless,
in most cases, the memory can be recognized as the fold
that gives the largest change in the gradient of the function
with respect to the applied axial stress. It may be noted that
the folding point occasionally appears as if the gradient of
the strain difference function is discontinuous at the folding
point.
When more than one folding point of a similar degree is

observed in a strain difference function, a number of con-
ditions are imposed to choose one of them as the in-situ
stress memory. If the specimens have been directed to the
same direction at the same depth of the same site, the fold
that corresponds to the in-situ stress should be observed at
almost the same stress for all the specimens. Further, the
folding stress should not be varied if the applied peak stress
for DRA is varied. These are the auxiliary conditions for
choosing the folding points as the in-situ stress memory of
the direction. When the memories cannot be determined for
a direction even following application of the above condi-
tions, the determination may be performed on the additional
condition that the memory stress magnitudes are expressed
as a sinusoidal function of the azimuth. Although the de-
termination of the folding stress using the last condition ap-
pears to be rather subjective, it is not easy to obtain the re-
sults from noises that consistently satisfy this condition.

2.3.2 Vertical stress Yamamoto et al. (1995) applied
DRA to the vertical specimens from boring cores at six sites
to measure the memory stresses at great depths of up to
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Fig. 6. Examples of strain difference functions �εi, j (σ ) measured on vertical specimens obtained at depths of 376, 448, and 705 m, respectively.
Symbols S-1 and S-2 indicate specimen name. Other notations are the same as those in Fig. 5. This figure is reproduced from Yamamoto et al.
(1995).

842 m. The cores were obtained at sites in three areas:
Esashi (ABR) in northern Japan, and Yasato (YST) and
Ohtaki (OT) in central Japan. The sites are known to be in
the field of a strike-slip fault regime, with the exception of
YST, which is located in a reverse fault regime (Yamamoto
et al., 1990, 1997; Yamamoto, 1991). Average density and
average porosity of the core samples are shown for the re-
spective sites in Table 1. The specimens were soaked in wa-
ter until the changing rate of the weight became about 10−5

per day. The saturated specimens were first weighed in air
and in water, respectively, then dried in a vacuum vessel for
the porosity measurement. The wet bulk density thus mea-
sured ranged from 2.64 to 2.77×103 kg/m3, and the porosity
was less than 1%, with one exception of 2.2%. The appar-
ent Young’s modulus and rock type of the specimens used
for this measurement are shown in Table 2. The specimens
are of hard rocks, as seen from the table.
Figure 6 illustrates an example of the strain difference

functions obtained from the vertical specimens at three
depths: 376, 448, and 705 m. The peak of the applied stress
for DRA can be seen to be about 20 and 25 MPa for S1 and
S2, respectively, at a depth of 376 m and 40 MPa for both
specimens at a depth of 705 m. The stress memory corre-
sponding to the overburden pressure can be found even in
the functions of (3, 4) or (3, 5). The memories thus iden-
tified are marked with arrows in the Fig. 6. Linear lines
are drawn as the reference to make the fold conspicuous.
These lines are fitted by eye to the data in the relatively lin-
ear segments of strain difference curves, which appear at

Fig. 7. Relation of vertical stress obtained by DRA to sampling depth.
Straight lines denote the relation of overburden pressure to depth for
the assumed average densities of overburden rocks. The same symbols
indicate the data at the same sampling site. The data are the same as that
in Yamamoto et al. (1995).

applied stresses smaller than the folding point. Even if the
peak of applied stress to the respective specimens is differ-
ent at 376 m, the fold is found near 9.0 MPa in the axial
stress. This stress magnitude is almost the same as the fold-
ing stresses for the other vertical specimens measured for
a depth of 376 m. The standard deviation for the memory
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stresses thus read is about ±5% of their average at every
depth.
The relationship between the vertical stress of memory

and the sampling depth thus determined is shown in Fig. 7.
Linear lines indicate the theoretical relations determined for
a number of assumed values of average density for the over-
burden rocks, which are indicated in the figure. The aver-
age vertical stresses are seen to fall between the lines cor-
responding to densities of the overburden rocks of around
2.7×103 kg/m3. These density values are close to those
measured on core samples in Table 1 for both the stress
fields of strike-slip and reverse fault regimes. Although the
data may be affected by the topography near the sites, it can
be seen that the vertical stresses of memory are almost con-
sistent with their overburden pressures. This is the principal
underlying reason for the conclusion drawn by Yamamoto
et al. (1995) that rocks really do have the property of in-situ
stress memory.

2.3.3 Horizontal stresses Figure 8 demonstrates the
strain difference functions measured on the horizontal spec-
imens of four azimuths at an interval of 45◦. The func-
tions for two sites, IKH351 and OT5.475, measured by

Yamamoto and Yabe (2001) and Yamamoto (1991) are
shown in the upper and the lower frames of the figure, re-
spectively. IKH351 indicates the functions for the granitic
rocks recovered from a depth of 351 m at the Ikuha site,
at a distance of about 3 km from the southwest end of the
Nojima fault, Awaji Island, central Japan. The Young’s
moduli of the specimens are between 50 and 70 GPa. The
average modulus for R90◦E is about 20% smaller than that
for R0◦E (Yamamoto and Yabe, 2001). The specimens of
OT5.475 are sawed from the boring cores recovered from a
depth of 475 m at a site (OT5) in Ohtaki, Nagano Prefec-
ture, Japan, close to the epicenter of the 1984 Nagano-ken
Seibu earthquake (MJMA=6.8). The rock type and physical
constants are the same as those given in Tables 1 and 2.
For IKH351, four cycles of loading were performed on

the two specimens of each azimuth for the DRA. The
largest axial stress of each curve in every frame is approx-
imately equal to the peak stress applied to the specimen
when loading is performed for DRA. The peaks of the ax-
ial stress are slightly different between two specimens of
each direction. The strain difference functions from the suc-
cessive cycles without (1, 2) are shown in the figure. For

(a)

(b)

Fig. 8. Strain difference functions measured on the horizontal specimens of four azimuths at two sites. The records in each frame are of the same
azimuth, indicated at the top of the frame. The references in the azimuth are arbitrary for the respective sites. Si j denotes the j-th measurement on
the i-th specimen. Other notations are the same as those in Fig. 5. (a) For a depth of 351 m at the Ikuha site (IKH351) (after Yamamoto and Yabe,
2001). (b) For a depth of 475 m at the Ohtaki site (OT5.475) (after Yamamoto, 1991).
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(a)

(b)

Fig. 9. The dependence of horizontal stresses on the azimuth. Solid circles
denote the stress magnitudes read from the in-situ stress memories that
are indicated by arrows in Fig. 8. The curves are the sinusoidal functions
of azimuth fitted to the solid circles. (a) IKH351 (after Yamamoto and
Yabe, 2001). (b) OT5.475 (after Yamamoto, 1991).

