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Nonstationary ray decomposition in a homogeneous half space
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A method for decomposing an SH-wave at the surface into the instantaneous power of shearing strain associated
with rays in a homogeneous half space as a function of lapse time ¢ and depth time 7, which is the travel time
for the depth direction, is demonstrated. The instantaneous power in the (¢, T) space shows local maxima at the
intersections of up-coming and down-going rays, which correspond to the velocity boundaries of the real layered
structure beneath the site. Thus, the proposed method provides a tool for estimating the velocity boundaries of
real layered structure from only surface recordings. The estimated results obtained by applying the proposed
method to strong-motion data recorded at two Kanto sediment sites are in good agreement with the velocity
boundaries previously determined by means of down-hole methods.
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1. Introduction

Seismic signals are nonstationary time series. This non-
stationarity is due to the nonstationarity of the fault rupture
process itself emitting seismic waves and due to modula-
tion effects that occur along the propagation paths, which
generate various transient phases. This limits the applica-
tion of Fourier analysis and second-order stationary time
series analyses, such as correlation or spectral analyses, to
seismic signals. Similarly, the constituent components of
a wave (e.g., phase and energy) propagating along a ray
are nonstationary signals. Thus, in order to investigate the
time-dependent behavior of seismic waves (e.g., construc-
tive or destructive interference) generated inside a layered
medium, the nonstationarity of constituent components of
the seismic wave associated with rays must be considered.

In the present study, representation and estimation meth-
ods of the instantaneous power of traveling waves associ-
ated with rays in a multi-layered structure are performed.
The instantaneous power is represented as a function of
lapse time ¢ and depth time t, which is defined as the travel
time of the wave associated with a ray, from the surface in
the depth direction. This (¢, T)-type nonstationary repre-
sentation of instantaneous power for a multi-layered struc-
ture is calculated in terms of the Wigner-Ville distribution
(Claasen and Mecklenbrauker, 1980a), and the (¢, T)-type
representation is estimated for a homogeneous half space
using seismograms recorded at the surface. This means
that the surface recordings are decomposed into the intrinsic
seismic waves associated with rays in terms of the instanta-
neous power in the (¢, 7) space, which is demonstrated as
nonstationary ray decomposition. Despite the ray decompo-
sition into the homogeneous half space, this nonstationary
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ray decomposition preserves a portion of the characteristics
of the instantaneous power in the (¢, t) space for the multi-
layered structure, showing the local maxima (or minima) of
instantaneous power at the intersections of up-coming and
down-going rays. This important fact concerning the local
maxima (or minima) of instantaneous power provides infor-
mation for the detection of velocity boundaries in a layered
medium.

As an example of the application of nonstationary ray
decomposition to seismograms recorded at the surface, the
velocity boundaries in a structure composed of a thick sed-
imentary deposit having a thickness of several kilometers
overlying the pre-Tertiary basement, i.e., a sedimentary
layer-basement system, are estimated. This is a direct ap-
plication of nonstationary ray decomposition. In the present
study, the estimated results at two Kanto sediment sites,
the FCH and YKH stations, are in good agreement with
the real structures previously obtained by the down-hole
method (Yamamizu et al., 1980; Yamamizu, 2004). Hence,
the nonstationary ray decomposition method provides a tool
for the estimation of travel times from the surface to the ma-
jor velocity boundaries in the sedimentary layer-basement
system.

In the proposed method, a seismic signal is interpreted
as a nonstationary stochastic process, rather than a second-
order stationary process. In the second-order process, the
first- and second-order moments of the time series are time-
independent, so that the auto-covariance function is a func-
tion of only the delay time. By removing the constraint
of second-order stationarity from the seismic signal, meth-
ods for reinterpreting the seismic signal are constructed.
For example, using the time-dependent first-order moment
of the seismic signal, tilt motions are estimated from the
strong-motion seismograms recorded in near-source re-
gions (Kinoshita, 2008b; Kinoshita et al., 2009). In the
present article, using the auto-covariance function as a func-
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tion of both lapse time and delay time, each phase on the
seismogram is shown to be mapped onto a ray traveling in
a homogeneous half space, so that the estimation of veloc-
ity discontinuities in a velocity structure beneath a site be-
comes possible. In a similar study, one-dimensional seis-
mic interferometry was used to find the velocity discon-
tinuities in a velocity structure beneath a site (Claerbout,
1968; Nakahara, 2006). Seismic interferometry assumes
a second-order stationary process for seismic signals and
uses the auto-covariance function of the seismic signal as
a function of only delay time. The difference between the
auto-covariance function used in seismic interferometry and
that used in the proposed method is described in the Method
section.

