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In the 1-D magnetotelluric theory, a Riccati equation governs the depth variation of the impedance, or admittance,
for a given distribution of the electrical conductivity. This equation can be used to compute the surface magneto-
telluric functions for generally piecewise continuous conductivity profiles. In case of a simple layered medium, it
provides the classical formulae for recalculating recursively the impedances between the individual layer bound-
aries. We present an extended version of the Riccati differential equations for generally anisotropic 1-D structures
for the case of a plane wave incident field. Relation between the standard matrix propagation procedure for a lay-
ered medium and the Riccati equation approach, as a limiting case of the former, is demonstrated. In the anisotropic
case, all elements of the 2 x 2 impedance tensor are present and, consequently, a system of four coupled Riccati
equations has to be considered. Standard methods for the numerical solution of systems of ordinary differential
equations are applied to the Riccati system, which gives an efficient alternative to the current matrix propagation
procedures for the numerical evaluation of 1-D magnetotelluric impedances in anisotropic media. As an applica-
tion, a synthetic study on the influence of a depth-variable regional strike on magnetotelluric decomposition results

is presented, with the variable strike simulated by a variable anisotropy within the 1-D section.

1. Introduction

In a 1-D magnetotelluric (MT) model, with a gener-
ally piecewise continuous conductivity distribution o (z), the
depth dependence of the impedance Z(z,w) = E,/H, =
—E,/H,, or admittance Y (z, ) = Z~!(z, ), is governed
by a simple Riccati equation

0Z(z, w)
9z

Y (z, w)
0z

—0(2)Z%(z, w) = iwpo,
(D
+iwpeY*(z, 0) = —0(2),

where w is the circular frequency of the time-harmonic elec-
tromagnetic field, with the time factor exp(—iwt) consid-
ered, and p is the free-space permeability (e.g., Dmitriev
and Berdichevsky, 1979). Equations (1) are an elementary
consequence of Maxwell’s equations, written in a form con-
sidering the 1-D symmetry of the model. At a z where o (z)
suffers a discontinuity, (1) is completed by the condition of
continuity of Z(z, w), or Y (z, ), which is again an elemen-
tary consequence of the basic continuity conditions for the
field components through layer boundaries.

There is a close relation between (1) and the well known
recurrent formulae commonly used for the impedance prop-
agation through homogeneous layers of a stratified medium.
In a homogeneous layer with the thickness # and conduc-
tivity o, the impedances on the top and bottom interfaces of
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the layer are related via

Zoot(@) = —g tanh { kh — tanh™! [% ztop(w)]}

_ Zip(®) — ko tanhkh
1 — 0k Zp(w) tanh kh’

2

with k = /—iwpgo. By evaluating the limit of this rela-
tion when & approaches zero, and by using tanh ki =~ kh if
h — 0, we immediately obtain (1). In this respect, Egs. (1)
can be considered a direct generalization of the impedance
formulae for discrete homogeneous layers to media with
generally piecewise continuous distribution of the electrical
conductivity. Of course, the reverse is true as well, i.e., the
above propagation formula for the impedances in a homo-
geneous layer can be proved to be a solution of the Riccati
impedance equation (1) with o (z) = o0 = const.

From the practical point of view, evaluating MT impedan-
ces by solving the Riccati equation (1) has several advan-
tages. First, generally continuous and piecewise continuous
conductivity distributions o (z) can be immediately consid-
ered. For a few simple conductivity functions, analytical so-
lutions of the Riccati equation can be found. In those cases,
valuable information could be obtained as to the sensitiv-
ity of the MT curves with respect to smooth transitions in
the conductivity distribution (e.g., Singh and Kant, 1995).
Second, the numerical solution of the Riccati equation is
extremely simple, and allows us carrying out MT simula-
tions immediately, without dealing with sometimes rather
tedious matrix propagation algebra. We need only to know
the starting impedance, which is usually the elementary half-
space impedance in the basement, and can proceed in simple
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steps through the model towards its surface. Third, the im-
pedance is a much more regular function of depth than the
field components themselves, which are, in a layer of a fi-
nite thickness, composed of a down-going and an up-going
wave, both with an exponential depth dependence. This, nu-
merically insecure, exponential dependence is eliminated if
the impedance is regarded.

One-dimensional MT models with anisotropic layers have
been analyzed from various points of view in a lot of pa-
pers during the last thirty years (e.g., O’Brien and Morrison,
1967, Reddy and Rankin, 1971; Loewenthal and
Landisman, 1973; Abramovici, 1974; Dekker and Hastie,
1980). Except (Abramovici, 1974), all those publications
consider layered structures. The earlier papers by O’Brien
and Morrison (1967) and Reddy and Rankin (1971) are
based on the matrix propagation method applied to the field
components in the anisotropic layered medium, with the im-
pedance tensor being a terminal product of the field compu-
tations. In the anisotropic case, the matrix algebra is much
more involved as compared to the isotropic media. More-
over, two wave modes arise in each anisotropic layer, with
possibly largely different wave numbers, which can be a
source of further numerical inconveniences.

The more recent of the above mentioned articles use
mostly the matrix propagation technique as a theoretical tool
only, and derive more stable impedance propagation formu-
lae for anisotropic layered structures. These already mark
the way to an extension based on the Riccati equation ap-
proach to anisotropic media, with all its essential attributes
of regularity and straightforwardness of the solution.