OT5.475, loading was cycled four or five times for each
specimen. The strain difference functions in the figure are
representative of each of the four specimens and azimuth.
The arrows indicate the memories determined by eye. It
can be seen in Fig. 8 that the folding point is repeatedly ob-
tained from a specimen by cyclic loading and that the mem-
ory stresses of almost identical magnitude are obtained from
the different specimens of the same depth and of the same
direction. It can also be confirmed further from the frames
for R0◦E, R90◦E, and R135◦E of OT5.475 that the folding
stress is independent of the peak of the applied stress for
DRA.
The memory stresses read near the arrows are plotted as

a function of the azimuth in Fig. 9. The curves in this fig-
ure indicate the sinusoidal functions of azimuth fitted to the
memory stresses. It can be seen that the memory stresses
are well fitted to the curves, independently of the rock type
of the specimens. This observation supports the interpre-
tation that the memory stress represents a stress compo-
nent in a stress field. Yamamoto et al. (1995) have already
pointed out that the memory stress magnitudes are inde-
pendent of the elastic property or of the anisotropy in the
elasticity of specimens. Therefore, although the correlation
between the elastic constants and the stresses is recognized
for IKH351, this does not mean that the elastic anisotropy
produces the apparent dependence of the memory stresses
on the azimuth; rather, the correlation suggests the possibil-
ity of the elastic anisotropy being induced by the stresses in
this case.

If memory stresses are identical to in-situ stresses, the
memory stresses have to satisfy the conditions—that is, the
vertical stress is nearly equal to the overburden pressure and
the horizontal stress is expressed by a sinusoidal function
with a period of π , as described in the previous section.
Although the determination of stress memory may appear
to be subjective, it is difficult to determine another set of
such stress memories from the strain difference functions
at each depth, as may be understood from the functions in
Fig. 8. Some stress measurements have already been carried
out by DRA. The measurements have confirmed that the
memory stresses for horizontal specimens at a depth are
well fitted by a sinusoidal function. For more examples
of strain difference functions for horizontal specimens, I
refer the read to earlier papers and reports (see Tamaki et
al., 1991; Tamaki and Yamamoto, 1992; Yamamoto et al.,
1995, 2004; Yamamoto and Yabe, 2001; Sato et al., 2003).

3. Theory of In-situ Stress Measurement on Rocks
3.1 Models for two modes of inelastic strain
Yamamoto (1995) proposed a hypothesis to verify the ap-

plicability of DRA to in-situ stress measurement. Here, I re-
view the hypothesis and discuss the rock core-based meth-
ods for in-situ stress measurement from the viewpoint of
this hypothesis in further detail. Based on the evidence de-
scribed in Section 2.3, Yamamoto assumed two independent
modes of inelastic strain in order to explain both the in-situ
stress memory and the Kaiser effect. Let us denote applied
axial stress and confining pressure for tri-axial loading by
σ1 and by σ3, respectively, and the in-situ stress in the di-
rection along the loading axis by σ 0

1 . Inelastic strain is well
known to increase with an increase in (σ1 − σ3). Here, this
mode of inelastic strain is called the first mode (Mode-I).
The inelastic strain of the other mode is associated with in-
situ stress memory and increases with an increase in the
value of |σ1 − σ 0

1 |—at least for σ1 > σ 0
1 . This mode of

inelastic strain is called the second mode (Mode-II).
Carlson and Wang (1986) and Meglis et al. (1991) inves-

tigated crack porosity under the ambient condition for rock
samples recovered from depths. Crack porosity is known to
increase with increasing sampling depth. These researchers
attributed this property to the non-uniform expansion of
constituent minerals due to the removal of in-situ stresses.
This explanation suggests that the stress field in rocks un-
der atmospheric pressure is non-uniform compared to that
at depth, or that the stress field in rocks is more or less uni-
form at depths. Going a step further, this suggestion may
enable the hypothesis to be framed as follows: the quasi-
uniform field of stress has been formed in rocks that are
stable under in-situ stresses. Here, the quasi-uniform field
means either the stress field excluding the stress concentra-
tions that have the potential to generate micro-fractures in
rocks or the stress field where the stress concentrations have
partly relaxed.
Figure 10 schematically shows the enlarged parts of the

models for the two modes of inelastic strain. Rocks are
elastically heterogeneous. Respective blocks or constituent
mineral grains of rock may deform differently under applied
stresses. The blocks denoted H and S in the figure represent
the hard and the soft homogeneous material, respectively,
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(a) (b)

Fig. 10. Conceptual illustration of two composite models constructed to explain stress memories. H and S represent hard and soft constituents,
respectively, of the composite. τi denotes a component of the stress applied to composites. (a) Model-A is for the inelastic strain of Mode-I. The
constituents are welded each other in order not to cause misfits at their welded boundaries under atmospheric pressure. (b) Model-B is for the inelastic
strain of Mode-II. The constituents are welded in order not to cause misfits at the welded boundaries under constant stresses τi .

composing a rock. There may be two ways for the blocks
that are separated each other to weld at a surface together
into a composite material. One is to weld them under atmo-
spheric pressure, and the other is to weld the blocks under
stresses that have been separately deformed. The compos-
ites thus made are called Model-A and Model-B, respec-
tively.
The stress field in Model-A may be uniform, and the sur-

faces of the blocks may adhere without misfits under at-
mospheric pressure. When the composite is subjected to
applied stresses τi , the blocks H and S may deform differ-
ently to generate misfits at the welded surface and to pro-
duce stress concentrations. The stress concentration may
increase with increasing applied stress to cause a disloca-
tion or fracture at the surface. Thus, Model-A may be taken
as the model for the Kaiser effect or the inelastic strain of
Mode-I. The stress field in Model-B is uniform under the
initial stresses τi , which are the stresses when the materials
have been welded. When the initial stresses are removed
from the composite, stress concentration may appear at the
boundary surface. The stress concentration may increase
with an increase in the initial stresses. In this model, those
applied stresses that are different from the initial ones cause
the stress concentration at the surface. This property may
be expected for the quasi-uniform field under the initial
stresses. Model-B may be thus taken as the model for the
inelastic strain of Mode-II.
The stress fields and the inelastic deformation will be

discussed hereafter for the quasi-uniform field under in-
situ stresses, when the specimens are loaded with uni-axial,
tri-axial stresses or hydrostatic pressure. Let us define the
stress deviation to quantify the stress concentrations. Here,
the deviation is defined as the amount of the stress deviated
from its average. An increase in the deviation may mean

thus the increase in the stress concentrations having the
potential to generate micro-fractures. For the rocks at the
quasi-uniform state, stress concentrations may be produced,
whenever the magnitudes of in-situ stress vary in a short
time or the stresses different from the in-situ stresses are
applied in a short time. It does not lose the generality of
the following discussions to put the uniform stress field in
Model-B in place of the quasi-uniform field.
3.2 Stress in rock specimens under loading
Rocks are aggregates of the mineral grains of various

shapes that respectively have different elastic constants.
The stress field in rocks is assumed to have been quasi-
uniform under in-situ stresses. In order to discuss the
behavior of inelastic strain of Mode-II, I formulate here
the stress field in specimens under compressive loading in
terms of stress deviation. To do this, the followings are as-
sumed: (a) the stress field for Mode-I and that for Mode-II
are independent of each other; (b) the stress field in rocks
is completely uniform under in-situ stresses; (c) inelastic
strain increases with a growth in the stress concentration,
and the stress concentration grows with an increase in the
stress deviation; (d) the amount of inelastic strain produced
is not so large as to affect the stress field in rock specimens.
Suppose a unit volume of rock surrounded by a surface S

of arbitrary shape. When the stresses at a position x in the
rock is expressed by τi j (x), the average stress 〈τi j 〉 over the
unit volume is defined by

