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Generalized Riccati equations for 1-D magnetotelluric impedances over
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The Riccati equation approach to the analysis of magnetotelluric impedances in 1-D anisotropic structures is
generalized to models with non-uniform source field excitation. The problem is solved in the horizontal wave-
number domain. General Riccati matrix equations for the spectral impedances of the medium are derived and
their relation to the standard impedance propagation formulae in layered anisotropic models is discussed. Riccati
equations give a full solution for the spectral impedances, comprising both the induction and galvanic mode.
For a purely inductive excitation of the field, each wave-number harmonics of the magnetic field is strictly
linearly polarized on the surface, and only one half of the spectral impedance tensor can be restored. Both
induction and galvanic modes generally exist inside the anisotropic conductor and are coupled. A formal similarity
between the Riccati equations for a 1-D anisotropic medium with non-uniform sources and those obtained for
2-D laterally inhomogeneous structures is demonstrated, which indicates a possible way of extending the Riccati
impedance/admittance equations to multi-dimensional conductors.

1. Introduction

In the first part of this paper (Kovacikova and Pek, 2002),
we have demonstrated that the Riccati equation approach to
studying magnetotelluric (MT) impedances in 1-D anisotro-
pic conductors is a simple and effective alternative to the
matrix and impedance propagation methods generally used
for this purpose in the plane wave model. We will summa-
rize the main theoretical results of that previous study here

for reference purposes:

a) The electromagnetic field generated by a vertically
propagating time-harmonic plane wave in a 1-D ani-
sotropic structure is controlled by a coupled system of
differential equations

E =DEAH, H = DALE, (1)
where the prime stands for d/dz, E and H are the hori-
zontal electric and magnetic field vectors, respectively,
and the matrix coefficients in (1) are defined as

with w being the circular frequency of the field, and
O, A, v € {x,y, z}, elements of the conductivity ten-
sor X (7).
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b) In the plane wave model, no vertical currents and no
vertical magnetic fields arise within the 1-D anisotropic
structure, i.e. J, = 0 and H, = 0 throughout the model.

By combining Egs. (1) and the impedance relation E =
ZH, the generalized Riccati matrix equation for the
impedance tensor in a 1-D anisotropic medium is easily
obtained,

7/ +7ZD"Ez = DEH, )
Starting from the homogeneous anisotropic basement
of the model, where the impedances are given by sim-
ple explicit formulae, the above equation can be easily
solved numerically by using any suitable ordinary dif-
ferential equation solver to give the vertical impedance
distribution for any piecewise continuous anisotropic
1-D conductivity section.

So far, we have assumed that the 1-D anisotropic medium
is illuminated by a homogeneous plane electromagnetic
wave propagating from sources at 7 — —oo perpendicu-
larly towards the surface of the conductive half-space. In
many applications, however, a source, either natural or con-
trolled, of a finite spatial extent has to be considered. In such
a case, the primary inducing field is not uniform any more,
and the theory developed so far requires some modifications
to allow us to manage non-uniform source fields as well.

The interaction of a spatially non-uniform electromag-
netic field with an anisotropic medium has been studied
in various contexts by many authors for particular source
configurations, mainly for dipole source fields in layered
conductors (e.g., Chlamtac and Abramovici, 1981; Xiong,
1989; Li and Pedersen, 1992; Everett and Constable, 1999).
In these studies, the particular symmetry of the source field
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is exploited explicitly, and closed-form solutions are ob-
tained for the electromagnetic field. From those solutions,
analogues of the classical MT transfer functions, i.e. impe-
dances, admittances, or geomagnetic transfer functions, can
be found for individual source types.

For general non-uniform source fields and 1-D media,
the analysis of the field solution in the horizontal wave-
number domain makes it possible to study the influence
of the conductor on the spatial harmonics of the electro-
magnetic field by means of general spectral transfer func-
tions (e.g., Berdichevsky and Zhdanov, 1984). In this pa-
per we will show that the Riccati equation approach from
Kovacikova and Pek (2002) can be readily extended to the
spectral impedances in generally anisotropic 1-D conduc-
tors.

The structure of the paper is as follows: In Section 2,
we present an elementary derivation of the generalized Ric-
cati equations for spectral impedances in a 1-D anisotropic
medium, and show their relation to the standard matrix prop-
agation formulae for anisotropic layered structures. A spe-
cial case of purely inductive excitation, which is relevant for
MT and geomagnetic induction studies with very long peri-
ods, is discussed in Section 3. Finally, in Section 4, a parallel
is drawn between the 1-D anisotropic Riccati equations for a
non-uniform source field and generalized Riccati equations
for laterally inhomogeneous 2-D conductors.