An approach based on the idea of using first-order differ-
ential equations to propagate the MT impedances through
a 1-D anisotropic model was first suggested by Abramovici
(1974). He derived a coupled set of six first-order /inear
differential equations for the depth derivatives of second-
order sub-determinants constructed from a field components
matrix, which easily lead to the impedance elements in an
anisotropic medium. Those equations are not completely
closed with respect to the impedances in that they still ex-
plicitly contain the individual field components. Abramovici
(1974) showed that a closed set of non-linear, Riccati-type
equations can be obtained which describe the depth varia-
tions of the impedance elements. In this paper, we com-
plement the study by Abramovici (1974) by deriving the
Riccati-type equations for the impedance elements of a 1-D
anisotropic medium immediately from the basic field equa-
tions and show their relation to the standard matrix prop-
agation formulae. In a separate second part of this study,
we discuss a possible extension of the approach based on
the Riccati equations to 1-D anisotropic models excited by
a generally non-uniform source field.

The structure of the paper is as follows: In Section 2, we
present an elementary derivation of the generalized Riccati
equations for a 1-D anisotropic medium, and show their re-
lation to the standard matrix propagation formulae for aniso-
tropic layered structures. Numerical aspects of solving the
Riccati 1-D anisotropic system are discussed in that section
as well. Finally, as an application, in Section 3 the Ric-
cati approach is used to simulate MT responses of structures
with a variable regional strike. Results of standard MT de-

composition techniques applied to the generated model data
are discussed.

2. Riccati Impedance Equations for a 1-D Aniso-
tropic Medium

2.1 Elemetary derivation

We assume a model that consists of a horizontally ho-
mogeneous halfspace, z > 0, with the electrical proper-
ties specified by a symmetric and positive definite tensor of
the electrical conductivity varying in the z direction only,
o = o(z). The halfspace z < 0 is filled with a perfect
insulator (air layer). The MT field is excited by a homoge-
neous electromagnetic plane wave propagating from sources
at z — —oo perpendicularly to the surface of the conductive
medium. For this specific model setting, general Maxwell’s
equations reduce to,

—E! =iwpoHy,
Jj o (3a)
_Hy =Jy =0 E + nyEy +0x:Ez,
E! =iwuyH,,
x Ko (3b)
Hi=Jy =onEx + 0y Ey +0,:E,
Hz = O, Jz = O—szx + GJ’ZEY + UZZEZ = 0’ (30)

where all the horizontal derivatives have vanished due to the
symmetry of the model. In (3), the prime denotes the vertical
derivative, d/dz,and E,, H,,and J,,, v € {x, y, z}, are com-
ponents of the electrical intensity, magnetic intensity, and
current density, respectively. For brevity, we have left out
all the obvious arguments in (3), i.e., z and w with the fields
and z with the conductivities. Equations (3c) show that no
vertical magnetic fields and no vertical currents can exist in
a 1-D anisotropic medium excited by a homogeneous plane
wave, independently of how much the particular form of the
conductivity tensor may prefer the vertical direction.

After eliminating E, from (3a) and (3b) by using the
identity J, = 0, those equations can be written in a simple
vector form,

E/ — DEHH,

E, H,
E= ., H=["),
E, H,

01
DET = jwpP, DiE=pyx, P= ( . 0)'

H = DYEE, 4)

3 is an effective horizontal conductivity tensor with the
elements given by

— —1.2
2:xx = Oxx — UZZ sza

Y, =0, —o.lc2
Yy yy zz “yz?
(5)

_ _ -1
Yy = Xy = Oxy — 0, 0x:0y;.

Let us assume the impedance relation in the 1-D aniso-
tropic model to be of a general form E = ZH, where Z
represents a 2 x 2 impedance tensor. Then, by using this
impedance ansatz and (4), we have

E =DfH=7H+ZH =ZH + ZD"?E
= (Z +ZD"EZ7)H,
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which gives immediately
7/ +7ZD"E7 = DEA, (6)

for an arbitrary non-vanishing magnetic field H. In a similar
way we can also derive the equivalent admittance form of
the vector Riccati equation,

Y + YDEY = DHE, (7

where H = YE.

Equation (6) is a generalized Riccati vector equation
which controls the depth dependence of the impedance ten-
sor for a 1-D anisotropic medium. It can be easily shown
that the equations for the individual components of the im-
pedance tensor are

Zl 4 Z4Zy + By 23 =0,
Z 4 ZaZey + 2% = iop,
Z)/)x + ZAZyx - ExeZB = —iwlo,

Z) 4+ ZaZy — T Zp =0,

®)

where two impedance dependent rotation invariants have
been introduced,

Zi=tr(PXZ) =%, (Zex — Z,)) — ZaxZuy + 20y Zyn
Zy=detZ =77, — Z,Z,x.

These formulae correspond exactly to equations (86)
through (89) by Abramovici (1974).