〈τi j 〉 =
∫

V
τi j (x)dv (3)

where dv is a volume element. Using the divergence the-
orem (the Gauss theorem) and the equilibrium equation,
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Eq. (3) is generally expressed by

〈τi j 〉 = 1

2

∫
S

(
xi Ť

∗
j (x) + x j Ť

∗
i (x)

)
ds

+1

2

∫
V

{
xi f j (x) + x j fi (x)

}
dv (4a)

Ť ∗
i (x) = τ ∗

j i (x)v j (x) (4b)

Here, the summation convention is used. Ť ∗
i (x) and fi (x)

are the surface traction on the boundary S and the body
force in the volume acting to the xi -direction, respectively;
v j (x) is the x j -component of the surface normal of ds at x;
τ ∗

j i (x) is a stress component. This equation generally holds
whenever the equilibrium equation holds everywhere in the
volume. Equation (4) enables us to understand that the
stress field in the volume is expressed as the superposition
of the stresses produced by Ť ∗

i (x) applied on S upon the
stresses produced by fi (x) in the body.

For rocks in which there are no body forces from the
outer fields, such as the gravitational force,

〈 fi (x)〉 ≡
∫

V
fi (x)dv = 0.

fi (x) can be interpreted as the internal forces in this case.
When fi (x) randomly distribute in space independently of
their magnitudes, the second term of the right-hand side of
expression (4a) vanishes. Since x j fi (x) remain as they are
after τ ∗

i j (x) have been removed from the rock, the moments
x j fi (x) due to internal forces are interpreted to be the inter-
nal stresses equivalent to residual stresses caused by plastic
deformation or dislocations.
Here, the stress field caused by randomly distributed in-

ternal stresses is expressed by τ c
i j (x). When macroscopi-

cally uniform stresses τ ∗
i j are acting on S, there is a non-

uniform stress field, τ ∗
i j (x), in the volume caused by the

non-homogeneity of the rocks. Since the stress field in a
rock is the superposition of the field due to the stresses on S
and the field due to distributed internal stresses, τi j (x) may
be written as

τi j (x) = τ ∗
i j (x) − τ c

i j (x). (5)

Because the second term on the right-hand side of Eq. (4a)
is always zero, 〈τ c

i j (x)〉 should be always zero. The deriva-
tion of expression (4) and the justification of expression (5)
are described in Appendix A.
For simplicity, τi j is written as follows: τ11 = τ1, · ·

··, τ23 = τ4, ··. When the theory of the linear elasticity is
applicable, τ ∗

i (x) are proportional to 〈τ ∗
i (x)〉 = τ ∗

i . There-
fore, we may write as follows,

τ ∗
i (x) = bi j (x)τ ∗

j

〈bi j (x)〉 ≡
∫

V
bi j (x)dv = δi j ,

(6)

where δi j is the Kronecker delta. Assumption (b) states
that the stress field in a rock is completely uniform when
〈τ ∗

i 〉 = τ 0
i . Putting τ ∗

i = τ 0
i and substituting expression (6)

into expression (5), we obtain the following expression of
τ c

i (x),

τ c
i (x) = bi j (x)τ 0

j − τ 0
i . (7)

We can easily confirm that 〈τ c
i (x)〉 = 0, and we can see that

τ c
i (x) represent the residual stress field.
Specimens are prepared from the cored rock samples for

measurements of in-situ stresses. The stress field of the
specimens has been assumed to be completely uniform un-
der the in-situ stresses. When macroscopically uniform
stresses τ a

j (= 〈τ a
j (x)〉) are applied to the specimen, by

putting τ a
j in place of τ ∗

j in expression (6) and substitut-
ing expression (7) into expression (5), we obtain the stress
field τ II

i (x) for Mode-II as follows;

τ II
i (x) = bi j (x)

(
τ a

j − τ 0
j

) + τ 0
i . (8)

The stress field in the rock has been assumed above to be
completely uniform under in-situ stresses. However, the ex-
perimental results in the previous section suggest that this is
not completely realized. Otherwise, even if it is realized in-
situ, the stress concentration produced by the internal forces
under atmospheric pressure has partly relaxed. The stress
field τ I

i (x) for Mode-I is free from the internal forces. For
these reasons, the stress field for Mode-I may be required to
express the actual stress field in a specimen under applied
stresses. The stress field is obtained by putting τ 0

i = 0 in
expression (8), that is,

τ I
i (x) = bi j (x)τ a

j . (9)

In this study, it has been assumed that the stresses τT
i (x) in

a specimen under applied stresses τ a
i are expressed by the

sum of the stresses for Mode-I and for Mode-II, that is,

τT
i (x) = (1 − η)τ I

i (x) + ητ II
i (x); for η ≤ 1, (10)

where η denotes a constant to be experimentally deter-
mined.
The main aims of this paper are to show that rocks have

the memory of in-situ stresses and to briefly review the po-
tential of the existing methods to precisely measure in-situ
stress magnitudes from the present hypothesis. To this end,
it is most essential to investigate the behavior of inelastic
strain of Mode-II in relation to applied stresses τ a

i , even if
expression (10) has not been established.
3.3 Stress deviation in rock specimens under loading
Let us define the stress deviation δτi (x) for Mode-II by

δτi (x) = τ II
i (x) − τ a

i . (11)

Making use of expression (8) and the second equation of
(6), the deviation is written by

δτi (x) = ai j (x)
(
τ a

j − τ 0
j

)
, (12a)

〈ai j (x)〉 = 0 (12b)

ai j (x) ≡ bi j (x) − δi j (12c)

where the average 〈〉 is taken over a unit volume of a speci-
men.
Based on assumption (c), inelastic strain may increase

with increasing absolute values of δτi (x). In order to dis-
cuss the inelastic strain behavior of rock specimens under
loading of compression, I define the degree of deviation Ii
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by

Ii =
∫

V
{δτi (x)}2 dv = Ai jk

(
τ a

j − τ 0
j

) (
τ a

k − τ 0
k

)

Ai jk =
∫

V
ai j (x)aik(x)dv

(13)

where V is a unit volume of a specimen.
Although the influence coefficients ai j (x) could be ex-

actly determined only when the spatial distribution and in-
tensity distribution of the internal forces was specified, it
is seen by making use of expression (12b) that at least the
following relationship generally holds,

Ai j j > 0 and Ai j j > Ai jk, for j �= k. (14)

If it is assumed that the coefficient ai j (x) is completely
independent of aik(x) for j �= k, the following inequality
holds,

Ai j j � Ai jk, for j �= k. (15)

Using condition (15), Ii is approximated by

Ii ≈ Ai j j
(
τ a

j − τ 0
j

)2
. (16)

Equation (16) is fundamental for the stress deviation related
to the inelastic strain of Mode II.

