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In this article we analyze the sensitivity of a geoelectrical modeling technique to image 2D shallow structures.
Firstly, we extend a previously developed 2D method based on Rayleigh-Fourier expansions, in order to allow
arbitrary locations for the electrodes and also 3D earth models. This method is an alternative to finite element
and finite difference techniques and is especially suitable to model multilayered structures, with smooth irregular
boundaries. Then, for simple 2D models we build up two synthetic pseudosections, one for electrode deployments
parallel to a profile perpendicular to the strike, and other for deployments perpendicular to it. We analyze the
advantages in using both pseudosections to model these structures. We also compare geoelectric results with the
corresponding audiomagnetotelluric transverse electric and transverse magnetic responses. Finally, we perform a
geoelectrical survey to image a shallow buried structure and show the goodness of the model fit obtained considering
both pseudosections. For the examples studied here, we conclude that considering both pseudosections leads to
a more accurate description of the structures. When a 2D anomaly is present, its effect on the perpendicular
component is more focused, both in width and depth, than in the parallel component. Hence the perpendicular
component helps to constrain the localization of the inhomogeneity. In addition, we find similarities between the
geoelectric parallel and perpendicular responses and the corresponding audiomagnetotelluric transverse magnetic
and transverse electric results, respectively. When inverting audiomagnetotelluric data using 2D codes, better
resolution in the electrical imaging is obtained when both modes are considered; then it is expected that 2D imaging
of geoelectric data including both arrays should lead to an optimization of the inversion process. Even more, if
results of these inversions could be used in correlation with AMT results, it is clear that this kind of joint inversion
should contribute to remove uncertainties allowing an improvement in the description of the actual structures.

1. Introduction
Archaeological excavation strategies have changed dra-

matically in the last decade. The application of non-invasive
methods are becoming increasingly important to character-
ize archaeological sites. In many cases, cultural resource
management and site conservation prevent excavation in
large areas, and remote sensing methods must therefore be
employed to obtain subsurface information.

Among the different geophysical methods, electrical re-
sistivity surveys are specially useful for mapping the areal
extent of buried foundations. Many studies have been done
in this field in different parts of the world (Noel and Xu,
1991), but up to now these techniques have not been applied
in Argentina for archaeological exploration. Then, as a first
step to the characterization of an archaeological site in South
Argentina, we focused our study to analyze the sensitivity of
two-dimensional (2D) geoelectrical modeling techniques to
image shallow structures, usually resistive with respect to
the surrounding medium.

Both forward and inversion DC methods have been im-
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plemented, and applied to different array configurations
(Queralt et al., 1991; Park and Van, 1991; Oldenburg et
al., 1993; Oldenburg and Li, 1994; Zhang et al., 1995;
Spitzer, 1995; Loke and Barker, 1996a, b). At present, the
usual practice to map shallow structures is to perform a sur-
vey along a profile assumed to be perpendicular to a sus-
pected strike axis, with electrodes deployed along this direc-
tion, and in many cases using multielectrode arrays. Nev-
ertheless, if the structure is 2D, valuable information can
be added if deployments perpendicular to the profile are in-
cluded, particularly for archaeological prospecting, where
the main objective is the delineation of buried structures
rather than the electrical characterization of the media. Vari-
ous authors calculated the theoretical responses of 2D struc-
tures, both for parallel and perpendicular deployments, and
found that for arrays perpendicular to the profile, the re-
sponses are sensitive to lateral variations only when they are
close or just over the inhomogeneities (Van Nostrand and
Cook, 1955; Mundry, 1984; Schulz and Tezkan, 1988; Pous
et al., 1996). Hence, these arrays can constrain the localiza-
tion of the structures.