2. Method

In decomposing the SH-wave recorded at the surface into
its intrinsic waves associated with rays, the rays are repre-
sented as a function of lapse time ¢ and depth time 7 in
a homogeneous half space, as described in Introduction.
The intrinsic wave is denoted by x (¢, 7) and is measured
by the instantaneous power |x(z, T)|>. This decomposition
is demonstrated through the following three steps. First,
the instantaneous power |x (¢, 7)|? is calculated for a multi-
layered model using an equal-time layered model. Next,
the estimation method of instantaneous power |x (¢, T)|? us-
ing surface recordings is constructed, given that the rays
are represented in the (¢, t) space for the homogeneous half
space. Finally, from the difference between the calculated
and estimated instantaneous powers, the basic characteris-
tics of the instantaneous power estimated using the nonsta-
tionary ray decomposition method are discussed.
2.1 Ray decomposition for the equal-time layered

model

First, we consider the response of the Goupillaud-type
layered medium (Goupillaud, 1961), i.e., an equal-time lay-
ered model, for an SH-wave. The equal-time layered model
is a kind of multi-layered model composed of fine layers:
each layer has a common travel time across a layer, i.e.,
AT/2, where AT is the sampling time of seismic data.
Thus, the transfer functions of the equal-time layered model
are constructed in the z-transform domain using a frequency
parameter A = 2xf - AT = w- AT, (JA| < 7 and f in Hz).
Equal-time layered models depend on the ray incidence an-
gle in the deepest layer. The equal-time layered model is an
approximate model for real media. Given that the model has
p layers that overlie a half space, i.e., the (p + 1)th layer,
the reflection coefficient of the up-coming wave at the top
of the (n + 1)th layer is given by

. Pn+1Vn41 €08 i1 — pp V) cOs Py o
! pn+lvn+l Cos ¢n+1 + On Vn Cos ¢n '

where p,, V,, and ¢, are the mass density, the S-wave
velocity, and the angle of incidence in the nth layer, re-
spectively. Using relation (1), the z transforms of the up-
coming and down-going waves at the top of the (n + 1)th
layer, are shown for the incidence wave, z='/2X p41(A), in
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the (p+ 1)th layer, respectively, as (Kinoshita, 1981, 1999):
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In relation (3), reflection coefficients {/<,7}f1'=1 are referred
to as the partial auto-correlation coefficients, and the gain
factors are given by

Sy = Zia(") 1_[(1 + ki),
=0

In relation (2), the z variable is defined as z = exp(iA).
Furthermore, two types of waves associated with the rays in
the z domain are defined as follows:

n=1,2,..,p 4
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where the superscript + indicates an ordinary elastic wave,
such a velocity wave, that is observable by a borehole seis-
mometer installed in the (n + 1)th layer, and the super-
script — indicates a shearing strain wave (or stress wave)
multiplied by 2V,,;, that is not observable by the borehole
seismometer. Thus, the transfer functions of these waves
in the nth layer for an incidence wave z~!/ 2X p+1(A) in the
(p + 1)th layer are given by

XE 0 /2728 1 (). 6)
Using relations (2) and (5), the time series of these waves
in the nth layer, {x*)(kAT)} are calculated using the time
series of the incidence velocity wave, z=1/2X p+1(1). Then,
the instantaneous power of x(*) (kAT) is given by

1 /2
e kar)[ = - / Wew kAT m)dh ()
—/2

(Claasen and Mecklenbrauker, 1980b). In this relation,
Wy (kAT A; n) is the discrete Wigner-Ville distribution
of x*) (kAT), which is defined as follows:
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Fig. 1. Equal-time layered model beneath the FCH site for an incidence angle of 30°.
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where indicates a complex conjugation. Relation (7)
is obtained from the inverse transform of the Wigner-Ville
distribution as follows:

25 ((k + DAT) [xF ((k — HAT)]"
1 " A il
= E . Wr(:ﬁ:) (kAT, 5; l’l) e da. (9)
According to the definition of the Wigner-Ville distribution,
W) (KAT, A; n) is easily calculated using the fast Fourier
transform, as follows:
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M
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where M = 2N — 1. In the present study, the data length,
2M AT, is used in the calculation of the Wigner-Ville dis-
tribution. Thus, the range of lapse time parameter k is
1 < k < 2M. The square root of the instantanecous power
may correspond to the root-mean-square (RMS) value of
x& (kAT). In the present study, the Wigner-Ville distribu-
tion Wy (KAT, A; n) is actually calculated using the an-
alytic signal of the real valued seismogram, x® (kAT),

which is obtained as follows:
xFRAT) +iH [xP(kAT)]. (11)

An analytic signal is used to prevent the aliasing effects
of negative Fourier components of the real-valued signal

and to suppress the cross term of the Wigner-Ville distri-
bution at low frequencies (Claasen and Mecklenbrauker,
1980a). In relation (11), H[x(kAT)] is the Hilbert trans-
form of x (kAT). The integrand W, ) (kAT, A; n) of rela-
tion (7) is the Wigner transform of waves associated with
the rays in the nth layer, and the left-hand side of relation
(7) shows the instantaneous power of the waves as a func-
tion of the parameter set (k, n). Thus, introducing the trans-
forms of the parameters, t = kAT and © = nAT/2, rela-
tion (7) becomes a (t, T)-type representation of the instan-
taneous power of the wave associated with the rays in the
nth layer. This representation is the key “measurement” in
the present study and is referred to hereinafter as the (¢, 7)-
representation of the ray.