4. Methods for Detection of In-situ Stresses
The rock-core based methods for measurement or detec-

tion of in-situ stresses are classified into two groups: (1)
those using axial loading; (2) those using the loading of
hydrostatic pressure. The latter includes the method us-
ing the time-dependent property of deformation under at-
mospheric pressure. The deformation rate analysis (DRA)
and the acoustic emission (AE) method are classified into
the former group and the differential strain curve analysis
(DSCA) and anelastic strain recovery method (ASR; e.g.,
Enever and Mckay, 1976) are considered part of the latter
group. In the following sections, these methods for in-situ
stress measurement are discussed within the context of the
present hypothesis.
4.1 Method using axial loading
When an axial stress is applied to a rock specimen,

stresses for Mode-I are superposed on those for Mode-II,
as described above. The stress deviation for Mode-I may
monotonically increase with an increase in applied stress,
or applied stress difference in the case of axial loading, be-
cause it is caused by elastic heterogeneity and the irregular-
ity of the grain shape of constituent minerals. The inelastic
strains of Mode-I are therefore expected to monotonically
increase with an increase in the applied stress difference.
The stress deviation for Mode-II under uni-axial or tri-

axial compression is obtained by putting

τ a
1 = σ1 > τ a

2 = τ a
3 = σ3 = pc, τ a

4 = τ a
5 = τ a

6 = 0,
(17)

where σi denotes the axial stress applied in compressive
loading, and pc denotes the confining pressure. Therefore,

pc = 0 indicates the case of uni-axial loading. The degree
of stress deviation is written from expression (16) as

Ii ≈ Ai11
(
σ1 − τ 0

1

)2 + ci

ci = Ai j j
(
τ a

j − τ 0
j

)2
, for j �= 1

(18)

Here, ci is independent of σ1 and is thus constant for pc

fixed. It is seen from this expression that Ii takes its min-
imum at σ1 = τ 0

1 for every number of i . This means that
the stress distribution in a specimen is the most uniform at
σ1 = τ 0

1 , not only for the component of τ1(= τ11) but also
for all of the stress components.
For the stress deviation for Mode-II, the inelastic strain

is expected to behave as follows: an amount of inelastic
strain becomes larger with an increase in Ii . Since the
inelastic strain is considered to have the same sign as the
elastic strain caused by the stress (σ1 − τ 0

1 ), a specimen
may expand longer than that elastically expected when σ1

is decreased from τ 0
1 ; alternatively, it may become shorter

than that elastically expected when σ1 is increased from τ 0
1 .

Let us take a shear crack accompanied by tensile cracks
as a model of micro-cracks in rock specimens under axial
loading of compression (e.g., Brace et al., 1966; Kuwahara
et al., 1990) and suppose that the relative displacement on
the shear crack surfaces is zero at σ1 = τ 0

1 . The displace-
ment increases with a decrease in σ1 from τ 0

1 . When σ1 is
increased from zero, the displacement decreases to zero at
σ1 = τ 0

1 , at which point these cracks are locked and new
cracks are produced for σ1 > τ 0

1 because accompanying
tensile cracks are completely closed at σ1 = τ 0

1 . This sug-
gests that the cracks that contribute to the inelastic strain for
0 < σ1 < τ 0

1 are different from the cracks that contribute to
the inelastic strain for τ 0

1 < σ1.
A problem in in-situ stress estimation is how to detect τ 0

1
in the inelastic strains composed of Mode-I and Mode-II.
The DRA will be discussed below.

4.1.1 Deformation rate analysis The behaviors of
inelastic strains of Mode-I and Mode-II and strain differ-
ence functions are inferred from the above discussions. The
inferred behaviors of the functions are shown in Fig. 11(a)
and (b), where it is assumed that the apparent stiffness for
Mode-II does not change for 0 < σ1 < τ 0

1 but does in-
crease for τ 0

1 < σ1 with every loading cycle. In this context,
the apparent stiffness means an increment of the applied
stress necessary to produce a unit increment of strain. Fig-
ure 11(a) shows the inelastic strains of Mode-I and Mode-
II, and Fig. 11(b) shows the strain difference functions for
η = 0.5. The figures suggest that the observed behaviors of
inelastic strain can be theoretically simulated by the behav-
iors of the two modes of inelastic strains. See Appendix B
for the discussions in some details.
For the first approximation, it is adequate to consider

that the inelastic strain of Mode-I and that of Mode-II are
independent each other. The inelastic strain of Mode-I is
responsible for the strength of specimens, while that of
Mode-II is not—at least not directly—responsible for it.
When τ 0

1 becomes close to the strength of a specimen for
axial stress of compression, the curvilinear behavior of the
inelastic strain of Mode-I may become conspicuous, even
in the later cycles of loading. Therefore, it is easily inferred
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Fig. 11. (a) The inferred inelastic strain behaviors for composites under successive uni-axial loading. The upper and the lower figures show the behaviors
theoretically inferred for Mode-I and Mode-II, respectively, when the applied axial stress σ1 is increased. i is the cycle number of loading. σ 0

1 is
the component of applied stress that makes the deviation of stress field in the composite minimum. (b) The inferred behaviors of strain difference
function for η = 0.5. The vertical scales and the vertical offsets are arbitrary.

that the identification of the in-situ stress memory by DRA
becomes difficult as in-situ stress approaches the strength
of a specimen for axial loading.
It is well known that the strength of a rock specimen

for axial loading of compression increases with an increase
in confining pressure. The stress deviation expressed by
Eq. (18) implies that in-situ stress magnitudes of memory
are independent of confining pressure—when the confining
pressure is kept constant. According to this hypothesis, the
memory may be found in the inelastic deformation behavior
of a specimen under tri-axial loading of compression, even
when the in-situ stress is larger than the strength of a spec-
imen for the uni-axial loading of compression. One of the
future problems facing researchers is to develop the tech-
nology for measuring stress memory under tri-axial load-
ing.
4.2 Methods using hydrostatic pressure loading

Ii for a specimen under the hydrostatic pressure p is
obtained by putting

τ a
1 = τ a

2 = τ a
3 = p and τ a

4 = τ a
5 = τ a

6 = 0 (19)

in expression (14). Ii for the specimen is expressed by

Ii ≈
3∑

j=1

Ai j j
(

p − τ 0
j

)2 + ci

ci =
6∑

j=4

Ai j j
(
τ 0

j

)2 (20)

Here, ci is constant with respect to σ1, and further ci is
constant independent of the stress component, at least when
the theory of linear elasticity is valid. Expression (20)

is invariable with regard to the rotation of the coordinate
system. Ii (i = 1, 2, 3) can be thus be taken as the degree
of deviation for the normal stress component of an arbitrary
direction. Here, p = 0 means the stress-free state.
Differential strain curve analysis (e.g., Montgomery and