In a previous paper, we presented a method for 2D resis-
tivity modeling as an alternative to finite element (FE) and
finite difference (FD) techniques (Osella et al., 2000). This
method is based on a Rayleigh-Fourier approach, and is es-
pecially adequate to model layered structures with smooth
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irregular boundaries, which can be difficult to model with
FE or FD codes, because of the complexity of the grids re-
quired to consider this particular kind of models. In that
work, we only considered the case of parallel deployments.
The validity of the method was verified by comparing the
results with the ones obtained using a FE technique by Pous
et al. (1996), and its ability to model actual data was tested
by applying it to image an alluvial aquifer in Sierras Pam-
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Fig. 1. Geoelectrical model to simulate a shallow 2D resistive structure.
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Fig. 2. Pseudosections corresponding to deployments (a) parallel (ρapp//) and (b) perpendicular (ρapp⊥) to the profile. The profile is assumed to be
perpendicular to the strike direction.

peanas region (Osella et al., 1999). In the present work, we
modify this method to allow electrodes to be located in any
position, and to include the case of three-dimensional (3D)
structures. For 2D structures, we can obtain two apparent
resistivity curves at each site along a profile perpendicular
to the strike, one for electrodes deployed parallel to the pro-
file (the usual way) and the other perpendicular to it. With
these results, we can build up two pseudosections, in a simi-
lar way as is done for the transverse electric (TE) and trans-
verse magnetic (TM) modes in magnetotelluric (MT) and
audiomagnetotelluric (AMT) data.

Using this formulation we numerically simulate the re-
sponse of simple 2D models. First we consider two shal-
low structures, a resistive body embedded in a conductive
medium and a conductor in a resistive host, and we ana-
lyze the advantages in using both parallel and perpendicu-
lar pseudosections to model the structure from the synthetic
data. Then, we consider two deeper bodies (again, one re-
sistive and other conductive) and compare their geoelectric
results with the corresponding AMT responses. Finally, we
carried out a geoelectrical survey to image a known shallow
buried structure, in order to show the goodness of the model
fit obtained using this methodology.
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Fig. 3. 1D model responses of apparent resistivity corresponding to the
center of the structure. The ρapp// component was fitted by a two-layer
model while the ρapp⊥ component by a three-layer model. In both cases,
layer 2 represents the resistive body and layers 1 and 3 the host medium.
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Fig. 4. Pseudosections corresponding to deployments (a) parallel (ρapp//) and (b) perpendicular (ρapp⊥) to the profile, for the structure shown in Fig. 1,
but with ρ1 = ρ3 = 500 �m and ρ2 = 10 �m. The profile is assumed to be perpendicular to the strike direction.

2. Theoretical Modeling
In a previous paper, Osella et al. (2000) presented the

method applied to 2D structures with a fixed electrode con-
figuration, deployed along the direction of the profile. In
the present work this formulation is extended to describe the
electrical response for any array configuration and 3D struc-
tures. The medium is assumed to be N -layered, with bound-
aries given by functions z = S(n)(x, y), 0 ≤ n ≤ N − 1.
Each layer, n, is isotropic and homogeneous, with electrical
conductivity σ (n) and resistivity ρ(n). For n = 0, σ (0) → 0;
the free surface, given by n = 0, can include topography, al-
though in this case it is assumed to be horizontal (S(0) = 0,
∀(x, y)). Current and potential electrodes, A and B and C
and D, respectively, are located on this surface, at (xA, yA),
(xB, yB), (xC , yC) and (xD, yD), respectively.

Inside each layer, Laplace‘s equation holds:

∇2�(n)(x, y, z) = 0; (1)

and the current density, �J (n), satisfies:

�J (n) = −σ (n) �∇�(n). (2)

In order to apply the Rayleigh-Fourier expansions, the
boundaries are assumed to be periodic both in x and y co-
ordinates, with periodicity λ. The area of application is
limited to a short region (compared to λ) and centered at
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(x, y) = (λ/4, λ/4). For simplicity and without loosing
generality, z = S(n)(x, y) is taken an even function of x and
y, for all n.