Next, an example of the (¢, 7)-representation of a ray is
shown. Hereinafter, the x,(,’)(kAT) wave, i.e., the veloc-
ity normalized strain wave, is considered. Assuming that
a Ricker wave packet with a center period of T, is an inci-
dence wavelet, the (¢, T)-representation of the ray for a sed-
imentary layer-basement system at the FCH (Fuchu) station
is calculated. The velocity structure beneath the FCH site
was investigated using the down-hole method (Yamamizu
et al., 1980). Figure 1 shows the equal-time layered model
at the site for an incidence angle of 30°. Figure 2 shows a
simulated velocity seismogram at the surface for the Ricker
wave with T, = 1/3 s. Using relations (2), (5), and (7),
the (¢, T)-representation of the ray is calculated as shown
in Fig. 3. In Fig. 3 and following figures, the normal-
ized square root of instantaneous power given in relation
(7) is plotted rather than the instantaneous power itself. In
this simulation, the S-wave attenuation Q(f) = 50f ob-
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Fig. 2. Surface seismogram calculated for the equal-time layered model shown in Fig. 1 using Q(f) = 50f, where f is the frequency in Hz. The input

wave is a Ricker wavelet with a central period of 1/3 s.
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Fig. 3. Normalized root mean square of instantaneous power calculated from the equal-time layered model shown in Fig. 1 using Q(f) = 50f, where
f is the frequency in Hz, and the input wave is a Ricker wavelet with a central period of 1/3 s.

tained by Kinoshita (2008a) at the FCH site for frequen-
cies lower than approximately 3 Hz and a frequency trans-
formation for introducing attenuation into the sedimentary
layer-basement system (Kobori and Minai, 1969) are used.
Comparing the (¢, 7)-representation of the ray in Fig. 3 with
the simulated wave shown in Fig. 2, reveals three phases re-
flected at the top of pre-tertiary basement (K-B boundary in
Fig. 1) and two major boundaries in the sediment, which are

the boundaries denoted by S-K and K-M in Fig. 1. The most
important consideration is the appearance of local maxima
of instantaneous power in the (¢, T)-representation of the
ray, which are located at the intersections of up-coming and
down-going rays, i.e., the boundaries of velocity structure at
the site, as shown in Fig. 1. In addition to the local maxima,
the discontinuity of instantaneous power at the boundaries
is observed in Fig. 3, although this characteristic disappears
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in the (¢, T)-representation of the ray estimated for the ho-
mogeneous half space model, as described in the following
discussion.
2.2 Nonstationary ray decomposition of a strain wave
for a homogeneous half space

Since the surface seismograms have characteristic infor-
mation described by the (¢, t)-representation of the ray de-
fined by relation (7) for a layered medium, the procedure for
estimating the instantaneous power of the strain wave asso-
ciated with rays in a homogeneous half space as a function
of lapse time and depth time must be developed using sur-
face recordings only. To develop this estimation procedure,
the following three assumptions are needed: 1) the ray is
decomposed in a homogeneous half space medium with an
S-wave velocity of V, 2) the vertical axis is in the depth di-
rection, and 3) surface recordings are velocity seismograms,
v(t). Based on these assumptions, the shearing strain at a
depth of & is given by summing the up-coming and down-
going waves of the shearing strain:

e(t,h) = Lv <t+ ﬁ) + Qv (t — ﬁ) (12)
v Vv 2V V)

Thus, the cross-covariance function of up-coming and
down-going waves of shearing strain is given by

4__‘/12/U([+§>v(t—§)dt5%13v(f),

where © = 2h/V is the lag-time. This means that the
cross-covariance function between up-coming and down-
going waves of shearing strain in a homogeneous half
space is the auto-covariance function Ry (t) of the veloc-
ity wave recorded at the surface multiplied by a factor of
—1/4V?2. The estimation procedure of the reflection pro-
file beneath the site using the auto-covariance function of
surface recordings under the assumption of a stationary pro-
cess was developed by Claerbout (1968), and this procedure
is currently being developing as the seismic interferometry
method. The difference between one-dimensional seismic
interferometry and the proposed method is described later
herein.

As described in the preceding discussion, the up-coming
and down-going waves of shearing strain generate construc-
tive interference at layer boundaries for the shearing wave
that propagates into a higher-velocity layer, and thus the lo-
cal maxima of instantaneous power are produced. There-
fore, given that the surface velocity recordings are modu-
lated by the response of multi-layered media, the character-
istics of the instantaneous power of the strain wave (¢, h)
must be derived from surface velocity recordings only, the
characteristics of which show the local maxima at lag times
in relation to the depth time of the layer boundaries. Here,
the shearing strain wave normalized by 1/2V must be con-
sidered as follows:

x“%,h)zv(t—l—é)—v(l—é).