2. Riccati Equations for 1-D Anisotropic Media
with a Spatially Non-Uniform Primary Excita-
tion

2.1 Formal derivation of Riccati equations for spectral

impedances
For models with a 1-D horizontally homogeneous distri-
bution of the electrical properties, a solution for the electro-
magnetic fields is generally sought in the horizontal wave-
number domain.  Applying the Fourier transform to

Maxwell’s equations with a 1-D anisotropic conductivity

with respect to x and y,

Feplox, y)} = @, n)
+00  pto0
= / / P(x, »)
—00 —00
x exp[—i(Ex + ny)]ldxdy,
we arrive at a system of differential equations

. / .
ife; — e, = iwpoh,,

iEh, — W, = jx = owxex + 0ype, +0pzes, (3a)
e, —ine. = iwpoh,,

b, —inh. = j, = oyyex + 0,8, + 0yze;, (3b)
ike, —inex =iwpoh:,

iEh, —inhy = j, = 0y.e, + 0yzey + 02ze;, (o)

where the prime stands for d/dz, and the arguments of the
field spectra (&, 1, z, w) and z for the conductivities have
been omitted for brevity. Using (3¢) to eliminate the vertical
field components from (3a) and (3b), we can write differ-
ential relations between the horizontal field components, in

matrix notation,

¢ =d"*e+d""n,

where e = [ & ,h= & ,and
ey hy,

W =d’fe+d’h, (4
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In the special case of only the azimuthal anisotropy, i.e., if
oy: = 0y, = 0, both matrices d®# and d”/#' are zero, and
(4) formally reduces to a form analogous to (1). Neverthe-
less, even in this simplified case, vertical magnetic fields and
vertical currents exist within the medium by virtue of (3c),
which is an essential difference as compared with the uni-
form source model.

For a non-uniform source field, it is generally not pos-
sible to express the relation between the horizontal electric
and magnetic fields by means of a single impedance formula
E = ZH. This type of relation can be, however, assumed to
apply to the individual (£, n)-harmonics of the electromag-
netic field, i.e., e = zh for each pair of the wave numbers
(&,1n). The 2 x 2 tensor z(§, n, z, w) is the spectral impe-
dance of the model (Berdichevsky and Zhdanov, 1984).

By using in (4) the spectral impedance relation e = zh,
we easily obtain

¢ =zh+zh'
= (2 + 24"z 4 zd""")h = (dFEz + dE)h,

and, consequently,
7 +2d"Ez + (zd"¥ — dFEz) = dFH, (5)

which is a vector Riccati equation for the spectral impedan-
ces in a 1-D anisotropic medium. When compared to (2),
Eq. (5) contains two more terms, resulting from dipping (or
slanting) anisotropy, given by the conductivity elements oy,
and o,.. For§ = n = 0, Eq. (5) simply reduces to the
uniform source equation (2).

Employing (5) in practical evaluations of the spectral im-
pedances requires us to provide a starting value of the impe-
dance at some depth level as an initial condition. Similarly
as in the case of the uniform source field, we can initialize
the solution of (5) by the spectral impedance tensor at the
top, or anywhere inside the homogeneous basement of the
model. To obtain this starting impedance explicitly, we will
first analyze the field solution of the system (4) for a strati-
fied medium.
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2.2 Field solution in an anisotropic layered medium ex-
cited by a non-uniform source field

To find the solution of (4) for the field components within
a 1-D anisotropic medium that consists of a stack of ho-
mogeneous layers underlain by a homogeneous anisotro-
pic half-space, we could almost exactly duplicate the pro-
cedure for solving (1) with the uniform source field (see
Kovacikova and Pek, 2002, section 2.2).

Let us assume that the solution of (4) is of an exponential
form, e, = e, exp(kz), h, = ho,expkz), v € {x,y},
for a given spatial wave number pair (£, ). Using these
expressions in (4), we obtain a homogeneous system of four
linear equations for the amplitudes e, and A, v € {x, y}.
For this system to give a non-zero solution for the field
amplitudes its determinant has to be zero, which leads to

dff — 1 d&Hd
det(

=0,
it — kl)

with 1 being a 2 x 2 unit matrix. By evaluating the above
determinant, we arrive at a fourth-order algebraic equation
for admissible wave numbers £,

dHE

k* 4 c3k 4 cok® 4+ ek +¢o = 0, (6)

with the coefficients given by
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Clearly, for the case of a purely azimuthal anisotropy, i.e.,
if o, = 0,. = 0, the coefficients c¢; and c;3 are zero, and (6)
gives two pairs of wave numbers which differ only by their
signs, +k; and +k,. Further solution of (4) for the field
components is, in this case, exactly the same as that for the
uniform source.