For n = 1, the source terms of the potential are given by:

�
(1)
S (x, y, z) = I

2πσ (1)

×
{

1

[(x − xA)2 + (y − yA)2 + z2]1/2

− 1

[(x − xB)2 + (y − yB)2 + z2]1/2

}

+ ϕ(x, y, z), (3)

with I the injected current and ϕ the potential of the sources
located out of the area of application. The complete expre-
sion for the potential for n = 1 is:

�(1)(x, y, z) = �
(1)
S (x, y, z) +

∑

l,m≥0

[
A(1)
lm exp(klmz)

+B(1)
lm exp(−klmz)

]

× cos(kl x) cos(km y), (4)

with kl = 2πl/λ, km = 2πm/λ and klm = [k2
lm + k2

lm]1/2.
For the following layers (n ≥ 2), the potential is written as:

�(n)(x, y, z) =
∑

l,m≥0

[
A(n)
lm exp(klmz) + B(n)

lm exp(−klmz)
]

× cos(kl x) cos(km y). (5)

The application of boundary conditions and subsequent pro-
jection onto sine and cosine basis lead to the following ex-
pressions (Appendix):

∑

l,m

[
2A(1)

lm El ′m ′lm + VlmDl ′m ′lm

−A(2)
lm F (1)

l ′m ′lm − B(2)
lm G(1)

l ′m ′lm

]
= 0, (6)

∑

l,m

[
2σ (1)A(1)

lm Ol ′m ′lm + σ (1)WlmDl ′m ′lm/λ

−σ (2)A(2)
lm P (1)

l ′m ′lm − σ (2)B(2)
lm Q(1)

l ′m ′lm

]
= 0, (7)

∑

l,m

[
(A( j)

lm − A( j+1)

lm )F ( j)
l ′m ′lm

+(B( j)
lm − B( j+1)

lm )G( j)
l ′m ′lm

]
= 0, (8)

∑

l,m

[
(σ ( j)A( j)

lm − σ ( j+1)A( j+1)

lm )P ( j)
l ′m ′lm

+(σ ( j)B( j)
lm − σ ( j+1)B( j+1)

lm )Q( j)
l ′m ′lm

]
= 0, (9)

A(1)
lm = B(1)

lm . (10)

A(N )
lm = 0, ∀l,m, (11)

where

Ol ′m ′lm = klmHl ′m ′lm + kl Il ′m ′lm + km Jl ′m ′lm, (12)

P ( j)
l ′m ′lm = klm F

( j)
l ′m ′lm + kl K

( j)
l ′m ′lm + kmM

( j)
l ′m ′lm, (13)

Q( j)
l ′m ′lm = −klmG

( j)
l ′m ′lm + kl L

( j)
l ′m ′lm + kmN

( j)
l ′m ′lm, (14)

Dl ′m ′lm =
∫ λ/2

−λ/2

∫ λ/2

−λ/2
cos(kl x) cos(km y) cos(kl ′x)

× cos(km ′ y)dxdy = λ2δll ′δmm ′

(2 − δl0)(2 − δm0)
, (15)

El ′m ′lm =
∫ λ/2

−λ/2

∫ λ/2

−λ/2
ch(klm S

(1)(x, y)) cos(kl x) cos(km y)

× cos(kl ′x) cos(km ′ y)dxdy, (16)

F ( j)
l ′m ′lm =

∫ λ/2

−λ/2

∫ λ/2

−λ/2
exp(klm S

( j)(x, y)) cos(kl x)

× cos(km y) cos(kl ′x) cos(km ′ y)dxdy, (17)

G( j)
l ′m ′lm =

∫ λ/2

−λ/2

∫ λ/2

−λ/2
exp(−klm S

( j)(x, y)) cos(kl x)

× cos(km y) cos(kl ′x) cos(km ′ y)dxdy, (18)

Hl ′m ′lm =
∫ λ/2

−λ/2

∫ λ/2

−λ/2
sh(klm S

(1)(x, y)) cos(kl x) cos(km y)