The wave x(7)(¢, h) is hereinafter referred to simply as the
strain wave. The strain wave corresponds to {x\™) (kAT)}

(13)

(14)
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in the left-hand side of relation (7), and, thus, the instanta-
neous power is given by

h h
O =R(t+=.0)+R(t—2=.0
|xO@. bl +500) + v

—R(t,7) — R*(t, 7). (15)

The instantaneous auto-covariance function R (¢, t) in the
right-hand side of relation (15) is defined as follows:

R(t,r)zv(t—}—%)v*(t—%),

2h
= —, 16
T=v (16)

and R(¢, 7) satisfies Hermitian symmetry:
R*(t,—t) = R(t, 7).

Relations (15) and (16) indicate that the instantaneous
power of the strain wave associated with the rays at a depth
of h is represented by the instantaneous auto-covariance
function of surface velocity recordings with different time
origins, t and r + i/ V, and the lag-time  is translated from
depth £, assuming that the velocity V' is constant.

At this point, the difference between one-dimensional
seismic interferometry (Claerbout, 1968; Nakahara, 2006)
and the proposed method may be clear, although both meth-
ods are constructed based on the auto-covariance func-
tion of surface seismograms. In the seismic interferome-
try, assuming the second-order stationary process of surface
recordings, the auto-covariance function of surface record-
ings, Ry (1), is approximately expanded as follows:

Rv(f)=/R1(§)RH(T—§)d§

T;
’&’1/ R;(&)dé - Ry(t) for T >T;, (17)
0

where R;(£) and Ry (&) are the auto-covariance function
of the input wave for a sedimentary layer-basement system
and that of the impulse response of the system, respectively.
This approximation is based on the following assumptions:
R;(§) ~ Ofor & > T; and R;(tr) =~ R;(r + T;) for
any T > T;. Seismic interferometry estimates the reflec-
tion profile of a sedimentary layer-basement system from
Ry (t) =~ constant - Ry (t) for T > T;, and thus the az-
imuth average of the depths of velocity discontinuities in
the system is estimated. Clearly, the concept of lapse time
no longer exits. The auto-covariance function used in the
proposed method is given by relation (16) and is a func-
tion of two time variables, lapse time ¢ and delay time t.
The basic relation used to detect velocity boundaries in a
sedimentary layer-basement system, i.e., relation (15), re-
tains two time parameters in the auto-covariance function of
surface recordings. This nonstationarity is essential in the
present study. In the nonstationary ray decomposition, the
local maxima of the instantaneous power of the strain wave
vary with the lapse time and depth time depending on the in-
stantaneous auto-covariance function. Thus, for example, it
is possible to detect a series of depth times for seismograms
containing a sequence of totally reflected pulses generated
at the upper boundary of the dipping basement (Kinoshita,
1985).
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Similar to relation (7), relation (15) is calculated in terms
of the Wigner-Ville distribution. The Wigner-Ville distribu-
tion is defined by the Fourier transform of the instantaneous
auto-covariance function given by relation (16), as follows:

o0
W, f) = / R(t, 1)e 7 dr (18)
—00
Conversely, the inverse Fourier transform is as follows:
R(t,7) = / W, fe*™ T df (19)
—00
In relation (19), T = 0 yields
[e.¢]
R(,0) =/ W, f)df (20)

Thus, using relations (19) and (20), relation (15) is rewritten
as

- :_ (7 oy _h
x| _/_m[w(t+v,f)+w<z V,f)

2h
—2W (¢, f) cos <2nf . 7)] df = 0.

2D
Using the following notation,
Riy(t, =0 =x) (4 2 n) - x" (1 = 2. n)
o )=x + 2 * 2 =0
(22)

in the left-hand side of relation (21), relation (21) is rewrit-
ten as

/: We (. fihydf = /Z [W (r + o, f)

+W <t — é, f) —2W (¢, f)cos (271f - 2V—h):| df.
(23)

Trivially, the following equation is satisfied:

Ruy(t,0: ) = / Wil (. £y df.  (24)

Relation (23) is written in the domain of the Wigner-Ville
distribution as

h h
Wx(>(f,f,h)=W(t+v,f>+W<z—v,f)

—2W (t, f)cos (27Tf . %) . (25)
Relation (25) in terms of the Wigner-Ville distribution is re-
lated to relation (21) by the instantaneous auto-covariance
function, and so retains the physical interpretation of rela-
tion (21). Namely, the left-hand side of relation (25) is the
Wigner-Ville distribution of the strain wave associated with
the ray at time ¢ and depth %, and the right-hand side is
composed of three Wigner-Ville distributions of the veloc-
ity wave recorded at the surface at times ¢ and t £ h/V.
Thus, using relation (25), the distribution W, (_ (¢, f; h) of
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the strain wave associated with the rays is obtained for a
variable depth of /4. Hence, the following equation is satis-
fied at 1 = 0, i.e., at the surface:

We (¢, fih =0) =0. (26)

In the calculation of relations (23) and (25), a common two-
way time of each layer AT for an equal-time layered model
is explicitly contained in these equations by setting 2/V =
n-AT,n = 0,1,2,... The parameter AT also functions
as the sampling time of surface velocity recordings. As a
result, relation (21) or (23) is the (¢, T)-representation of
the ray, i.e., the instantaneous power of the strain wave
x)(¢, h) estimated using surface velocity recordings only.
2.3 Basic characteristics of nonstationary ray decom-
position