Hence, the vector Riccati equation (6) represents a cou-
pled system of four first-order non-linear differential equa-
tions for the components of the impedance tensor Z. These
equations are not entirely independent, however. By sum-
ming up the equations for Z,, and for Z,,, it can be eas-
ily shown that those secondary impedance components are
identical except for the sign (see Appendix for the exact
proof). It means that (i) generally Z,, + Z,, = 0 every-
where providing this relation can be proved for at least one
z within the model, which is true, e.g., in a homogeneous
basement of the model, and (ii) only three first-order differ-
ential equations are independent, two for the main impedan-
ces and one for the secondary impedance, and have to be
considered for propagating the complete impedance tensor
through the anisotropic medium.

2.2 Relation to the matrix propagation formulae

Similarly as in the isotropic case, we can easily demon-
strate that the vector Riccati equations (6), or (7), for the
impedances, or admittances, respectively, represent a gen-
eralization of the well-known matrix propagation formu-
lae for the field components in a 1-D anisotropic layered
medium. As the layered problem with general anisotropy
has been dealt with many times by various authors, e.g., by
O’Brien and Morrison (1967), Reddy and Rankin (1971),
Loewenthal and Landisman (1973), and Dekker and Hastie
(1980), we will present only a condensed version of the ma-
trix propagation approach here.

By virtue of (4), the horizontal electric field E in any
homogeneous anisotropic layer is a solution of a second-
order differential equation

E' —DIADHEE = K" + iwug ZE = 0. 9)

Assuming the solution for the individual components of the
vector E to be of an exponential form, £, = E, exp(kz),
v € {x, y}, and using this ansatz in (9), we arrive at a system
of linear equations for the wave numbers £,

(kz + iG)MOExx)EOX + ia)rl’LOEX,VEOy = 0’
iopoZyy Eor + (K +iopo,,) Egy = 0.

(10a)
(10b)

For this homogeneous system to have a non-zero solution,
its determinant has to be zero. This condition gives four
complex wave numbers, +k; and +k;,, which correspond to
four wave modes that can exist within a particular layer,

Lo
2

K, =— [zxx 43, + \/(zm — B2+ 4z§y] .

Moreover, the amplitudes of the individual electric modes,
Eox and Ej,, are not independent in the anisotropic medium,
but are related, in virtue of (10), via

Eoy
E Ox

_ _k2+ia)u02xx _ iwpoZyy dﬁf‘Q (11
- [wpo iy - k2 +iougX,, o=

In the homogeneous basement, which underlies the stratified
section of the conductive halfspace, only the two down-
going wave modes (i.e., those with Re £ < 0) can exist for
energetic reasons.

In a particular layer, say /-th, within the layer stack, the
horizontal field components will now be given by

ef [ E
Fio) & <HIIZ))>=M1X1(Z)C1, ez, (12)

where z;_; and z; are the top and bottom boundary of the
layer respectively, and z; — z;_1 = Ay is its thickness. The
matrices involved are defined, by virtue of (4) and (11), as

1 1 1 1
M, = On On On On
vknOn —vknOn vknQn —vknQn
—vkn  vkn  —vko  vkn
where y = —- ! ,
iwpy

X;(z) is a diagonal matrix, X;(z) = diag{exp(k;1z),
exp(—kjz), exp(kppz), exp(—kppz)}, and C; is a column vec-
tor with four integration constants that correspond to the
four wave modes of the electromagnetic field within the
layer. Only two of these integration constants, Cy, and Cya,
are non-zero in the homogeneous basement of the model.
Here, N is the number of layers including the basement.

The integration constants C for the individual layers can
be found by using the boundary conditions on the layer
boundaries, which require the continuity of both the hori-
zontal electric and magnetic field components through the
interfaces, i.e. F;(z;) = F;y1(z;). Consequently, in virtue
of (12), the following rule can be given for propagating the
vectors C between successive layers in the stack,

Cr =X EOM; M1 X1 (2)Cryr-
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Using this rule in (12), and applying it recurrently over
layers, we can relate the horizontal fields between any two
depth levels within the model. In particular, by using the
recurrence down to the top boundary of the homogeneous
basement, i.e. to the level z = zy_1, we can express the
horizontal fields at z within the /-th layer by means of only
the two non-specified basement coefficients C, and Cyy,

N-1
Fi(z) =Ti(z; — 2) 1_[ T;(h)MyXy(zy-1)Cy
j=it1
N-1
=T(z; — 2) 1_[ T;(hpFy(n-1), z€ (zi-1,21),
=41

where the transition matrix is
T;(h;) = M;X;(=h))M; ", (13)

or explicitely, with Cilp = cosh kA and S12 = Sinhquzh
introduced for brevity, and with the index j omitted for that

once,
TEE TEH

Th) = ;
THE THH

with the 2 x 2 matrix blocks given, for « = Q;/0>, by

(14)

1
TEE 1 C1 — k& —@(01—02) ’
1 —«
Oilci —) —ka+a
1 (sl sz> 1<s1 SQ)
(222 (22
TEH — 1 y0O2 \ ki k) v \k k>
1 —« 1 ( S1 S2) O (S1 Sz) 7
et 22) 2222
14 ky 5 y \k k>
| —y 01 (kis) — kasy) v (kkisy — kasy)
HE _
™= 1 —« 4 ’
y(kis) —kkysy)  ———(kis) — kys3)
0>
| —kcrtea —Qi(cr —a)
THH _
=l —e—e) e —«e
0>

The obvious meaning of the transition matrix T;(4;) is
that it relates the fields on the top and on the bottom of the
j-thlayer, F;(z;_1) = T;(h;)F;(z;). The latter expression
allows us to find a similar relation for the impedance tensors
as well. With a simplified notation Z(z;) = Z;, we can
easily show

E;j(z;-1) =Z;1H;(z;-1)
=Z; [T/5h)Z; + T (h )| H; (z))
= [TFEhpZ; + T (hj) | H; ),

which provides the propagation formula for the impedance
tensor in the form

Zj = [T;Ph)Z; + T (h))]

AT ERHZ + T hp) ™ (15)

This formula is a generalization of (2) to anisotropic layers,
and can be easily shown to degenerate into (2) if the con-
ductivity reduces to isotropic.