× cos(kl ′x) cos(km ′ y)dxdy, (19)

Il ′m ′lm =
∫ λ/2

−λ/2

∫ λ/2

−λ/2

∂S(1)(x, y)

∂x
ch(klm S

(1)(x, y))

× sin(kl x) cos(km y) cos(kl ′x) cos(km ′ y)dxdy,

(20)
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Fig. 5. Electrical models to simulate a deep 2D (a) resistive and (b)
conductive body.
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Fig. 6. Pseudosections of the electrical response due to the model shown in Fig. 5(a). (a) The geoelectrical responses corresponding to the parallel (ρapp//)
and perpendicular (ρapp⊥) deployments. (b) AMT responses for transverse magnetic (ρappT M ) and transverse electric (ρappT E ) modes.

Jl ′m ′lm =
∫ λ/2

−λ/2

∫ λ/2

−λ/2

∂S(1)(x, y)

∂y
ch(klm S

(1)(x, y))

× cos(kl x) sin(km y) cos(kl ′x) cos(km ′ y)dxdy,

(21)

K ( j)
l ′m ′lm =

∫ λ/2

−λ/2

∫ λ/2

−λ/2

∂S( j)(x, y)

∂x
exp(klm S

( j)(x, y))

× sin(kl x) cos(km y) cos(kl ′x) cos(km ′ y)dxdy,

(22)

L( j)
l ′m ′lm =

∫ λ/2

−λ/2

∫ λ/2

−λ/2

∂S( j)(x, y)

∂x
exp(−klm S

( j)(x, y))

× sin(kl x) cos(km y) cos(kl ′x) cos(km ′ y)dxdy,

(23)

M ( j)
l ′m ′lm =

∫ λ/2

−λ/2

∫ λ/2

−λ/2

∂S( j)(x, y)

∂y
exp(klm S

( j)(x, y))

× cos(kl x) sin(km y) cos(kl ′x) cos(km ′ y)dxdy,

(24)

N ( j)
l ′m ′lm =

∫ λ/2

−λ/2

∫ λ/2

−λ/2

∂S( j)(x, y)

∂y
exp(−klm S

( j)(x, y))

× cos(kl x) sin(km y) cos(kl ′x) cos(km ′ y)dxdy,

(25)

Vlm = (2 − δl0)(2 − δm0)

λ2

×
∫ λ/2

−λ/2

∫ λ/2

−λ/2
�

(1)
F (x, y, S(1)(x, y))

× cos(kl x) cos(km y)dxdy, (26)
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Wlm = (2 − δl0)(2 − δm0)

λ

×
∫ λ/2

−λ/2

∫ λ/2

−λ/2

[
∂�

(1)
F

∂z
(x, y, S(1)(x, y))

− ∂S(1)(x, y)

∂x

∂�
(1)
F

∂x
(x, y, S(1)(x, y))

−∂S(1)(x, y)

∂y

∂�
(1)
F

∂y
(x, y, S(1)(x, y))

]

× cos(kl x) cos(km y)dxdy. (27)

Up to this point no assumptions have been done on the
dimensionality of the structure, so it can be applied also
to 3D modeling. But if a symmetry axis exists, Eqs. (15)
to (27) are largely simplified. Under this assumption, for
S( j) = S( j)(x), ∀ j , J ( j)

l ′m ′lm = M ( j)
l ′m ′lm = N ( j)

l ′m ′lm = 0, while

the rest of the expressions include only simple integrals.
The unknowns in the system of equations given by (6)–(9)

are the Fourier coefficients A( j)
lm and B( j)

lm . Rayleigh’s scat-
tering theory actually constitutes an approximation because
some multiple reflections are not accounted. Nevertheless,
when this approximation is valid, the series are convergent
and these coefficients are negligible for l,m > L . That is to
say that for a given j , the number of unknowns to be calcu-
lated from Eqs. (6) to (9) is reduced to 2(L + 1)2. Taking
into account (10) and (11), it is clear that the number of in-
dependent equations to be solved from (6)–(9) is (L + 1)2,
for j = 1, N , and 2(L +1)2, for j �= 1, N . For l ′ = m ′ = 0,
Eqs. (7) and (9) do not depend either on A( j)