Finally, we consider the applicability range of the instan-
taneous power to be estimated by relation (21) using surface
velocity recordings for a homogeneous half space to the in-
stantaneous power given by relation (7) for a multi-layered
model. The following two basic characteristics are plainly
acceptable:

(1) The lapse time ¢ and depth time 7 are both real times.
This means that the actual slopes are +1 and —1 for
up-coming and down-going rays, respectively, in the
(¢, ) space. This feature is satisfied both for the equal-
time layered model and the homogeneous half space
model. Thus, the instantaneous powers given by re-
lations (7) and (21) are associated with the rays of a
straight course. The intersections of two rays with +1
and —1 slopes in the (¢, t) space involve possible ve-
locity boundaries, although they are virtual boundaries
in the homogeneous half space model.

The instantaneous power of the strain wave x(7 (¢, 1)
has local maxima at the velocity boundary, i.e., the in-
tersection of up-coming and down-going rays for the
equal-time layered model. Since the local maxima in
the (¢, t) space are due to the constructive interfer-
ence of the strain wave (strictly speaking, the wave
of which the half-wavelength must be less than the
boundary depth, as discussed later herein), the depth
times showing local maxima are preserved for the ho-
mogeneous half space model, except for the discon-
tinuity of the instantaneous power of x(7(¢, t) at the
velocity boundaries in the equal time layered model.
Hence, nonstationary ray decomposition using relation
(21) can be used to detect the velocity boundaries in
the equal-time layered model by finding the local max-
ima of x(7) (¢, 1), if the local maxima are located at the
intersection of up-coming and down-going rays in the
(¢, t) space for the homogeneous half space model.

@

These two basic characteristics reveal that the application
of nonstationary ray decomposition to the estimation of
velocity boundaries in a layered structure is possible.

3. Estimation of the Velocity Boundaries of the
Sedimentary Layer-Basement System

As an application of nonstationary ray decomposition,

the velocity boundaries of a sedimentary layer-basement

system at two Kanto sediment stations, the FCH (Fuchu)



S. KINOSHITA: NONSTATIONARY RAY DECOMPOSITION IN A HOMOGENEOUS HALF SPACE

Surface S0 S1

1303

S2

Surface layer

Kazusa Group
(Plio-Pleistocene)
( Virtual basement ) a2

S-K

cssscscaccnn

Miura Group
(Mio—-Pliocene)

Basement
(Pre-Tertiary)

Fig. 4. Model structure used for the investigation of velocity structures beneath the FCH and YKH sites.

e
o
©

=4
o
&

cceleration [g]

C
&
o
o

T

%

-0.08
0

o+

= -
T

Velocity [em/s]
1

|
s
T

S3

o
N
o
o+
©

10 12 14 16 18 20
Time [s]

Fig. 5. Transverse component of surface recordings obtained at the FCH site for the earthquake of September 25, 1980 (M 6.1): (top) acceleration and

(bottom) velocity waves.

and YKH (Yokohama) stations in Japan are estimated us-
ing strong-motion recordings obtained at the surface. The
YKH site is the same as the KNGHI10 site of KiK-net
(Okada et al., 2004). The velocity structure at the FCH
site was obtained by the down-hole method (Yamamizu et
al., 1980) to a depth of 2.75 km, and that of the YKH site
was also examined by the well VSP method to a depth of
2 km (Yamamizu, 2004). The depth level of the top of pre-
Tertiary basement is 2 km at the FCH site. In contrast, the
depth level of the basement at the YKH site is unknown,

but is deeper than 2 km. Surface acceleration recordings
obtained by a tri-axial accelerometer are used for both sites.
In addition to the surface recordings, data recorded by a
tri-axial accelerometer installed at a depth of 2 km is also
investigated at the YKH site. The tri-axial accelerometer is
a negative feedback accelerometer with a natural frequency
of 450 Hz and a damping factor of 0.6-0.7. The sensitivity
is 3 V/g and the sampling rates are 100 and 200 Hz for the
FCH and YKH sites, respectively.

The velocity structure shown in Fig. 4 is used for a com-



1304

25

1.5

Frequency [Hz]

0.5

2 4 6 8 10

S. KINOSHITA: NONSTATIONARY RAY DECOMPOSITION IN A HOMOGENEOUS HALF SPACE

12 14 16 18 20

Time [s]

Fig. 6. Wigner-Ville distribution estimated using the velocity data shown at the bottom of Fig. 5.
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Fig. 7. Normalized root mean square of instantaneous power in the (¢, T) space, estimated using the velocity wave shown at the bottom of Fig. 5.

mon model in this region (Yamamizu et al., 1980) and is
referred to in the present study. The major velocity bound-
aries in this model, i.e., the reflection boundaries, are the
M-B (Miura group-pre-Tertiary Basement), K-M (Kazusa
group-Miura group), and S-K (Surface layer-Kazusa group)
boundaries, as labeled in Fig. 4. The real velocity bound-
aries do not always agree with the geological boundaries,
except for the M-B boundary. Thus, these boundary names
are simply symbolic names used for convenience. The
mean S-wave velocities are 0.7, 1.2, and 2.5 km/s for the