The above symmetry of the wave numbers £ is not valid
any more for the general case of anisotropy, and Eq. (6)
gives four different wave numbers which correspond to four
wave modes that can propagate within an anisotropic layer
for the given pair of (£, n). Since c¢; is purely imaginary,
the sum of real parts of the four wave numbers £ is always
equal to zero, Z?:l Re k; = 0. We have not yet been able to

where o), =

find a rigorous proof of the relation ]_[?=1 Rek; > 0, which
would mean that there are, though not symmetric any more,
still two down-going and two up-going wave modes in the
anisotropic layer. Nevertheless, all numerical calculations
support this hypothesis.

In Fig. 1, we illustrate the dependence of the wave num-
bers k on the horizontal wave number & and on one of the pa-
rameters of the anisotropy, here on the anisotropy dip ap in
particular. The anisotropy parameters are defined via a fac-
torization of the symmetric conductivity tensor o in terms
of three principal conductivities, o1, 03, 03, and three ele-
mentary Euler rotations, as, ap, o,

o = R! (as)R! (ap)R (1)
x diag{o, 02, 03}R; (a)Ry (ap)R; (),

where R, (o 4) is the matrix of an elementary rotation by o 4
around the axis a. For schematic dyke models of anisotropic
structures, the angles «g, op and «; can be identified with
physically transparent directions of the anisotropy strike, dip
and slant, respectively.

The &-dependence of & (Fig. 1, top) is plotted within
the range of & € (1078, 107°) m~!, which roughly corre-
sponds to the horizontal wave lengths from an almost uni-
form field (6 x 10° km) down to about 600 km for a period
of 1000 s. For small values of &, both the real and imag-
inary parts of the k’s are close to the corresponding uni-
form field wave numbers (£1.5432 x 107® x (1 — i) and
+2.8515 x 107 x (1 — i), in m~', in the particular set-
ting used here). With increasing &, the positive and negative
branches of the real parts of the wave numbers k start to di-
verge and approach +oo asymptotically. Only slight asym-
metry can be detected in the real parts of k, which is a feature
observed for even much larger contrasts between the princi-
pal resistivities. With increasing &, the imaginary parts of
k show much larger asymmetry, which depends greatly on
the particular values of the non-azimuthal elements of the
conductivity tensor oy, 0,.. The plots in the bottom panels
of Fig. 1 then pick out one particular point from the previ-
ous plots, specifically £ = 27 x 107 m~!, and show the
dependence of k on the anisotropy dip ap € (—90°, 90°).

To find the solution to (4) for the field vectors e and h for a
particular pair of the spatial frequencies (&, 1), we can again
adopt the matrix propagation procedure used earlier for the
plane wave model (Kovacikova and Pek, 2002, section 2.2).
The principal difference with respect to the uniform field
case is the general presence of both the vertical magnetic
fields and vertical currents within the structure for non-zero
& and n. From (3c) we can see that the vertical magnetic
field is given by a projection of the horizontal electric vector
e onto the direction defined by the vector VI = (—in, i§),
ie, h. = (iopg)~'VTe. Similarly, j. = V'h. It will
show to be advantageous for the solution of (4) to change
to a new coordinate system defined by orthogonal vectors
UT = (i&,in) and V7, specified above, or into a related
(real) orthonormal base given by

1 1
W= ——E ), V= ——=(—1,8).

By virtue of V. H = 0 and V - J = 0, the vector U
represents a factor relating the vertical change of the vertical
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Fig. 1. Real and imaginary parts of the four roots k of the normal Eq. (6) as a function of the horizontal spatial frequency & for fixed anisotropy parameters
(top panels) and of the anisotropy dip for a fixed pair of spatial frequencies (bottom panels). The corresponding model paramters are listed at the top of
the panels. The four symbols, full and empty circles and full and empty diamonds, correspond to the four roots of (6) found by the numerical procedure
DZPOCC (Jenkins-Traub three-stage algorithm for finding the zeros of a polynomial, double precision version) from the IMSL library package. The
roots are given in the original order provided by the numerical algorithm so that the individual branches of & may consist of various symbols. Notice the

scale change for the imaginary parts.

magnetic fields and currents to the horizontal fields in the
(€, n)-domain, 2. = —UTh and j! = —UTj.