Ren, 1981), which is based on DSA (Simmons et al.,
1974), has been developed as a method for estimating in-
situ stresses. In DSCA, the longitudinal strains in more than
six directions are measured on a specimen as the functions
of applied hydrostatic pressure p, and in-situ stresses are
estimated from the magnitudes of non-linear strain compo-
nents at p = 0. It is inferred from the paper by Meglis et
al. (1991) that DSCA is based on the rock property of the
non-uniform expansion of constituent minerals caused by
the removal of in-situ stresses. This basic concept may be
identical to that for DRA. Therefore, the validity of DSCA
as a method for estimating in-situ stress may be discussed
in terms of Ii as well.
The stress deviation Ii in a specimen at p = 0 is gen-

erally expressed by the combination of the terms of (τ 0
j )

2.
In order that in-situ stresses are successfully estimated by
DSCA, at least two conditions may be required in the
present context: (1) that the relations of Ii to τ 0

i or the rel-
ative values of Ai j j in Eq. (20) are explicitly represented,
because Ii is expressed as the combination of all in-situ
stress components; (2) that the constitutive relation between
Ii and the amount of inelastic strain is known.
Here, we investigate the relation of Ii to τ 0

i for further
discussion. By putting

Gi = Ai11 + Ai22 + Ai33

Hi = Ai11τ
0
1 + Ai22τ

0
2 + Ai33τ

0
3 ,

(21)
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it is seen that Ii reaches its minimum at

p = pi = Hi/Gi . (22)

The integrand for Ai j j is positive either for i = j or for
i �= j ( j = 1, 2, 3). Therefore, the two extreme cases will
be investigated as follows: One is the case of

Aiii � Ai j j , for i �= j, (23)

and the other is the case of

Aiii = Ai j j , for i, j = 1, 2, and 3. (24)

In the case of expression (23), Ii ≈ Aiii (τ
0
i )2 + ci at

p = 0, and Ii decreases to its minimum ci at p = τ 0
i (i =

1, 2, and 3) as p is increased from zero. It is obvious that, in
principle, τ 0

i can be determined, if the constitutive relation
between Ii and the inelastic strain has been established.
This is considered to be one of the possible explanations
of DSA or DSCA, when they are successful. A similar
explanation may be possible for the method of ASR because
the internal stresses in the second term of the right-hand
side of expression (4a) are considered to be the sources of
anelastic strain or time-dependent inelastic strain as well.
Attention should be paid to the fact that Ii decreases to

its minimum at p = τ 0
i , when the applied hydrostatic pres-

sure to a specimen is increased. If we assume that the lon-
gitudinal component εineli of inelastic strain is proportional
to I 1/2i (i = 1, 2, 3), εineli changes its behavior from a de-
crease to an increase at p = τ 0

i . This suggests the possibil-
ity of finding in-situ stress memories without having exact
knowledge of the constitutive relation. However, it seems
that condition (23) is much more difficult to satisfy than the
condition (15) that is required for DRA.
In the latter case of Aiii = Ai j j , Ii (i = 1, 2, 3) has the

same value independent of i , when p = 0. This implies that
the magnitude of each component of in-situ stress cannot be
determined, even if the non-linear components of strains at
p = 0 have been precisely measured and the constitutive
relation has been established. Ii has its minimum at

p = pi = (
τ 0
1 + τ 0

2 + τ 0
3

)
/3 (25)

for any component of stress. This means that the apparent
compliance of specimens achieves its minimum at the same
pressure for all the components of stress. Therefore, the
magnitudes of the respective components of in-situ stress
cannot be estimated by monitoring the apparent compli-
ance change. Here, the apparent compliance means an in-
crement in strain for a unit increment of applied stress. It
holds—without assumptions and unconditionally—that the
average of Ii over i increases with an increase in τ 0

j under
atmospheric pressure. Since the average of τ 0

j generally in-
creases with an increase in depth, the average of Ii under
the atmospheric pressure increases with an increase in the
sampling depth. The behavior of crack porosity observed by
Carlson andWang (1986) andMeglis et al. (1991) is consis-
tent with this increase in Ii , with the only assumption being
that the crack porosity increases with an increase in Ii . In
an actual measurement, if the magnitude of p that makes Ii

minimum is found for a direction, the magnitude of p may
lie between the in-situ stress magnitude in the direction and
the average in-situ stress given by expression (25).
In order to determine a stress field, it is necessary to mea-

sure more than six components of stress. To do this by the
methods using axial loading, the measurements have to be
performed at least six times; in contrast, only one measure-
ment is needed by the methods using hydrostatic loading.
This is the advantage of the methods using hydrostatic load-
ing. However, it has not yet been decided which model—
that expressed by (23) or that by (24)—approximates the
actual state of rocks. This may a problem to be studied
later.
4.3 Pore pressure effect
From the definition of the average stresses, the average

stresses 〈τi j 〉 over a unit volume of a rock specimen, includ-
ing fluid pores of porosity φ may be expressed by

〈τi j 〉 = (1 − φ)〈τ s
i j 〉 + φδi j Pp. (26)

Here, δi j means the Kronecker delta, and the positive sign of
stress denotes compression. This expression holds without
any assumption—i.e., it is independent of pore shape and
orientation.
When rocks are subjected to in-situ stress 〈τ 0

i j 〉, the stress
in the rocks may be expressed by

〈τ 0
i j 〉 = (1 − φ)〈τ s0

i j 〉 + φδi j Pp. (27)

Here, 〈τ s0
i j 〉 is the average stress in the matrix or solid part

of rocks. Since we assumed the stress in rocks to be quasi-
uniform under in-situ stresses, the stress in the solid part of
rocks can be considered to be quasi-uniform at the stresses
〈τ s0

i j 〉. In loading tests in laboratories, pore pressure can be
taken to be equal to atmospheric pressure if rock specimens
have been dehydrated or the pores can be regarded to be
interconnected to each other. In this case, as seen from
expression (27), stress deviation may be the minimum at

〈τ a
i j 〉 = (1 − φ)〈τ s0

i j 〉. (28)

The magnitude of 〈τ a
i j 〉 differs from the in-situ stress by

magnitude φδi j Pp. Expression (27) means that the effect
of pore pressure on the average stress is equal for the nor-
mal stress in every direction independent of pore geometry.
Therefore, the stress at the quasi-uniform state is indepen-
dent of the elastic anisotropy of rock specimens, even if the
anisotropy is caused by preferably oriented pores.
The contribution of φPp is about 5% of the lithostatic

pressure in magnitude, even for rocks of which the porosity
is about 10%, provided that Pp is the hydrostatic pressure at
the depth. The contribution of pore pressure is comparable
to the errors in magnitude in stress measurements. Thus,
the effect may be negligible in general. However, the pore
effect must be taken into consideration in the case of rocks
beneath the seafloor because pore pressure is not small com-
pared with the overburden pressure.
Tamaki et al. (1991) and Tamaki and Yamamoto (1992)

measured the stresses on rocks beneath the seafloor by
DRA. The strain difference functions obtained from the
specimens showed profoundly curvilinear behavior, prob-
ably because of the small fracture strength of specimens for
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uni-axial compression. Although there may be some ambi-
guities in the identification of stress memory for the above
reason, the folding could not be found near the overbur-
den pressure calculated from the logging data, but near the
applied stress, with the latter being smaller than the calcu-
lated overburden pressure by approximately the amount of
φPc. This result suggests that Eq. (27) holds or that the
measured magnitudes of stress are the absolute magnitudes
of the stress to which the solid parts of rocks have been sub-
jected at depths.