Kazusa group, Miura group, and pre-Tertiary basement, re-
spectively, as estimated by Yamamizu et al. (1980).
3.1 FCH:site

The first site for applying non-stationary ray decompo-
sition to the estimation of velocity boundaries is the FCH
site (35.6507N, 139.4736E) using strong-motion data for
the earthquake of September 25, 1980, (M = 6.1) with
the epicenter at 35.576N, 140.134E and a focal depth of
71 km. The transverse component waves are shown in
Fig. 5. These are the original acceleration (top) and velocity
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Fig. 8. Normalized root mean square of instantaneous power in the (¢, 7) space, estimated using the surface velocity data recorded at the FCH site for

the earthquake of July 23, 2005 (M 6.0).

(bottom) waves converted from the acceleration data.

Using the transverse velocity data with a duration of
20.48 s, as shown in Fig. 5, the Wigner-Ville distribution
is estimated as shown in Fig. 6. Three energy-concentrated
phases are detected at approximately 6, 8.5, and 10.5 s (la-
beled SO, S2, and S3 in Fig. 6). The first phase is a direct
S-wave, and the others phases are reflected phases. Careful
observation reveals an isolated phase at approximately 15 s,
which is labeled SS3. These energy concentration times are
in good agreement with the corresponding phases as labeled
in Fig. 5.

Figure 7 shows the (¢, T)-representation of the ray esti-
mated by applying relation (21) to the Wigner-Ville distri-
bution shown in Fig. 6. The first finding is most proba-
bly the boundary with a depth time of approximately 2.35 s
and reflected waves, which are labeled S3 and SS3, corre-
sponding to two phases around the lapse times of approx-
imately 10.5 and 15 s in Fig. 5. Given the depth time es-
timated from the equal-time layered structure at the FCH
site shown in Fig. 1, this boundary is the M-B boundary.
A later phase, labeled S2, that appeared at a lapse time of
approximately 8.5 s is a reflected phase from the bound-
ary with a depth time of approximately 1.4 s in the (¢, 7)-
representation of the ray, as shown in Fig. 7. This boundary
is the K-M boundary according to the equal-time layered
model in Fig. 1. The possible reflected phase, labeled S1
in Fig. 7, is a reflected wave at the S-K boundary, although
the identification of this phase in Fig. 6 is less clear com-
pared with the S2 and S3 phases. Clearer detection of the
S1 phase may require the band-limited wave of the veloc-
ity seismogram shown at the bottom of Fig. 5. This is dis-
cussed in the Discussion section. However, the results of the
(¢, T)-representation of the ray are in good agreement with

the velocity structure at the FCH site, as determined by the
down-hole method using a 2.75-km deep well (Yamamizu
etal., 1980).

Furthermore, in order to verify the results shown in
Fig. 7, the results obtained using another seismogram are
examined. The seismogram is recorded at the FCH site for
the earthquake of July 23, 2005 (M = 6.0) with the epicen-
ter at 35.582N, 140.138E and a focal depth of 73 km. The
hypocenter and magnitude of this event are approximately
identical to those of the event of September 25, 1980. The
(z, T)-representation of the ray obtained from this event is
given in Fig. 8. The depth times for the S-K, K-M, and M-B
boundaries in Fig. 8 are understood to be in agreement with
those in Fig. 7.

3.2 YKH (KNGH10) site

The YKH site (35.4959N, 139.5227E) of KiK-net
(Okada et al., 2004) was constructed in 1992. Thus, only
the transverse component velocity seismogram recorded at
this site for the earthquake of July 23, 2005 (M = 6.0)
with the epicenter at 35.582N, 140.138E and a focal depth
of 73 km is examined. The seismogram is shown at the
top of Fig. 9. However, reflected phases on the original ve-
locity wave are masked by the predominant motion of the
soft surface layer beneath the site and are difficult to detect
without proper preprocessing. Thus, in order to facilitate
the detection of the reflected phase, the band-limited wave
composed by intrinsic mode functions (Huang et al., 1998),
as shown in the bottom of Fig. 9, is used. Hence, the orig-
inal and band-limited waves, v(¢) and v,(¢), are expanded
as follows:

15 7
v(t) &~ Z vi(f) and v, (t) = Z v (2).
k=1 k=3
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Fig. 9. Transverse component of surface recordings obtained at the YKH site for the earthquake of July 23, 2005 (M 6.0): (top) velocity and (bottom)

band-limited velocity waves.
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Fig. 10. Normalized root mean square of instantaneous power in the (¢, T) space, estimated using the band-limited velocity wave shown at the bottom

of Fig. 9.