To generalize (15) to continuously varying anisotropic
conductivities, we can proceed similarly as in the isotropic
case, and analyze (15) for i; = Az — 0. In this case,
s = sinhkAz ~ kAz and ¢ = coshkAz ~ 1, if terms of the
order higher than one in Az are neglected. Then, both TZ%
and T reduce to 2 x 2 unit matrices, and the anti-diagonal
blocks of T are approximately

TEH ~ = 'Az P,

YAz —Ql(kf—kg) ka—k%
l—k \ B—«k} -0,k —K)

=—AzP X,

THE

the last simplification being a consequence of our having
applied the following elementary identities

010,=-1,
K=y (S + 0%y) =y (5, + 0712y,
=k ==y (1 =0 0: %y,
which all follow immediately from (11).
Replacing now in (15) Z; and Z;_; by Z(z + Az) and

Z(z), respectively, and using the above approximations, we
can modify (15) into

Z(z+ Az) — Z(2)
Az
= —J/_IP,

+Z(2)P X Z(z + Az)
(16)

which gives exactly the vector Riccati equation (6) if Az —
0.
2.3 Numerical solution

The Riccati vector equation (6) represents a system of
four, or three independent, coupled first-order ordinary dif-
ferential equations for the impedance elements of a 1-D ani-
sotropic medium. Any standard ODE solver can be applied
to solve this system numerically. In this study, we have used
two techniques to solve (6), specifically

(i) a simple implicit stepping from the basement through
the medium, analogous to that often used for the iso-
tropic problem, based on the difference approximation
of the spatial derivative of Z according to the formula

(16),
Z(2) = [Z(z + Az) — D*Y AZ]
1 =D 2 + An)Az]
where 1 is a 2 X 2 unit matrix. We assume that the
model is underlain by a homogeneous, but generally
anisotropic halfspace, which provides us with the start-

ing impedance at the top, or anywhere within the base-
ment, given by

oy
1—«
—O1kiT =k kT — k!
. Ql(_ll _12) 1_1 z_1 a7
why” =k, Oi(ky " —ky )

Liyse = —
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with ki, k;, Q1, and x corresponding to the electrical
parameters of the basement.

Physically, this numerical procedure is equivalent to
the matrix propagation method applied to a medium
obtained by approximating the 1-D structure by many
thin homogeneous layers. If no adaptive step is at-
tempted in the integration, the procedure can some-
times lead to excessive computations. Especially in
case of high frequencies for models with only few
zones of rapid conductivity changes (e.g., jumps
through layer interfaces), the integration step must be
chosen small enough to properly resolve rapid impe-
dance variations around the boundaries, and a plethora
of computation steps is then spent to move across ho-
mogeneous, or only slowly varying portions of the con-
ductivity section.

(i1) Alternatively, we used a more advanced Livermore
ODE solver LSODA from the public Netlib reposi-
tory. This routine is implemented as a double preci-
sion Fortran numerical ODE solving procedure with
adaptive step size and accuracy control, and an auto-
matic switching for stiff and non-stiff ODE systems
(Hindmarsh, 1983; Petzold, 1983). As (6) does not
involve solution modes with largely different rates of
the depth variation, the Riccati system is non-stiff, and
the above procedure defaults to the Adams predictor-
corrector method (Ralston, 1965).

In Fig. 1, we present an example of using the latter nu-
merical procedure to the solution of (6) for a simple layered
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Fig. 1. Resistivity and phase yx-curves for an anisotropic layered model
with exponentially increasing anisotropy dip within an upper crustal
layer. See text for the particular model parameters. The rate of change of
the anisotropy dip for different models is shown in the inset. The dashed
line corresponds to the linear increase of the dip with depth. The crosses
show the xy-curves in the direction parallel to the strike. Notice the scale
exaggeration on the vertical axes.

model with one anisotropic layer. The layer thicknesses in
the 5-layer model are 2, 10, 2, 100, and co km. The re-
sistivities of the isotropic layers are o; = 1000 Qm, o3 =
100 2m, o4 = 1000 2m, and o5 = 300 2m. The second
layer is anisotropic with the principal resistivities 02 min =
100 2m, 02 max = 1000 2m in the (y, z)-coordinate plane,
and with a smoothly varying anisotropy dip defined here
as a deviation of the minimum resistivity direction from
the vertical axis z. The anisotropy dip varies exponen-
tially from 20° at the top of the layer to 90° at its bot-
tom, with different rates of change for different models a
through f (Fig. 1). The resistivity along the x-axis is equal
t0 02, min- The medium may be considered a schematic model
of a lystric structure with curved strike-parallel conductive
planes within the anisotropic layer.