5. Summary of the Mechanisms of In-situ Stress
Memory

In this paper, I have reviewed deformation rate analy-
sis, which is a method developed for detecting in-situ stress
memory in the inelastic deformation behavior of rock spec-
imens under uni-axial loading of compression and demon-
strated evidence for the existence of the rock property of
in-situ stress memory. In order to elucidate this property,
I have hypothesized that the stress field in rocks is quasi-
uniform at the in-situ stress at a depth. Here, the quasi-
uniform stress field means the field where stress concen-
tration has partly relaxed. Therefore, the inelastic strain of
rocks under axial loading consists of two modes of inelastic
strain, Mode-I and Mode-II. The inelastic strain of Mode-I
is caused by stress concentrations that increase with an in-
crease in applied stress difference, a process that is well
known. The inelastic strain of Mode-II is caused by the
stress concentrations that increase with the deviation in the
applied stress field from the quasi-uniform stress field.
The magnitude of stress concentrations is quantified by

defining “stress deviation” in order to discuss the inelastic
strain behavior of Mode-II, where the large “stress devia-
tion” means the large magnitude of stress concentrations.
The results theoretically derived from the above hypothesis
are summarized as follows. (1) In rock specimens under the
loading of uni-axial or tri-axial stress of compression, the
“stress deviation” is minimized for all of the stress compo-
nents, when the applied axial stress is equal in magnitude
to the in-situ stress in the loading direction. (2) The “stress
deviation” in a rock specimen under atmospheric pressure
increases with an increase in the sampling depth because
the average magnitude of in-situ stress increases with depth.
(3) With hydrostatic pressure loading, we possibly find the
applied pressure that minimizes the deviation of the nor-
mal component of stress for every direction. However, the
pressure does not necessarily have the same magnitude as
the in-situ stress of the direction because the deviation for
a stress component reflects not only the in-situ stress of the
component itself but also those of the other components in
general.
Result (1) and the inferred behavior of different strain

functions support the premise that the memory stress mag-
nitudes measured by DRA are equal to those of in-situ stress
in memory. Result (2) is in agreement with the existing
observational results that crack porosity of rocks under the
ambient condition increases in proportion to the sampling
depth of the rocks.

6. Suggestions for Further Study
Rocks have been subjected for a long time to the in-

situ stress that is thought to be almost constant with time.
The relaxation of stress concentrations may take place un-
der such a constant stress as to form a less non-uniform
stress field in rocks or to make the strain energy in rock
decrease. The relaxation may be advanced by the partial
transformation of shape or the deformation of constituent
minerals that is slowly progressing by dislocation motions
and/or by chemical reactions. As seen in this article, the
proposed hypothesis appears to explain well the observed
evidence, possibly indicating that the above process is actu-
ally progressing in nature.
The important problem to be solved is how long it takes

for rocks to get in-situ stress memory. It has already
been seen that vertical stress magnitudes correspond to
the overburden pressures and that in-situ stress memory is
observable a few years after recovering the rock samples
from depths. These results provide the researcher with
a rough idea of the time period when a rock has gotten
the memory—that is, the time before a few years ago and
after the formation of the topography. To further define
this process, Yamamoto (1991) investigated the behavior of
strain difference functions in relation to the loading dura-
tion by uni-axial loading of compression in laboratory. He
found that the apparent compliance of a specimen becomes
smaller around the applied stress as the loading duration in-
creases. The apparent compliance may decrease due to the
local relaxation of stress concentration. Such an approach
may be useful for solving the problem of the time effect on
the memory. Nevertheless, any reliable conclusion on the
bounds has yet to be drawn. Further investigation is needed
for this purpose.
The relationship between seismogenic stresses and stress

distribution in the crust may be the key to revealing the con-
ditions of earthquake generation. Although Yamamoto et
al. (1997, 2004) discussed the conditions, their measure-
ments were carried out at shallow depths of about 700 m at
the most. Measurements at depths deeper than a few kilo-
meters may be required to directly obtain information for
this purpose. In this, I have theoretically clarified that in-
situ stresses at such great depths can be known in principle
by applying DRA to the deformation of specimens under
tri-axial loading of compression. However, the technology
for the precise measurement of strain under confining pres-
sures has not been established. This remains yet another
problem for future technology to solve.
That the stress field in a rock is quasi-uniform at the in-

situ stress is currently considered to be a universal property
of rocks . If the stress field is formed by the deformation
of constituent minerals, the development of new methods
for stress measurement at greater depths may be expected
from the microscopic viewpoint. An investigation on the
formation of the quasi-uniform stress field is required, not
only to develop the new methods needed, but also to study
the stress state of the Earth’s crust.
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Appendix A. Stress Fields in Rocks as Composite
Materials

A.1 Definitions of macroscopically homogeneous and
macroscopically uniform

Rocks are composite materials that consist of con-
stituents such as mineral grains, fluid-filled pores, and
voids. The constituents have various shapes and different
physical properties. Let us suppose a small surface �σ in-
cluding a point in a rock. We describe the traction acting
on the surface by τ j iv j�σ ≡ τ j i�σ j , where τ j i is a stress
component acting in the xi direction on a surface perpen-
dicular to x j , and �σ j is the projection of �σ on the sur-
face perpendicular to x j . From the definition of stress (e.g.,
Sokolnikoff, 1956), τ j i is the xi -component of the traction
per unit area acting on the surface element �σ j . Here, we
denote stress distributions in �σ j by τ j i (x) and divide �σ j

into a number of smaller surface elements, ds j . Since τ j i

are the average stresses on �σ j , the tractions τ j i�σ j are
expressed by

τ j i�σ j =
∫

�σ j

τ j i (x)ds j

�σ j =
∫

�σ j

ds j .

(A.1)

Therefore, we get

τ j i = 1

�σ j

∫
d� j

τ j i (x)ds j . (A.2)

Equation (A.1) or (A.2) denote that stresses τ j i can be
defined on �σ j without regard to the stress distribution on
the surface �σ j .
If the average physical properties of a volume element are

the same everywhere in a rock, the rock is said to be macro-
scopically homogeneous or “homogeneous”. Therefore, a
“homogeneous” material does not constrain the material to
be homogenous from a microscopic viewpoint. If the av-
erage stresses τ j i in an element of a volume are constant
everywhere in a rock, we say that the stress field is macro-
scopically uniform or “uniform”. The “uniform” stresses
τ j i denote the averages of τ j i (x) in a volume element that
are constant anywhere in a rock. The “uniform” stress field
thus does not constrain the stress field to be uniform from a
microscopic viewpoint.
A.2 Expressions for average stresses in a macroscopi-

cally homogeneous body
Suppose a rock of a unit volume bounded by a surface S.