Functions {vk(t)},ls= , are the intrinsic mode functions of
v(t). This band-pass filtering is an application of the Em-
pirical Mode Decomposition (EMD) method proposed by
Huang et al. (1998), and the EMD based filtering has su-
perior characteristics for nonstationary seismic waves, i.e.,
the EMD based filtering is free from the group delay and
settling time of seismic phases. Since the method of ray de-
composition in the present study is intended to clarify the
nonstationarity of the seismic waves associated with rays,

such a preprocessing is reasonable. Details for the calcula-
tion of intrinsic mode functions and for the applications to
the filtering and phase identification problems using strong-
motion seismograms are given by Huang et al. (1998, 2001)
and Kinoshita et al. (2009)

The labeling of reflected phases can be achieved by com-
paring the results of the estimated (¢, t)-representation of
the ray shown in Fig. 10 with the band-limited seismogram
at the bottom of Fig. 9. The depth time of the basement is
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Fig. 11. Transverse component of recordings obtained at a depth of 2 km at the YKH site for the earthquake of July 23, 2005 (M 6.0): (top) original

acceleration and (bottom) converted velocity waves.
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Fig. 12. Normalized root mean square of instantaneous power in the (¢, T) space, estimated using the velocity wave shown at the bottom of Fig. 11.

approximately 4.3 s, and the corresponding reflected phases
are labeled S3 and SS3. The reflected phase S1 from a
boundary with a depth time of approximately 1.3 s, which
was clearly detected by a well VSP method (Yamamizu,
2004) and is labeled as the S-K boundary in this article, is
the most conspicuous phase. The reflection boundary of the
S2 phase might be the K-M boundary, which was unclear
(Yamamizu, 2004). Thus, the depth times of the boundaries
obtained in the present study are in agreement with the re-
sults obtained by Yamamizu (2004).

A tri-axial accelerometer is also installed at a depth of
2 km at the YKH site, so that verification of the results ob-
tained from surface recording is possible, although the in-
terpretation of the (¢, )-representation of the rays obtained
using borehole data is fairly complex. In the case of surface
recordings, direct interpretation of the reflected phase from
the boundaries in a sedimentary layer-basement system is
possible. In contrast, the interpretation of borehole record-
ings must be taken into consideration for both the down-
coming wave from surface, or the boundaries lying over the
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Fig. 13. Normalized root mean square of instantaneous power in the (¢, T) space: (a) calculated results for a layered model and (b) estimated results
using the surface output signal for a homogeneous half space model. The layered model consists of a surface layer (S-wave velocity, density and
thickness are 0.2 km/s, 1.8 g/cm® and 60 m, respectively) overlying a higher velocity half-space (S-wave velocity and density are 0.4 km/s and
2.0 g/em?, respectively). The input wave is a Ricker wavelet with a center period of 0.3 s.

borehole depth level, and its up-coming wave reflected at
the top of the basement, which is located beneath the depth
level of the borehole, as shown in Fig. 4. Thus, the depth
time of the basement from the surface or the boundaries
is obtained by summing the depth time of the re-reflected
phase from the top of the basement and the depth time of
the boundary located over the depth level of the borehole
along the same ray in the (¢, r)-representation. For exam-
ple, the depth time of the B2 phase in Fig. 4 is obtained
by considering a path from a0 to a3 via a2, instead of a path
from a0 to a3 via al, forming a virtual basement over the K-
M boundary, as indicated by a dash-dotted line. This task

requires trial and error. As a result, the labeling of reflected
phases and boundaries, as shown in Figs. 11 and 12, may be
most possible, according to the sedimentary layer-basement
system modeled in Fig. 4. This result is in good agreement
with the depth times of boundaries in the sedimentary layer-
basement shown in Fig. 10, which is obtained from surface
recording.

4. Discussion

Nonstationary ray decomposition provides a method for
estimating velocity boundaries in a sedimentary layer-
basement system. In this method, the depth-dependent
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Fig. 14. Normalized root mean square of instantaneous power in the (¢, 7) space: (a) calculated results for a layered model and (b) estimated results
using the surface output signal for a homogeneous half space model. The layered model is the same model used in Fig. 13. The input wave is a Ricker

wavelet with a center period of 0.6 s.

profile of the instantaneous power of the strain wave for
a real sedimentary layer-basement system is homologized
with the profile in the (¢, T)-representation of the ray in the
homogeneous half space model. However, this correspon-
dence of instantaneous power is not identical, as discussed
in the Method section. Consider the restrictions imposed on
the application of non-stationary ray decomposition to the
detection of layer boundaries, i.e., how the frequency band
of surface recordings used in the nonstationary ray decom-
position is limited. Assume that nonstationary ray decom-
position is applied to the boundary detection of a single sed-
imentary layer overlying the pre-Tertiary basement. An up-
per frequency limit is derived from the coherency character-

istics of the seismic wave traveling in a sedimentary layer-
basement system. Kinoshita and Ohike (2006) showed that
the upper frequency limit of coherent propagation for seis-
mic waves is approximately 3 and 6 Hz for S- and P-waves,
respectively. Thus, a frequency of approximate 3 Hz might
be a guideline for the upper frequency of the SH-wave used
to estimate the depth time of the top of the basement.