For the above 1-D anisotropic model, the variations in
the anisotropy dip are principally indistinguishable from ap-
propriately scaled vertical conductivity variations. For the
anisotropy dip o p, (measured from the vertical axis here),
the conductivity tensor in the anisotropic layer 2 is given by

o= R«’f (OlDz - 900) diag{@illnin’ Q;.:nin’ Q;,:rlax}
R (90° — apo),

where R, () is the elementary rotation matrix around the
x-axis by . From this formula, the components of the effec-
tive horizontal conductivity tensor X, (5) can be computed
directly,

—1
z:2,)ch = Q2,min’
> _ 2 ) -1
2,9y = (02,max €OS” &p2 + Q2. min SIN” &tp3) ™,
9.y = 0.

Thus, the equivalent horizontal resistivity in the y-direction
iS 0,2 = 02.max €08% &p2 + 02.min SIN* A3

The curves in Fig. 1 conform with the above equivalency
principle. With the decreasing rate of the exponential varia-
tion of the anisotropy dip (i.e., from a towards f in Fig. 1)
the portion of the anisotropic layer with smaller resistivity
0,2 becomes larger, starting from the bottom of the layer.
Consequently, the yx-curves gradually approach the limit
case of the strike-parallel xy-curve (crosses in Fig. 1) that
corresponds to the constant resistivity 02 = 02 min through-
out the layer.

3. Application: Synthetic Model Study on the MT
Decomposition for a Variable Strike Direction
3.1 Separated homogeneous layers with different
strikes
Anisotropic layered models can be used to simulate struc-
tures with directional characteristics variable with depth.
In magnetotellurics, the applicability of a 3-D local/2-D
regional composite model of the medium is verified by
evaluating a set of decomposition parameters (Groom and
Bailey, 1989; Bahr, 1991) and by checking on their fre-
quency independence within a certain period range. In prac-
tice, situations are not rarely encountered when either dif-
ferent sets of decomposition parameters can be identified
within different period bands, or when the parameters dis-
play systematic variations with the period. Those situations
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Fig. 2. Results of the MT decomposition analysis applied to a distorted 5-layer model specified in the text. The panels a, b, ¢ correspond to different
minimum resistivities of the deep anisotropic layer. The top panels show the characteristic directions for the individual cases: SwD—Swift’s direction
for the distorted impedances, SwWU—Swift’s direction for the corresponding undistorted data, Ba, GB—regional strike recovered from the distorted data
by Bahr’s and Groom and Bailey’s decomposition procedures, TS—regional strike obtained from the distorted data by Smith’s decomposition procedure
with magnetic distortions considered. The middle panels show the telluric deviations computed for the direction predicted by Smith’s decomposition

procedure. According to Bahr (1991), the telluric deviations are defined by tan Sy =

v/ Zxy and tan B, = —Zy,/Z,, with impedances considered

in the direction of the regional strike. They are related to inverse tangents of Groom and Bailey’s (1989) (angular) twist and shear parameters by
Bx = Brw + Bsy and By, = Brw — Bsu. The bottom panels show relevant MT parameters: MTA—MT impedance anisotropy, S—skew, PS—Bahr’s

phase sensitive skew.

are often interpreted in terms of a depth-variable regional
strike, although particularly the latter case may just indicate
that a fully 3-D regional structure is involved, and no re-
gional strike exists at all. In this respect, numerical simula-
tions may be a valuable source of information for assessing
the manifestion of depth-variable directional properties of
the electrical conductivity in the surface MT data.

Though powerful 3-D modelling codes are available to-
day, it is still rather difficult to simulate media with oblique
2-D structures located at different depths within the sec-
tion. In this respect, anisotropic layered media represent
extremely simple models in which the variable strike di-
rection can be simulated by variations of the preferred con-
ductivity direction through the layers. It must be noticed,
however, that the analogy between genuinely heterogeneous
structures and anisotropic layered media is not complete.
Two aspects have to be remembered that restrict the com-
plete parallelism between those cases. First, while a shallow
2-D structure becomes a part of the local distorting struc-
ture for long enough periods, which results in a permanent
change of the distortion matrix, the effect of a shallow ani-
sotropic layer gradually disappears from the surface data as
the induction space becomes larger. Due to the symmetry of
the 1-D problem, any surface and/or volume charges that can
arise in the layer due to its general anisotropy do not show
any lateral gradients and, consequently, cannot contribute to
static distortions of the telluric field. Second, an undistorted
1-D anisotropic medium, however complex its conductivity
variation may be, always produces MT data with the skew
equal to zero. Consequently, characteristic 3-D induction
phenomena at the transition between two oblique heteroge-

neous structures cannot be properly simulated by using a
1-D anisotropic model.