By applying the divergent theorem (the Gauss theorem) to

the volume, the following equation is obtained;
∫

S
x j Ťi (x)ds =

∫
S

x jτki (x)vkds =
∫

V

{
x jτki (x)

}
,k

dv

=
∫

V

{
τ j i (x) + x jτki (x),k

}
dv (A.3)

where Ťi (x)ds is the i-th component of the traction acting
on a surface element ds of S, of which the normal is parallel
to the direction v and vk is the k-th component of v. τki (x)

and τki (x),k are stress components acting in the xi direction
on a surface perpendicular to xk and its derivative with
respect to xk , respectively. dv is a volume element. From
(A.3), the following equation is derived:

1

2

∫
S

{
x j Ťi (x)+xi Ť j (x)

}
ds = 1

2

∫
V

{
τ j i (x) + τi j (x)

+x jτki (x),k + xiτk j (x),k
}

dv

(A.4)

The average stresses in the body are expressed by

〈τi j 〉 = 〈τ j i 〉 = 1

2

∫
V

{
τ j i (x) + τi j (x)

}
dv.

When any part of the body is equilibrated, the following
equation is obtained by employing the equilibrium equation
for the right-hand side of (A.4):

〈τi j 〉 = 1

2

∫
S

(
x j Ťi (x) + xi Ť j (x)

)
ds

+1

2

∫
V

(
x j fi (x) + xi f j (x)

)
dv (A.5)

Here, fi (x) are the body forces acting in the xi direction at
a point x. A similar expression for the composite materials
that are free from body forces is described in a text by
Landau and Lifshitz (1972) and in a paper by Hill (1963).
In this derivation of (A.5), nothing is assumed, except for
the assumption that the equilibrium equation holds and the
stress field is differentiable. We denote x j fi (x) + xi f j (x)

as internal stresses.
A.3 Expressions for the stress field in a body under

macroscopically uniform stresses
If the surface tractions and the body forces are indepen-

dent from each other, the stresses in the body may be ex-
pressed by the superposition of the stresses produced by the
applied stresses on S and the stresses caused by the internal
stresses, that is,

τi j (x) = τ ∗
i j (x) − τ c

i j (x), (A.6)

where τ ∗
i j (x) and τ c

i j (x) are the stresses due to the applied
stress and the stresses due to body forces, respectively. The
resultants of surface tractions Ť j (x) on S should be equili-
brated to body force −Fj from the outer field, that is,

∫
S

Ťj (x)ds =
∫

S

(
τ ∗

i j (x) − τ c
i j (x)

)
vi ds

=
∫

V
τ ∗

i j (x),i dv −
∫

V
τ c

i j (x),i dv=−Fj (A.7)
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From the equilibrium equation and the definitions of τ ∗
i j (x)

and τ c
i j (x), we may write

∫
V

τ ∗
i j (x),i dv = 0 (A.8a)

∫
V

τ c
i j (x),i dv =

∫
V

f j (x)dv = Fj . (A.8b)

In the case of Fj = 0, f j (x) are interpreted as internal
forces. From (A.8), we can take (A.6) as the general equa-
tion that represents the stress field in rocks including inter-
nal forces.
A.4 Distribution of internal stresses
Consider the case that the spatial and the magnitude dis-

tributions of fi (x) are independent of each other and respec-
tively random in a rock body. We put

fi (x) = f 0i + δ fi (x)

x j = x0
j + δx j ,

(A.9)

where

f 0i = 〈 fi (x)〉 =
∫

V
fi (x)dv

x0
j = 〈x j 〉 =

∫
V

x j dv

〈δ f j (x)〉 =
∫

V
δ f j (x)dv = 0

〈δx j 〉 =
∫

V
δx j dv = 0.

(A.10)

By making use of (A.9) and (A.10), the following equation
is obtained,∫

V
xi f j (x)dv =

∫
V

(
x0

i + δxi
) (

f 0j + δ f j (x)
)

dv

=
∫

V

(
x0

i f 0j + x0
i δ f j (x) + f 0j δxi

+δxiδ f j (x)
)

dv. (A.11)

Since the spatial distribution and the magnitude distribution
of f j (x) are independent of each other,

〈δxiδ f j (x)〉 = 〈δxi 〉〈δ f j (x)〉 = 0. (A.12)

When f j (x) are internal forces, f 0j = 0. Therefore, from
(A.11) and (A.12) ∫

V
xi f j (x)dv = 0. (A.13)

As shown above, when the spatial and magnitude distribu-
tion of internal forces are random and independent of each
other, the second term on the right-hand side of (4a) in the
text is zero.
Equations (A.1) or (A.2) mean that the Eqs. (A.5) and

(A.6) are valid for the macroscopically uniform stress
field, including the non-uniform stresses produced by non-
homogeneity of materials from the microscopic viewpoint.
In this article, the macroscopically uniform stress field has
been discussed. Therefore, discussions based on (A.5) or
(A.6) are, in general, valid for the macroscopically uniform
stress field in macroscopically homogeneous rocks.

Appendix B. Behavior of Strain Difference Func-
tions

B.1 Expressions of strain difference functions
When cyclic axial loading of compression is performed

for a rock specimen, the relationship between applied axial
stress σ1 and axial strain εk(σ1) during k-th loading may be
expressed from expression (10) in the text by

εk(σ1) = εelk (σ1) + (1 − η)εIk(σ1) + ηεIIk (σ1), (B.1)

where εelk (σ1) is the elastic strain. The strain difference
function �εk,k+1(σ1) used in the DRA is written by

�εk,k+1(σ1) = �εelk,k+1(σ1) + (1 − η)�εIk,k+1(σ1)

+ η�εIIk,k+1(σ1) for 0 ≤ σ1 ≤ σ P
1

�εelk,k+1(σ1) = εelk+1(σ1) − εelk (σ1)

�εIk,k+1(σ1) = εIk+1(σ1) − εIk(σ1)

�εIIk,k+1(σ1) = εIIk+1(σ1) − εIIk (σ1).

(B.2)

Here, σ P
1 is the peak of the applied stress.

The crack model by Kuwahara et al. (1990) described
in Section 2.1 may be generalized as one of the models to
explain the mechanisms that release the shear stress con-
centration in rocks. In the present discussion, the model is
adopted to elucidate the inelastic deformation. The follow-
ing are assumed when the crack model (Kuwahara et al.,
1990) is taken into account: (1) inelastic strain increases
with an increase in the absolute value of the stress deviation;
(2) inelastic strain is increased by shear cracks accompa-
nied with tensile cracks produced by micro-fracturing; (3)
new micro-fracturing begins to occur at the point where the
value of applied axial stress reaches the peak value of the
stress previously applied to the specimens; (4) the activity
of micro-fracturing gradually increases with an increase in
the applied stress for an applied stress larger than the previ-
ously applied peak stress; (5) the pre-existing micro-cracks
stably slide in response to applied stress. It is additionally
assumed here that (6) the activity of micro-fracturing de-
creases with time under a constant applied stress or with
the number of cycles under cyclic loading with a constant
peak stress. Assumption (6) is likely to hold for an applied
axial stress smaller than the stress that causes dilatancy.
When the change in elastic constants of specimens with

an increase in loading cycle is negligibly small, �εelk,k+1(σ1)

in (B.2) may be neglected. Therefore, �εk,k+1(σ1) is con-
sidered to mainly represent the difference in the behavior of
the inelastic strain for the loading stage between the cycles,
that is,

�εk,k+1(σ1) = (1 − γ )�εIk,k+1(σ1) + γ�εIIk,k+1(σ1).