On the other hand, the lower frequency limit could be
obtained from the difference in instantaneous powers of the
strain wave obtained for a layered model and the strain wave
obtained for a homogeneous half space model. Namely,
the instantaneous power of the strain wave in the (¢, T)-
representation of ray for the layered structure shows dis-
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using the surface output signal for a homogeneous half space model. The layered model is the same model used in Fig. 13. The input wave is a Ricker

wavelet with a center period of 0.9 s.

continuity at layer boundaries, although the instantaneous
power is a continuous function of depth time and shows
only local maxima for the homogeneous half space. Thus, a
required limit for lower frequency is obtained from the con-
dition in which the local maxima of instantaneous power
remain at the depth time of the velocity boundary. This
condition could be clarified by a straightforward simulation.
Consider a model with a surface layer overlying a higher
velocity half space and a homogeneous half space model.
For both models, the results shown in Figs. 13, 14, and
15 are obtained for Ricker wavelet inputs with center pe-
riods of T, = 0.3, 0.6, and 0.9 s, respectively. Suffixes “a”

and “b” attached to each figure number indicate simulations
performed for the layered model and for the homogeneous
half space model, respectively. The local maximum of the
instantaneous power of the strain wave is found at a depth
time of 7, = 0.3 s under the input of the Ricker wavelet with
the center periods of T, = 0.3 and 0.6 s for both models.
However, for T, = 0.9 s, the layer boundary in Fig. 15(a) is
detectable using the discontinuity of instantaneous power,
but is difficult to determine from the local maximum of in-
stantaneous power in Fig. 15(b). These results indicate that
the maximum instantaneous power at 7, = 0.3 s is discrim-
inated under the period condition of T, < 27,. In contrast,
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Fig. 16. Wigner-Ville distribution estimated using the high-pass-filtered velocity seismogram filtered with a cutoff frequency of approximately 1 Hz.

for T, = 3t,, the discrimination of the maximum instanta-
neous power at 7, = 0.3 s is difficult. This means that the
half wavelength of the Ricker wavelet with a center period
of 7, determines the lower frequency limit. Hence, the rea-
sonable frequency band of the SH-wave used for estimation
of the layer boundary with a depth time of t, in a sedimen-
tary layer-basement system is 1/2t, < f < 3 Hz. This
means that for the estimation of a layer boundary with a
large depth time, seismic waves having low-frequency com-
ponents can be used. For example, seismic waves with a
frequency band of 1/27, &~ 0.1 < f < 3 Hz can be used to
determine the boundary of the top of the pre-Tertiary base-
ment at the YKH site, because the depth time at the bound-
ary between the sedimentary deposit and the basement at
this site is approximately 4.5 s, as shown in the preceding
investigation.

This result can also be applied to the detection of S1
phase for the first example in Section 3.1, where the seis-
mogram recorded at the FCH site for the earthquake of
September 25, 1980 is examined. The resultant (¢, 7)-
representation of the ray shows that the depth time of the
S-K boundary is t, ~ 0.5 s. Thus, wave components with
periods longer than 27, &~ 1 s are not needed for the de-
tection of S1 phase. The Wigner-Ville distribution recal-
culated using the high-pass filtered wave decayed the wave
components with periods of longer than 1 s, as shown in
Fig. 16. The S1 phase is clearly discriminated in Fig. 16, as
compared to the same phase in Fig. 6, which was obtained
using the original seismogram without any filtering.

Finally, as is common with such methods, nonstationary
ray decomposition generates ghost rays, as indicated by the
dashed black line in Fig. 10, because the decomposition
forces a seismic phase on surface recordings to wave power
associated with up-coming and down-going rays.

5. Conclusions

The present article demonstrated a method based on non-
stationary ray decomposition that decomposes the SH-wave
at the surface into the instantaneous power of the shearing
strain associated with rays in a homogeneous half space as
a function of lapse time ¢ and depth time t, which is the
travel time for the depth direction. By applying this method
to strong motion data recorded at the FCH and YKH sites
in the Kanto district, the following results were obtained:

(1) The method of nonstationary ray decomposition in-
dicates that the velocity boundaries in a sedimentary
layer-basement system, whose information is involved
in surface recordings, are represented by the local
maxima at the intersections of up-coming and down-
going rays in the (¢, T) space.

The method of nonstationary ray decomposition was
applied to surface recordings at the FCH site, so that
the estimated velocity boundaries are in good agree-
ment with the major boundaries in a sedimentary layer-
basement system at the site, which were previously
estimated using the down-hole method. At the YKH
site, a major velocity boundary in the sedimentary de-
posit was detected, the boundary of which agreed with
a boundary previously estimated by the seismic VSP
method. The depth time of the boundary between the
sedimentary layer and pre-Tertiary basement beneath
the YKH site was determined using surface and 2,000-
m borehole data separately.

A reasonable frequency band of SH-waves used for
the estimation of the boundary with a depth time of
T, is 1/27, < f < 3 Hz. The upper limit of the fre-
quency band is due to the upper-limited frequency of
the coherent propagation of SH-waves in a sedimen-
tary layer-basement system in the Kanto district.
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(4) The instantaneous power of the shearing strain es-
timated by this method is a continuous function of
depth time, and ghost rays are generated in the (¢, 7)-
representation of the ray.
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