Our first synthetic study deals with a model involving two
separated homogeneous anisotropic layers with different
anisotropy strikes, which simulate two different structural
strikes at different depths. The model data are further dis-
torted by an arbitrary constant static shift matrix A through-
out the period range considered. The layer thicknesses in
the 5-layer model considered are, from the top down to the
basement, 3, 2, 10, 30, and co km. The corresponding resis-
tivities are o; = 1000 Qm, o3 = 1000 2m, o5 = 500 Qm;
the second and fourth layers are anisotropic with the re-
sistivity parameters Qo min = 3 2m, Qo max = 300 Qm,
a§2 min = 400’ and O4,max = 300 Qm: 54, min = _7009
where the anisotropy strike og min indicates the direction of
the minimum resistivity in the horizontal direction with re-
spect to the (x, z)-coordinate plane. The minimum resis-
tivity of the fourth layer is chosen from @4 min = 100 Qm
(a), 30 2m (b), 10 2m (c), to analyze the effect of differ-
ent conductance ratios of the shallow and deep anisotropic
structures involved. The elements of the static distortion ma-
trix A are a,, = 2.5, a,, = —0.3, ay, = 0.7, a, = 0.5.
This telluric distortion is characterized by an elongated dis-
tortion ellipse with the major axis at 14.9° with respect to
x and with the major and minor semi-axes of 2.60 and 0.56
respectively. For simplicity, we have not contaminated the
model data with any additional noise here.

In Fig. 2, we present results of the MT decomposition
analysis applied to the data from the above models. The in-
dividual plots show Swift’s directions, both for the original,
undistorted and distorted models, regional strikes predicted
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Fig. 3. (a) Frequency resolution of Smith’s (1997) decomposition procedure with respect to the regional strike of the deep anisotropic layer. The anisotropy
strike of the shallow layer is «so = 40°. See the text for the other model parameters. For the deep anisotropy strikes from the interval of —70° to 110°,
the gray zones show period ranges for which the true deep strike has been retrieved from noise-free data within 5°. The light gray zone correponds
to the model with 04 min = 30 Qm, the dark gray zone is a corresponding mirror image for the model with g4 min = 10 2m. For the latter model,
the white circles show point-wise the same results obtained from noisy impedances (2% of normal noise added to the model data). (b) Variations of
the undistorted (full lines—Re Z, dashed lines—Im Z) and distorted (full circles—Re Zgis, empty circles—Im Zg;s) impedance elements for the latter

model as a function of the deep anisotropy strike as4 for the period of 500 s.

by Bahr’s (1991) and Groom and Bailey’s (1989) decom-
position procedures, as well as regional strikes provided by
Smith’s (1997) procedure, which considers also magnetic
distortions in the data. Further, telluric deviations (Bahr,
1991) are shown for the strike direction obtained from the
last-named decomposition technique, and basic MT parame-
ters, specifically the impedance anisotropy, skew, and Bahr’s
phase sensitive skew, are displayed as well.

Common features of all three models are: (i) Swift’s di-
rection computed from the distorted data (SwD) is largely
affected by the distortions, and does not allow us to draw
any immediate conclusion as to the strike variations within
the model, except for their likely presence. Only for the
model (c), with a very low minimum resistivity of the deep
anisotropic layer, the distorted Swift’s direction is clearly
attracted by that layer at long periods. The influence of
the distortion is similarly expressed by the classical skew
parameter (S), which is generally greater than 0.3 all over
the period range considered. (ii) The shallow anisotropic
layer is equally well resolved by all decomposition proce-
dures (regional strike of 40° for periods up to several sec-
onds). Within the relevant period range, the decomposition
parameters are stable and correspond to those resulting di-
rectly from the distortion matrix (telluric deviations of 52.1°
and —13.5° for the regional strike of 40°). The phase sen-
sitive skew (PS) is less than 0.05 over the whole relevant
period range, indicating that the composite model with a
2-D regional structure is a good approximation to the real
situation. (iii) For the longest periods considered, typically
greater than several thousands of seconds, the classical de-
composition routines give a regional strike that approaches
Swift’s direction for the undistorted model (SwU). It means
that they satisfactorily remove the distortion effect from the
data and provide the same directional information as the data
without distortions, but they fail to retrieve the true regional
strike at depth.

Interesting behaviour displays the regional strike derived
from Smith’s (1997) decomposition procedure (TS). For
models in Fig. 2(b), (c), this regional strike estimate ap-
proaches the correct regional strike within the period range
of several hundreds of seconds to more than 10000 s, which
can be, by variations in all the parameters considered, identi-
fied with the range of manifestation of the deep anisotropic
layer. In many runs with various double-strike models we
could verify this observation for a broad range of model pa-
rameters provided the ratio of the maximum conductances
of the two anisotropic layers is large enough for the deep
layer to be sensed reliably. It is, however, not clear whether
this behaviour of the TS-regional strike is specific of aniso-
tropic 1-D structures only, or whether it can be expected to
apply to laterally heterogeneous media with a variable strike
as well.

Owing to the electrical anisotropy in the shallow part of
the section, an induced anisotropy of the resolution of the
surface data to deeper structures can be expected as well. To
assess this effect, we repeated the decomposition analysis
for the above model with a varying anisotropy strike of the
deep layer within the range g4 € (—70°, 110°). For accu-
rate data, the variable strike ag4 affects the width of the pe-
riod range in which the TS-strike provides a satisfactory esti-
mate of the true deep strike. In Fig. 3(a), we show that range
for two versions of the model, one with o4 min = 30 Qm
(light gray diagram) and the other with g4 mi, = 10 Qm
(dark gray diagram, mirror image). The grayed zones indi-
cate periods for which the TS-strike equals to the true deep
strike within 5° and the telluric deviations do not show not-
icable frequency variations. Obviously, for g4 = —50°
and ags = 40° the strikes of the shallow and deep layer
are aligned (with 90° ambiguity considered), and one single
strike is recovered practically all over the data range. For
oblique anisotropy strikes, the recovery range is narrowing,
especially for the smaller contrast between the maximum
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conductances of the two anisotropic layers. The long period
boundary of the recovery range is somehow diffuse as the
composite model fits the long period impedances with high
accuracy for a broad range of the regional strike values.