The transition to the (u, v)-based coordinate system
is a simple rotation in the horizontal plane by ¢ =

arccos(£/4/€2 + n?). By this rotation, Egs. (4) transform
to

e =e¢ = —Tu:6 — Tyz6p
2 2
. +
+ (la)/io — u) hy, (7a)

VTh/ = h:) = —O0uu€y — Oyw€y — Tuzhvv (7b)
vie =e = —ioughy, (7¢)

2 2

+

u'h = h; = oypey + <va - E—n> ey + Tyhy, (7d)

oo

where the following notation has been introduced:

. Oxz Oyz
Tyuz =1 <§—+Tl— ’
[ef [ef

. Oxz Oyz
Tyz =1 (—77—‘1‘5— s
O'ZZ UZZ

1
m(fzzm + nzzyy + 25772)@)»

1
m(nzzxx +&°%,, — 2En3,,),
O =u' Zv=vZu

o =u Tu =

Oy =V TV =

= m[fﬂ(zyy — )+ (%.2 - nz)zxy]‘

This transformation does not affect the wave numbers k for
the field modes that can propagate within the layer as given
by (6).

Clearly, for an isotropic medium, with 7,, = t,, = 0
and ¥ = o1, the system (7) splits into two independent
sub-systems, one for e, and 4,, and the other for e, and 4,,.
Since, by virtue of (3¢), h, = —i (£24+n?)"1/2}., the (e,, hy)
mode corresponds to the field generated by vertical currents,
which have to be injected into the structure for this mode
to arise. This is a galvanic field mode and corresponds to
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the poloidal component of the current density j and toroidal
component of the magnetic field h (Yin and Weidelt, 1999).
The other mode (e, /,) does not allow any vertical currents
to exist within the structure and describes an inductive exci-
tation of the field in the model. It is an inductive mode and
corresponds to the toroidal component of the current density
j and poloidal part of the magnetic field h.

In the case of an anisotropic layer, the galvanic and induc-
tive modes become coupled. For a purely azimuthal aniso-
tropy, the coupling is due to o, # 0. In the case of a gen-
eral anisotropy, the non-zero factors t,, and 7,, make the
coupling even more complex. Nonetheless, Egs. (7) form
a system of four first-order linear differential equations for
the field components and can be solved by the matrix prop-
agation method in a similar way as system (1), except that
there is no longer the possibility of separating the electric
and magnetic fields by additionally differentiating the first-
order equations with respect to z.

Let us assume the four field modes in an anisotropic layer
to be characterized by wave numbers ki,, k1,, k2, and k,,
where the symbols ‘p’ and ‘n’ distinguish the wave num-
bers with the positive and negative real parts respectively.
Generally, k;,, # —kin, i = 1, 2, in the anisotropic medium.
In Kovacikova and Pek (2002, eq. (13)), we introduced a
transition matrix T (%) that relates the horizontal fields on
the top and the bottom of an anisotropic layer in the plane
wave model. The analogy of the transition matrix T(%) for
the non-uniform field, t(&, n, #), will now contain all four
different wave numbers. By duplicating the procedure lead-
ing to T(%), the matrix t(§, n, h) can be shown to be, in the
(u, v)-coordinate system,

t(€, n, h) = mE, nx(E, n, —hm~' &, n),

where

m(, n) = (¢, ¢, 1¢5,1¢3,),
¢, = (1,00 vk 0y, —vkR)),
v € {kip, kin, kap, kau},
(ky + 1.2)* 4 (oo + A0y,

0,=- . ;
’ (kv + Tuz)fvz + (lwﬂo + )\Z)Guv
R — ia)MO (kv + Tuz)ouv — TwzOuu
' kv (kv + Tuz)Tvz + (l(,()/L() + )\Z)qu '
)LZ _ _%-2 + nZ
Oz

and

X(§,n, —h) = diag{exp(—ki,h), exp(—kinh),
exp(—kazph), exp(—kz,h)}.

Here, y = (—iwo)~". The relation between the impedan-
ces on the bottom and the top of the layer are given for each
pair of (&, ) by

—1

Ziop = [tEEzbot + tEH] [tHEZbot + tHH] ’
where the factorization of the matrix t into the four blocks,
tEE, ¢EH tHE and t7%) is identical to that for T in
Kovacikova and Pek (2002, eq. (14)).

In the homogeneous basement that underlies the layered
structure, only the two modes with the negative real part of &
can exist for energetic reasons. From those, we can find the
explicit formula for the impedance tensor in the basement,
in the (u, v) coordinate system,

iy
Poase = Rin — k Rap
5 (Q;;(Rz,qk;l — Rk k) — k! )
Rk, = Ruks,  Quk, —k,))
@®)
where k = 01,/ Q2. For £ = n = 0, the factors R = 1 and
kin = —ky, koy = —ky, and (8) reduces to the corresponding

impedance for the uniform source field (Kovacikova and
Pek, 2002, eq. (17)).