00 or B( j)
00 , hence

we write:

2σ (1)A(1)

00 + σ (1)W00 − σ (2)A(2)

00 + σ (2)B(2)

00 = 0, (28)
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(σ ( j)A( j)
00 − σ ( j+1)A( j+1)

00 )

− (σ ( j)B( j)
00 − σ ( j+1)B( j+1)

00 ) = 0, (29)

to obtain an independent system. Equations (6)–(9) and
(28)–(29) can be expressed in matricial form; solving this
system together with Eqs. (10) and (11) for A(1), the follow-
ing is obtained:

A(1) = −AV · V + AW · W, (30)

where

AV = 1

2

[

E − σ (1)

σ (2)
S(1) · (T(1))−1 · O

]−1

· D, (31)

AW = 1

2λ

[
σ (2)

σ (1)
T(1) · (S(1))−1 · E − O

]−1

· D, (32)

S( j) = F( j) · R( j+1) + G( j), (33)

T( j) = P( j) · R( j+1) + Q( j). (34)

R( j) =
[

(S( j))−1 · F( j) − σ ( j)

σ ( j+1)
(T( j))−1 · P( j)

]−1

·
[

−(S( j))−1 · G( j) + σ ( j)

σ ( j+1)
(T( j))−1 · Q( j)

]

, (35)

R(N ) = 0, (36)

From Eq. (30) the Fourier coefficients, A(1)
lm for the poten-

tial �(1)(x, y, z), corresponding to the shallow layer
(Eq. (4)), can be calculated. It can be noted that in Eq. (30)
the first factors, Av and Aw, depend only on the conduc-
tivities and geometries of the N interfaces. In contrast, the
second factors, V and W , depend on the source distribution
and the characteristics of the first layer. In this sense, AV

and AW can be interpreted as the effective response of the
structure to a given source distribution.

A self-consistency criterion for the determination of the
validity of the Rayleigh approach in each particular case has
been proposed in the work by Osella et al. (2000) that is also
valid for this generalized method. As Rayleigh solutions are
an approximation, there are residual discontinuities of � and
the normal component of �J at layer interfaces. When the
approximation is valid, the root mean square value of these
residuals can be reduced to a level below a few per cent,
by increasing the number of scattering orders, L . This is
because the series are convergent. When the approximation
is not valid, the residual discontinuities remain large, and the
series exhibit an oscillatory behavior or converge for small
values of L and then diverge as L increases.

3. Numerical Simulation
We propose the 2D model shown in Fig. 1 to simulate a

buried resistive structure. We calculate the theoretical re-
sponses along a profile perpendicular to the strike in the
Schlumberger configuration. At each site along the pro-
file, two apparent resistivity curves are calculated, ρapp//,
with deployments parallel to the profile and ρapp⊥, with
electrodes deployed perpendicular to the profile, respec-
tively. The resulting pseudosections for ρapp//, (Fig. 2(a))
and ρapp⊥, (Fig. 2(b)), show different behaviors.

At sites close to the center of the structure ρapp⊥ ap-
proaches the half space resistivity 10 �m, as AB/2 in-
creases, while ρapp// does not recover this value even for
apertures AB/2 larger than several times the characteristic
dimension of the body. These results can also be seen from
the apparent resistivity curves, obtained at the center of the
structure for both configurations in Fig. 3. If a 1D model-
ing is performed, the ρapp// curve can be fit with a two-layer
model, while the ρapp⊥ component fits a three-layer model.
The location of the resistive layer is close to the actual posi-
tion of the structure, although the resistivity, as expected, is
underestimated.