(B.3)

In order to discuss the behavior of strain difference function
in response to applied stress, it is necessary to specify the
relationship of the inelastic strain and applied stress.
In the case of Mode-I
Here, the inelastic strain of Mode-I for the loading stage

of the kth loading cycle is assumed to be expressed by a
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series of power functions of σ1,

εIk(σ1) = αk + α0
k σ1 +

∑
l=1

αl
kσ

l
1 for 0 ≤ σ1 ≤ σ P

1 ,

(B.4)

where l is an integer of 1 to an arbitrary number, and αk and
αl

k are constants. The first two terms of the right-hand side
are the residual strain and the inelastic strains, respectively,
due to the deformation of existing micro-cracks in response
to applied stress. The other term represents the amount of
inelastic strain newly produced when the applied stress is
increased to σ1 from 0 in the kth loading.
In the first loading, micro-fracturing occurs at an increas-

ing activity with σ1. εI1(σ1) is thus expected to be contin-
uous and a monotonously increasing function of σ1. Since
almost all of the potential micro-fractures are produced in
the first loading, the stress-strain relations in the subsequent
loading cycles are more linear than those of the first load-
ing according to assumption (5). The gradients of the linear
component in the subsequent loadings may be much larger
than that of the first loading and be almost constant because
an increase in cracks produced in the subsequent loading
cycles may be negligibly smaller than that in the first load-
ing. Therefore, when assumption (6) is taken into account,
the following equations may hold,

α0
1 � α0

k ≤ α0
k+1 for k �= 1

αl
k+1 ≤ αl

k � αl
1 for k �= 1.

(B.5)

The strain difference function may be approximately writ-
ten as

�εI1,2(σ1)≈(α2 − α1)+α0
2σ1−

∑
l=1

αl
1σ

l
1 for 0 ≤ σ1 ≤ σ P

1 ,

(B.6)

for k = 1 and

�εIk,k+1(σ1) ≈ (αk+1 − αk) + (
α0

k+1 − α0
k

)
σ1

+
∑
l=1

(
αl

k+1 − αl
k

)
σ l
1 for 0 ≤ σ1 ≤ σ P

1 ,

(B.7)

for k �= 1. From (B.5), (α0
k+1 − α0

k ) and (αl
k+1 − αl

k)

may be a positive small value and a negative small value,
respectively.
In the case of Mode-II
When rocks are brought from depths to ground surface

by coring, Ii for the Mode-II may increase with an increase
in |σ1 − τ 0

1 | to generate micro-fractures to some extent. The
stress measurement is completed for negligibly short dura-
tion compared with the time interval from the coring to the
measurement. Cored rocks are laid out under atmospheric
pressure during the time interval. It may be considered that
almost all of the potential micro-fractures due to Ii for the
Mode-II have fractured during the interval. For this reason,
a negligibly small number of micro-fractures occur for σ1

from 0 to τ 0
1 for all loading cycles. On the other hand, for

τ 0
1 < σ1 ≤ σ P

1 the micro-fracturing may occur similarly to
that in the case of the Mode-I. Here, the inelastic strain of

Mode-II for kth loading is assumed to be written by

εIIk (σ1) = γ ′ + γ
(
σ1 − τ 0

1

)
for 0 ≤ σ1 < τ 0

1

εIIk (σ1) = βk + β0
k

(
σ1 − τ 0

1

) +
∑
l=1

βl
k

(
σ1 − τ 0

1

)l

for τ 0
1 ≤ σ1 ≤ σ P

1

(B.8)

where γ , γ ′, and βl
k are constants. The first two terms

of the right-hand side of both equations in (B.8) are the
contributions from the existing micro-cracks. For the same
reasons as those for Mode-I, the following relationships
may hold,

β0
1 � β0

k ≤ β0
k+1 for k �= 1

βl
k+1 ≤ βl

k � βl
1 for k �= 1

(B.9)

The strain difference during loading may be written as
follows:

�εII1,2(σ1) ≈ 0 for 0 ≤ σ1 < τ 0
1

�εII1,2(σ1) ≈ (β2 − β1) + β0
2

(
σ1 − τ 0

1

) −
∑
l=1

βl
1

(
σ1 − τ 0

1

)l

for τ 0
1 ≤ σ1 ≤ σ P

1 ,

(B.10)

for k = 1 and

�εIIk,k+1(σ1) ≈ 0 for 0 ≤ σ1 < τ 0
1

�εIIk,k+1(σ1) ≈ (βk+1 − βk) + (
β0

k+1 − β0
k

) (
σ1 − τ 0

1

)
+

∑
l=1

(
βl

k+1 − βl
k

) (
σ1 − τ 0

1

)l

for τ 0
1 ≤ σ1 ≤ σ P

1

(B.11)

for k �= 1. From (B.9), (β0
k+1 − β0

k ) and (βl
k+1 − βl

k)

may be a positive small value and a negative small value,
respectively.
B.2 Behavior of strain difference functions
The gradient change of a strain difference function given

by the inelastic strain of Mode-II is important for DRA.
For k = 1, even if �εIIk,k+1(σ1) discontinuously changes
at σ1 = τ 0

1 , the change may, in general, be buried in the
huge curvilinear behavior of the strain difference function
of Model-I. For k �= 1, ∂�εIIk,k+1(σ1)/∂σ1 < 0 for τ 0

1 ≤
σ1 ≤ σ P

1 . Therefore, the following inequality is obtained
from expression (B.11),

(
β0

k+1−β0
k

)
<

(
β1

k −β1
k+1

)+∑
l=2

l
(
βl

k −βl
k+1

)(
σ1−τ 0

1

)l−1
.

(B.12)

The coefficient (β0
k+1 −β0

k ) represents the increase in the
gradient caused by the deformation of the existing cracks
produced in the kth loading. If the existing cracks are com-
pletely locked, the produced inelastic strain during loading
is not recovered at all during unloading, and (β0

k+1−β0
k ) = 0

is expected. The offset (βk+2 − βk+1) of strain after the
(k+1)-th cycle of loading and unloading is equal to the sum
of the inelastic strain produced and that recovered in the cy-
cle. When the pre-existing cracks are completely locked,
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(βk+2 − βk+1) = �εIIk,k+1(σ
P
1 − τ 0

1 ). Although the offset
has not been quantitatively analyzed, the observation of the
reduced stress-strain relations suggests that the recovery ap-
pears to be small. For the reason above, (β0

k+1−β0
k ) may be

neglected here. In this case, the step-like gradient change
should be observed so long as the step by (β1

k − β1
k+1) is

not buried in the curvilinear behavior of the inelastic strain
of Mode-I. In the case that (β1

k+1 − β1
k ) is small, a grad-

ual change in the gradient (βl
k − βl

k+1) for l ≥ 2 may be
observed.
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