The impedance (8) is constant within the homogeneous
basement and does not depend on the particular conductiv-
ity distribution in the layers above the half-space. Conse-
quently, it can be taken as an initial condition for the solution
of the Riccati equation (5), even in the case of a piecewise
smoothly varying conductivity tensor o (z).

To return from the (u, v)-based system back to the orig-
inal (x, y) coordinate system, a simple similarity transform
has to be applied to the (u, v)-impedance tensor,

1 & —n ORY 3 n
E24+n2\n ¢ -n &)

Let us emphasize that, due to the independence of zp,ge
of the vertical coordinate z within the basement, this impe-
dance can be obtained directly by solving the Riccati alge-
braic equation

7" —

2dEz 4 (zd — afEz) = afH,
which immediately follows from (5) for the case of ' = 0.

3. Spectral Impedances for the Induction Mode

The matrix propagation procedure applied to the 1-D ani-
sotropic layered model excited by a non-uniform source
field provides a spectral impedance tensor z(§, 1, z, ) that
integrates the contributions from both the induction and gal-
vanic modes of the electromagnetic field. In the anisotro-
pic case, the two modes cannot be decoupled at all, so their
distinguishing in that case is rather a matter of terminology
only. Nonetheless, for MT as well as for controlled source
induction methods, the case of a purely inductive excitation
of the electromagnetic field within the earth is of primary
interest. The above theory shows, however, that describing
in full the field induced within a 1-D anisotropic medium re-
quires us to take both the induction and galvanic modes into
consideration.

The basic condition that defines the inductive excitation
of the medium is that no currents are injected into the struc-
ture, neither on the surface nor anywhere inside the conduc-
tive medium. By virtue of (3¢), this condition gives

jz:iV§2+n2VTh:iV$2+n2hv:0

if z=0. (9)
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For the internal points of the medium, the absence of a
current injection is automatically satisfied by considering
the condition V - J = 0. Hence, the magnetic field of
inductive sources is linearly polarized in the direction u on
the surface. Consequently, no information on the impedance
elements z,, and z,, can be drawn from purely inductive
data. By virtue of 4, = 0, the impedance relations on the
surface degenerate to

(10)

Since u, v depend on the particular spatial frequencies
&, n, the (u, v)-based impedances are not ready for use in
a Fourier synthesis from the (¢, )-domain into the (x, y)-
domain. Formally, the degenerate impedance relations (10)
could be rotated into the (x, y)-system, which would result
in an apparently consistent, full impedance tensor. In fact,
however, a full impedance tensor can never be determined
uniquely, as, by virtue of the induction condition %, = 0,
any arbitrary values can be used instead of z,,, and z,,, and
rotated together with the correct first column of the impe-
dance matrix, without violating the trueness of the impe-
dance relation. In the original (x, y)-system, this fact results
in all linear relations € = (zing + sv’ )h to be equivalent, and
true, for any arbitrary vector s, where zi,q is the image of

ZUU
Zyu

of

ey = Zuyhu, ey = Zy M.

in the (x, y)-system, e.g., with a particular choice

a_ggzuu_

s nzl)ll Su _ _Q nleu +$ZUM
oy /€2 + 2 Y £ /52_,_,72’
we can anti-diagonalize the impedance matrix in the (x, y)-
system. The ‘main’ impedances in this case can be easily
shown to be

« _§ a« _ 1N

— Zyu, Zyx = —Zuyu + Zvu-

It is obvious that, in the isotropic case, with the induction
and galvanic modes decoupled, z,, = 0, and zi.x = —zfzy =
Zyu, Which resembles a normal impedance structure for lay-
ered models with a plane wave source field.