The rate of success in estimating the deep strike drops
dramatically for noisy data. The white points in Fig. 3(a)
show periods for which the regional strike has been retrieved
within 5° of its true value from the model data after 2% of
normal noise was added to the impedance elements. For
the model with the less conductive deep layer, practically
no reliable estimates have been obtained in the noisy case.
Even in the case of the more conductive deep layer, with the
maximum conductance ratio of the deep and shallow aniso-
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Fig. 4. Exponentially varying anisotropy strike within the second layer of a
3-layer model described in the text. The depth variations of the strike are
described by asy(z) = Aexp(fz) + B, or by a linear function of z. For
the cases E- and E+, the exponential factors are, inm~', / = —0.0003,
and f = 0.0003, respectively. L is for a linear depth-dependence of

as(z).
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tropic layer of S max/Sa.max = 4.5, the deep regional strike
could not be detected at all for ag4 from within the quad-
rant (20°, 110°). The explanation is that the specific distor-
tion matrix applied to the model data causes one of the main
impedance elements, specifically Z,,, to almost vanish for
those anisotropy strikes (Fig. 3(b)). Hence, any procedure
involving implicitely a rotation of the noisy impedance ten-
sor necessarily provides highly scattered and inconsistent re-
sults over the respective range of the anisotropy strikes.

3.2 Smoothly varying regional strike

The manifestation of a smoothly varying regional strike
in MT data, and in particular in the decomposition parame-
ters, is another problem that can be simulated by using 1-D
anisotropic models. Of course, the above mentioned limita-
tions of anisotropic models as compared with true laterally
inhomogeneous structures must be remembered in this case,
too.

For a depth-variable strike analysis, we studied a simple
model consisting of three layers with thicknesses 10, 30,
and oo km. The resistivities of the isotropic first and third
layer were o1 = 1000 Qm, o3 = 500 Qm, and the princi-
pal resistivities of the azimuthally anisotropic second layer
Were Qo min = 02: = 30 Qm and 0 max = 300 2m. The
anisotropy strike in the second layer varies smoothly from
20° at the top of the layer to 70° at its bottom according to
an exponential law (Fig. 4). Aditionally, we multiplied the
model impedance matrix by the real and constant distortion
matrix which was already used in the previous section. Fur-
ther, only noise-free data are considered.

In Fig. 5, we show the decomposition parameters for the
three variants of the model from Fig. 4. Independently of the
particular shape of the depth dependence of the anisotropy
strike, all regional strike estimates approach the undistorted
Swift’s direction, both for short and long period ranges. For
short periods, the strike at the top of the transition layer is
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Fig. 5. Decomposition parameters for noise-free data generated by models with a smoothly varying anisotropy strike. See the text for the model parameters.
The respective anisotropy strike functions are shown in Fig. 4. For the symbols used, see Fig. 3 caption. Additional symbols: TD(Ba)—telluric
deviations for Bahr’s regional strike estimate (empty circles in the middle panels), TD(TS)—telluric deviations for the strike estimate according to
Smith (full circles in the middle panels).
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retrieved correctly. The long period Swift’s direction from
undistorted data depends on how fast the anisotropy strike
approaches its bottom limit. For variations with negative
exponents, the anisotropy strike is close to its bottom value
over a thicker portion of the layer and, consequently, both
the undistorted Swift’s direction and regional strike esti-
mates are closer to this value as well. Contrary, for the posi-
tive exponent of /' = 0.0003 in Fig. 5c, the discrepancy be-
tween the bottom anisotropy strike and Swift’s undistorted
direction is almost 40° at long periods.

The transition zone itself is sensed by the data within the
period range of about 10 to 1000 s. The decomposition pa-
rameters are frequency dependent in this range. The single-
frequency regional strike estimates do not follow, however,
a simple transition law. They rather display an instability,
characterized by fast changes, or jumps, of the respective
estimates over the whole transition range.

The noise in the data largely obscures the results of the
decomposition simulations for models with a depth-variable
strike. It is hardly suprising in view of all the experience
accumulated from a lot of experiments that tried to detect
just a single regional strike in practical MT data (e.g., Jones
and Groom, 1993).

4. Conclusion

The Riccati equation approach to evaluating the MT im-
pedances, or admittances, in a 1-D horizontally homoge-
neous medium has been for long an alternative to matrix or
impedance propagation formulae, derived for layered struc-
tures. Though an analytical solution to the Riccati non-
linear equation exists for only few specific cases of the con-
ductivity profiles, its numerical solution is extremely simple
if a starting impedance is known, e.g., in the homogeneous
basement of the model. The Riccati equation approach al-
lows us to naturally consider both the discrete layered media
and models with a piecewise smoothly varying conductivity
distribution.