The behavior far from the structure is also different for
both cases. The effect of the resistive body is detected on
the parallel configuration at distances three to four times its
characteristic width. On the other hand, the ρapp⊥ compo-
nent shows a localized distortion both in width and depth,
and rapidly recovers the half-space behavior. This result im-
plies that the ρapp⊥ component should be used for imaging
the embedding medium, because ρapp// gives a distorted re-
sult even far from the structure.

We now consider the same structure as in Fig. 1, but
assuming a body of ρ = 10 �m embedded in a medium
of ρ = 500 �m. The response, shown in Fig. 4, presents
similar features to that of Fig. 2. It is interesting to note that
in this case the effect of the conducting body is detected,
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Fig. 8. a) Scheme of the structure used to test our method. This structure
is a part of a wall of an ancient fort, which was detected from prelimi-
nary excavations made in a small zone of an archaeological site in South
Argentina. b) Plan view showing the studied profile. Parallel and per-
pendicular measurements were carried out at each sounding site using
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especially for the ρapp// curve, at larger values of AB.
Next we analyze the behavior of two deeper structures: a

resistive body in a conductive medium shown in Fig. 5(a),
and a conductive body embedded in a resistive medium
shown in Fig. 5(b). The AMT responses were also calcu-
lated for these models. The AMT apparent resistivities cor-
responding to the T M and T E modes, ρT M and ρT E respec-
tively, were obtained applying a Rayleigh-Fourier method
previously implemented by Osella and Martinelli (1993). In
Fig. 6, the results are shown for the case of the resistive
body, while in Fig. 7 the results are shown for the conductive
one.

Similar characteristics are observed between the geoelec-
trical responses corresponding to the shallow (Fig. 2) and
to the deep (Fig. 6(a)) resistive body. Again, far from the
structure, the ρapp// component is more sensitive to the 2D
body, while the ρapp⊥ component more rapidly recovers the
1D response. Close to the center of the body, ρapp⊥ gives
a constrain for the depth of the lower boundary of the tar-
get. Similarities with the behavior of ρT M and ρT E can be
clearly observed by comparison to Fig. 6(b). The T M re-
sistivity is more distorted close to the center of the anomaly,
but more rapidly recovers the host response. The T E re-
sistivity gives a mean approximation of the structure. The
anomaly in the response is wider than the corresponding to
the T M mode, and the lower boundary of the body is not
clearly constrained.
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Fig. 10. Model of the ancient wall obtained after applying a trial and error,
least squares method to fit the data.

If we consider the structure shown in Fig. 5(b), a conduc-
tive body embedded in a resistive medium, both the geoelec-
trical and AMT responses follow a similar pattern, as can
be observed in Figs. 7(a) and (b), respectively. The most
relevant feature is that large AB/2 distances are needed to
detect the effect of the conducting structure on the geoelec-
trical responses compared to a resistive structure. For the
conductive target at depth, the required electrode spacings
should be larger than a kilometer. Hence, this method is
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Fig. 11. Measured apparent resistivity curves ρapp// and ρapp⊥ obtained from parallel and perpendicular deployments, respectively, at some representative
sites, together with the corresponding model responses. The misfit of the model fit is approximately 20%.

more appropriate to image resistive rather than conductive
structures, because such distances make the application im-
practical.