To demonstrate the effect of non-zero horizontal wave
numbers on the induction data, we present results of two
simple computations in Fig. 2. For a simple 3-layer model,
we illustrate two phenomena which are typical of mod-
els with non-uniform primary fields. First, contrary to
the uniform source case, we now have an explicit depen-
dence of the impedances on the anisotropy dip within the
layered structure. In Fig. 2(a), we show MT curves de-
rived from the impedances z,, and z,, for a simple 3-layer
model with parameters #; = 10 km, A, = 30 km, o; =
03 = 1000 @m. The second layer is anisotropic with dif-
ferent dips ap, chosen so that the horizontal conductivity
0)2 = 02,max cos? apy + 02.min sin® apy equals that given by
the parameters 02 max = 1000 @m, 03 min = 10 Qm, and
azp = 60°. The strike parallel resistivity of this layer is
o2 = 10 Qm for all models. The parameters of the model
are intentionally chosen non-realistic to make the effect vis-
ible. The non-uniform source is simulated by considering
a spatially harmonic field with the horizontal wave lengths

Ay = 2m/& = 1000 km and A, = 27 /n = 10000 km in
the x and y directions respectively. While for the uniform
source field, the curves would be identical for any combi-
nation of the anisotropy parameters that preserves g,,, with
the non-uniform source field a slight dependence on «p; is
observed, especially for dips close to 90° with very large
02.max/02.min Tatios involved. An asymptotic decrease of
the resistivity curves, and a corresponding increase of the
phases observed at long periods is a typical behaviour of the
induction curves generated by a non-uniform source field
(Berdichevsky and Zhdanov, 1984).

Second, contrary to the isotropic case where the impedan-
ces depend on the horizontal wave numbers, solely via the
factor £2 + n?, in the anisotropic case this dependence is not
symmetric any more with respect to £ and 7. In Fig. 2(b), the
dependence of the above induction MT curves on particular
values of & and 7 is shown, with €2 + % = 1.01 x 10~°m—2
being constant for all particular (&, n)-pairs. As different
pairs of £, n lead to impedance computations in coordinate
systems with different rotations with respect to the (x, y)-
system, the minimum model resistivity in the x-direction is
most distinctly expressed by apparent resistivities obtained
for small £ /n, i.e., large A, /A, ratios.

Equation for e, in (10) can be also considered as a rela-
tion for the spectral geomagnetic transfer functions
wy (&, n, z, w) and wy (&, 1, z, w). By virtue of (3¢), we have

1
h, = - €y =
1O

. (Zvuhu +ZUUhU) = wuhu +wvhvv
Twlo

which again gives 4, = w,h, on the surface in the induction
case. In the 1-D anisotropic case, the geomagnetic transfer
function is simply equal to the corresponding spectral im-
pedance z,, scaled by the factor (iwpg)~'. Contrary to the
isotropic case, where the geomagnetic transfer functions and
the MT spectral impedances contain exactly the same infor-
mation (for & # 0 and 1 # 0), in the anisotropic case only
the main impedance z,, can be resolved from geomagnetic
data. Telluric information is indispensable, however, for de-
termining the secondary impedance z,,,.

In the induction theory for isotropic media, it has been
proved that, for non-zero field harmonics, the spectral impe-
dances on the surface can be completely recovered from the
ratio of the internal and external part of the magnetic field
(Berdichevsky and Zhdanov, 1984), a parameter often used
in closely related spherical applications, in particular in the
geomagnetic depth sounding. In the air, which we consider
a perfect insulator, only the induction mode (e,, 4,) can ex-
ist. From (7c, 7d), with all the conductivities set to zero, we
easily obtain the solution for e, and #,, in the air as a sum of
an up-going (internal) and down-going (external) wave,

e, = Cp,1exp(Aoz) + Co 2 exp(—2Ao2),

A
hy = ——2[Cy.1 exp(roz) — Co2 exp(—roz)].

iy

o =VE2+ 12,

with Cy 1, Cy» being integration constants. On the surface,
the ratio of the internal to the external part of the field is
given by rie = h™/hS = —Cy1/Cy 2, and its relation to
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Fig. 2. (a) MT curves of the induction mode for a 3-layer model with dipping anisotropy in the intermediate layer. The model is excited by a non-uniform,
horizontally periodic source field. See the text for the model and source field specifications. The anisotropy dip of the second layer varies from 0 to
80°, but the effective horizontal resistivity of the layer is kept constant and equals 257.5 Qm for all models. (b) MT curves of the induction mode for
the same model, with specifically 02 max = 1000 Qm, 02 min = 10 2m, and axp = 60°. The curves are computed for different pairs of horizontal wave
numbers &, 5, with £2 + n? = const = 1.01 x 107® m~2. The corresponding horizontal wave lengths, in km, are shown in the inset at the top of each

panel.

the spectral impedance is then

. ~1

l(x),bL())\O + Zyy
Tie = - -1 )

lw:u'O)Lo — Zou

or vice versa,
iopg 1 +rie
)»() 1— rie.

ZUM -

Similarly as in the case of the spectral geomagnetic transfer
functions, the ratio of the internal and external parts of the
magnetic field allows us to recover z,, only, as z,, cannot
be found from the magnetic data alone.