For 1-D anisotropic media, the idea of using first-order
differential equations to compute the MT impedances goes
back to Abramovici (1974). We have demonstrated here that
analogues of the Riccati equation for the anisotropic case
can be obtained readily from the basic field equations. Simi-
larly as in the isotropic case, these equations represent a lim-
iting case of the impedance propagation formulae for aniso-
tropic layered media if layer thicknesses approach zero. The
Riccati equations in the 1-D anisotropic case form a system
of four coupled non-linear first-order differential equations
for the impedance elements (6). Only three of those equa-
tions are independent due to the internal symmetry condition
Zyx + Z,, = 0. The Riccati system can be easily solved nu-
merically by applying practically any standard ODE solver.
By using the Riccati approach, the modelling of 1-D struc-
tures can start immediately by simple numerical tools, with-
out going through the complex algebra involved in the ma-
trix and impedance propagation procedures.

Depth variable conductivity and anisotropy conditions
can be used to partly simulate transitions between earth
structures with different strikes at different depths. Though
the analogy between the 1-D anisotropic media and later-
ally heterogeneous structures with a depth-variable strike is

not complete, especially as regards the changes of the dis-
tortion parameters with decreasing frequency, simple simu-
lations with anisotropic stratified models may show whether
strike variations with depth are principally detectable in sur-
face data. Similar synthetic experiments were made ear-
lier, e.g., by Smith (1997) who tested his decomposition
scheme with magnetic distortions considered on a model
with two anisotropic layers, one shallow for near-surface
effects, and the other deep to simulate the regional strike.
Santos and Mendes-Victor (2000) compared in detail Groom
and Bailey’s decomposition parameters for anisotropic mod-
els with static distortions added artificially. While for mod-
els with one single anisotropic layer the impedance tensor
properties are similar to those produced by distorted 2-D
structures, a joint effect of a shallow and deep anisotropy
results in a variety of situations that depend largely on the
depth, thickness, and conductivity anisotropy of the shallow
layer. Our experiments show that in a multi-layer anisotro-
pic case and for noise-free data the traditional regional strike
estimates by Groom and Bailey (1989) and Bahr (1991) ap-
proach Swift’s direction of the undistorted model in the long
period range, i.e., they provide the same directionality infor-
mation which could be inferred from the data without static
distortions. For well separated anisotropic layers, the de-
composition procedure that considers the static distortions
of the magnetic components as well (Smith, 1997) seems to
better retrieve the true regional strikes of the individual lay-
ers provided the deeper layers can be resolved sufficiently
well within the section. As yet it has not been clarified
whether this behaviour is typical of anisotropic stratified me-
dia only, or whether laterally inhomogeneous structures with
a depth-variable strike show similar features.

Strike transitions between various depth levels within a
1-D anisotropic section are often expressed by more irregu-
lar variations of the decomposition parameters. In particular,
the regional strike estimates may show excessive changes
and jumps within period bands that correspond to deep strike
changes.

For noise-free data, the regional directionality conclu-
sions are largely independent of the particular distortion pa-
rameters. With even a small amount of noise in the data,
however, the resolution with respect to the deep strike vari-
ations gets largely reduced. Moreover, the particular distor-
tion parameters involved highly influence the way in which
the data errors propagate in rotated impedances, so that sub-
stantial dependence of the directionality conclusions on the
particular distortion parameters appears.
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Appendix A. Z,, + Z,, = 0 in the Anisotropic Lay-
ered Medium
From (8), the sum of the secondary impedances, S; =
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Zx + Z,,, is controlled by the differential equation

S|+ Z48 =0. (A.1)

To evaluate the invariant Z 4 in (A.1) explicitely, we express
the impedance tensor in a 1-D anisotropic medium by means
of the horizontal field components obtained for two indepen-
dent field polarizations,

Y E)(CI)H}EZ) _ H)EI)E)((Z) HOE® — EO[H®

- W _ g @) WE@ _ g g®

Dy EVH, HE® HVE” — EVH,
(A.2)

V/

with Dy = HVH® — H"H® and the superscripts (1)
and (2) specifying the individual polarizations. Now, by
using the impedance elements from (A.2) in the definition
formula for Z 4 we easily obtain

Zy=2xy(Zex —Zyy) — ZsxZyiy + X, Z )
— D' 3. H® — 3O .gO)

=D,'v.-HY x H?), (A.3)

where Maxwell’s equation V x H = J and the vector identity
V.-(axb)=b-V xa—a-V xbhave been used. Ina 1-D
anisotropic medium, both H and H® are horizontal fields,
and their vector product is H" x H® = Dy e., where e. is
a unit vector in the vertical direction. Then, Eq. (A.3) finally
gives

Z4 = Dy' D). (A.4)

As Dy # 0 due to the independence of the two field
polarization involved, Eq. (A.1) and the result (A.4) can be
combined to

S{DH + SlD/ = (SlDH)/ =0. (A.S)

Consequently, the product S} Dy is constant throughout the
1-D anisotropic medium. If S; = 0 at an arbitrary z within

the conductor, which is true, e.g., in the homogeneous base-
ment of the model (see (17) for this particular case), then
S| = Z,, + Z,, = 0 everywhere in the medium.
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