4. Application
Recently, preliminary excavations have been made in a

small zone of an archaeological site in South Argentina.
From these excavations, a part of a wall of an ancient fort
was detected, buried close to the surface (almost outcrop-
ping). A scheme of the structure is shown in Fig. 8(a).
We used it as a target to test our method. We designed a
nine sounding profile using the Schlumberger configuration,
with parallel and perpendicular arrays deployed at each site
(Fig. 8(b)). A HP E3612A DC power supply was used to
inject current and measurements were collected using a data
acquisition system that allows readings with a precision of
0.33 μV. The electrodes were stainless-steel rods 25 cm
long and 7 mm diameters, in order to guarantee the point-
source assumption, given the minimum separation between
potential electrodes was about 3 cm. Pseudosections for the
ρapp// and ρapp⊥ components are shown in Fig. 9. It can
be seen that the location of the anomalous body is clearly
detected.
We apply a trial and error method to fit the data. As

a starting model, we proposed a buried 2D structure with
smooth contours, similar to the one shown in Fig. 1, embed-
ded in a two layer medium. Values of the parameters that
define the medium of 30 �m and 50 �m for the resistivities
of the first and second layers, respectively, were obtained
from a 1D inversion of the ρapp⊥ responses away from the
anomalous zone. We then varied the geometrical parameters
applying a least square method. The best result was obtained
for the model shown in Fig. 10, which is in close agreement

with the actual structure. The measured apparent resistivity
curves together with the model responses, at some represen-
tative sites, are shown in Fig. 11. The misfit of the model
fit is approximately 20%. If the fit is performed using only
the parallel deployment, the results are slightly sensitive to
the thickness of the body, and this parameter could not be
estimated.

5. Discussion
During the modeling process, the method showed good

convergence and proved friendly to use for the modeling
of multi-layered structures with smooth boundaries, which
can be difficult to solve applying finite differences or finite
elements codes, due to the complexity of the grids needed to
consider this particular kind of structures.
From the examples studied in the present work, we can

conclude that considering both pseudosections should lead
to a more accurate description of an anomalous zone. When
a 2D anomaly is present, its effect on the perpendicular com-
ponent is more focused, both in width and depth, than in the
parallel component. Then, it is better to use the perpendic-
ular component to model the host medium, because if the
sounding is performed far from a 2D body, it should not be
detected by this component.
It is well known that when inverting MT or AMT data

using 2D codes, better resolution in the electrical imaging
is obtained when both modes are considered. Due to the
similar behavior of the geoelectric and AMT responses, it
is expected that 2D imaging of geoelectric data including
both arrays should lead to an optimization of the inversion
process.
In addition, it is also known that the simultaneous 1D in-

version of DC and AMT data improve the electrical descrip-
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tion of the medium (Jupp and Vozoff, 1975; Monteiro Santos
et al., 1997). Hence, results of inversions made including
both configurations could be further used in correlation with
AMT 2D codes; it is clear that this kind of joint inversion
should contribute to remove uncertainties allowing an im-
provement in the description of the actual structures.
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Appendix A.
As it is well known, �J (Jn) = 0 at S(0), except at

the injection points. The application of this condition to
Eq. (4) yields to expression (10). In addition, �(n) and Jn
are continuous at each boundary S( j), for 1 ≤ j ≤ N − 1.
At S(1) gives:

∑

l,m

[
2A(1)

lm ch(klm S
(1)(x, y)) + Vlm

]
cos(kl x) cos(km y)

=
∑

l,m

[
A(2)
lm exp(klm S

(1)(x, y))

+B(2)
lm exp(−klm S

(1)(x, y))
]

cos(kl x) cos(km y),

(A.1)
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(1)(x, y))
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× sin(kl x) cos(km y)

+
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2A(1)
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∂S(1)(x, y)
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}

= σ (2)
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(A.2)

In the first equation, Vlm is the Fourier coefficient corre-
sponding to the source potential (�(1)

S ) evaluated on
S(1)(x, y); it has been defined in Eq. (25), while coefficient
Wlm has been defined in Eq. (27).

In a similar way, from the continuity of �(n) and Jn at

S( j), 2 ≤ j ≤ (N−1), the following equations are obtained:

∑
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(A.3)
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(A.4)

Projecting these equations onto sine and cosine basis finally
lead to expressions (6)–(9). On the other hand, as the poten-
tial should not diverge when z → ∞, Eq. (11) is obtained.
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