4. 1-D and 2-D Riccati Equations
There is a certain analogy between 1-D models with a
non-uniform source field and multi-dimensional models in

that the same parameters can be defined to describe the re-
sponse of the structure, specifically the impedances, geo-
magnetic transfer functions, and internal/external magnetic
field ratios. For a 1-D isotropic model with inductive excita-
tion, those parameters have been proved to be interchange-
able as they provide completely equivalent information on
the geoelectrical section; specifically, they all result in the
impedance z,,. For a 1-D anisotropic model, the parame-
ters are only partly equivalent. The secondary impedance
z,, cannot be reconstructed from purely magnetic parame-
ters, and telluric information is necessarily required for this
purpose. In the multi-dimensional case, the individual pa-
rameters become independent functions, each with its own
specific way of contributing to the complete geoelectrical
characteristics of the model.

The complementary character of the horizontal and verti-
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cal spectral MT transfer functions is also reflected by the
corresponding general Riccati equations. For the general
1-D anisotropic case, Eq. (5) can be rewritten in a form ex-
plicitly involving the vertical transfer functions

7 + 2Dz + (zd"T — dEEy)
+ (iop) UV z — o 'UVT = DEA,

DEH

an

Here, = iwpoP and = PX are the origi-
nal, (¢, n)-independent matrices encountered in the uniform
source theory (see Eq. (1)). By virtue of (3c), we have
h. = (iopo)~'VTzh, and the first extracted term on the
Lh.s. of (11) can be simply considered to be a (£, n)-Fourier
image of the (x, y)-spatial derivatives of the vertical mag-
netic transfer function. Similarly, by virtue of V'h = j.,
the second extracted term can be considered to be an im-
age of the horizontal spatial derivatives of a vertical electric
transfer function which relates the vertical currents in the
structure to the horizontal magnetic field.

The idea of considering, besides the horizontal impedan-
ces, also the vertical MT transfer functions, seems to be
fruitful when we aim at obtaining analogues of the Riccati
impedance equations for the multi-dimensional case. So
far, we have succeeded in deriving the Riccati equations
for a simple 2-D model without anisotropy, which we will
demonstrate here.

Let us consider first the E-polarization case for a 2-D
model with the strike parallel to x, so that only the field com-
ponents £, H, and H. exist, related by reduced Maxwell’s
equations

0H,

DHE

- —— =0k,
ay az
JdE, . JdE, .
=iwuoHy, = —iwuoH;,
0z ay
oH, ~OH. _
dy az

The conductivity o = o(y, z), and all the fields depend
on arguments y, z and w, which we omit here for brevity.
We define the horizontal admittance Yx in a standard way
as Yy = H,/E.. Additionally, we introduce a vertical
admittance by Uy = H,/E,. Then

Yy oUg 1 (9H, OH. H, JE,
9z dy  E, \ oz Ay E? 9z

= —0 —iopgY; —iopn U,

H. JE,
EZ 3y

and

Yy dUg 1 (0H, 0H.
—+ = =+
ay a0z E, \ dy a9z

E? 9z

Hence, we have arrived at a complete pair of first-order
partial differential equations for the £-mode admittances Y
and Ug,

07 U,
Ly iougYs — =Ly iougUs = —0,
z dy (12)
0Yr 0Ug _0
dy az

where the first equation consists of a sum of two Riccati
operators applied to the respective admittances. The second
equation requires that the 2-D admittance field (Yg, Ug) is
source-free. Notice that the traditional geomagnetic transfer
function, Wy = H./H,, is related to the above admittances
by WE = U, E / Y, E.

The symmetry of the Riccati equations for admittances
and impedances, typical of 1-D media (Kovacikova and Pek,
2002, eq. (1)), does not apply any more to the 2-D case.
Rather, a particular type of the Riccati equation is related to
a particular field mode, specifically the admittance equation
(12) to the £-mode, and the impedance equation to the H-
mode (see Eq. (13) below). That seems to reflect the well-
known conductivity/resistivity asymmetry in the two field
modes.

For the 2-D H-mode, with only the field components H,,
E, and E. involved, the governing field equations read

0E. JE, |
_—:lwl’l’ol—[xs

ay 0z

d H, 0 H,
=ok,, =—0okE,,

dz ay

d(cE d(oE,

(0E)  A@E) _,

ay a9z

Similarly as above, we consider the standard horizontal im-

pedance Zy = E,/H,, and additionally define a vertical

impedance by Vy = E./H,. Then

0Zy Vg 1 <8Ey 8E2> E, 0H,
dz

3z dy  H, 9y ) H? 8z
E, 0H, .
0 ByY = —iwuy — JZi, - an,,
(o Zy) N IoVy) 1 [IE,) N d(0E.)
dy 9z  He| dy dz

Consequently, the MT impedances Zy and Vy for the 2-D
H-mode model are described by a system of first-order non-
linear partial differential equations

0Z av
endid +oZ% — = + oV = —iwuo,

a9z ay (13)
a(cZ a(oV

(0Zy) + (0 Vn) —o,

ay 0z

where the first equation is a generalized Riccati impedance
equation, whereas the second equation represents a con-
straint that requires the o-scaled impedance field
(6 Zy,0Vy) to be source-free in the 2-D space. It is in-
teresting to notice that on the surface ¥y = 0 and, con-
sequently, the Ricatti equation for the H-mode reduces to
a 1-D Riccati impedance equation with the correct subsur-
face conductivity o (v, z = 0+). Hence, immediately below
the surface, a simple 1-D interpretation of the H-mode data
gives correct conductivities of the structure.

To summarize, in the 2-D isotropic case, the horizon-
tal and vertical admittances, or impedances, are related via
Riccati-type 2-D equations and constraining conditions (12)
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and (13). In those equations, the horizontal and vertical MT
functions are of equal significance from the point of view of
the field description. If the medium degenerates into a 1-D
structure, the horizontal and vertical transfer functions can
be reduced to a simple impedance form, which is formally
expressed by the equivalency of Egs. (11) and (5).

5. Conclusion

The Riccati equation approach to evaluating the MT im-
pedances, or admittances, in a 1-D horizontally homoge-
neous, generally anisotropic medium can be easily extended
to 1-D anisotropic models excited by a non-uniform source
field. Large-scale non-uniformity of the source field is a
significant factor in high latitute electromagnetic soundings
or in regions near to the equator. On a small scale, practi-
cally all controlled source methods require consideration of
a non-uniform source model.

In the most general case, the MT field of a non-uniform
source can be obtained by Fourier synthesizing the field
harmonics computed for the given model in the horizontal
wave-number domain. Generalized vector Riccati equations
(5) apply to the spectral impedances for each pair of horizon-
tal wave numbers &, 1. As these equations represent general
impedance relations in a 1-D medium, they comprise both
the induction and galvanic field modes that can arise in a
conductor. While in the isotropic case, these two modes can
be separated; for anisotropic models they are always cou-
pled inside the medium.

A particular type of source field can be specified either
by defining the surface fields or currents in (3), or by intro-
ducing artificial field jumps inside the medium if an internal
source is considered (see, e.g., Yin and Weidelt, 1999, for a
DC dipole field). Particularly, a purely inductive excitation
of a 1-D layered medium leads to a strictly linear polariza-
tion of the surface magnetic field for any horizontal wave
number pair. Consequently, the full spectral impedance ten-
sor can never be completely recovered from purely induc-
tion data. Only two impedance elements, z,, and z,, (10),
can be uniquely found in this case. For anisotropic models,
these inductive spectral impedances are, however, affected
by galvanic fields arising due to the mode coupling inside
the medium. Hence, contrary to the plane wave model, cer-
tain sensitivity to the vertical conductivity and dipping ani-
sotropy within the section develops if a non-uniform source
field is involved. For large-scale field non-uniformity and
more or less realistic Earth conductivity anisotropies, how-
ever, this dependence seems to be rather weak, and the az-
imuthal anisotropy is still the most significant factor affect-
ing the spectral impedances.

For anisotropic models with a non-uniform inductive
source field, the equivalency of the MT and geomagnetic
spectral transfer functions, well-known in applying to iso-
tropic media (Berdichevsky and Zhdanov, 1984), is violated.
The geomagnetic spectral transfer functions, as well as ra-
tios of the internal and external magnetic fields, allow us to
restore the spectral impedance z,,, whereas telluric informa-
tion is necessarily required for z,,. This conclusion readily
extends to spherical conductors for application in geomag-
netic depth sounding. The Riccati equation approach can
be simply generalized to the spherical conductors, too, as
shown by Eckhardt (1963) for the isotropic earth.

Finally, an analysis of the 1-D Riccati equations for non-
uniform source fields seems to indicate a way of extending
the Riccati equation approach to multi-dimensional struc-
tures. For the particular case of a 2-D model, the necessity of
also considering the vertical impedances, or vertical admit-
tances, for a complete characterization of the 2-D medium
in terms of MT transfer functions, (12) and (13), follows
immediately from the analogy with the 1-D case (11).
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