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Determination of temporal distribution of moment release using long period
body wave data: the case of the 2003 Tokachi-Oki earthquake
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We performed waveform inversion of long period body wave data to investigate whether it is possible to
determine the moment release distribution in time and space, using the 2003 Tokachi-Oki earthquake as an example.
Our results show that it is difficult to determine the precise spatial distribution, and therefore we focused on
determination of the temporal distribution. We allowed changes of the source mechanism during rupture in the
inversion scheme. The temporal change of the scalar moment of the subevents was consistent with the moment
rate function inferred from other studies. The source mechanisms of the subevents were primarily reverse faults,
matching preliminary reports of this earthquake. No significant change of the source mechanism during the rupture
were inferred. Our results suggest that the rupture process of this earthquake was rather simple.
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1. Introduction
More than twenty years have passed since the Harvard

University group started determination of CMT solutions on
a routine basis (Dziewonski and Woodhouse, 1983). Con-
sidering the expansion of broadband seismic networks in
the last two decades, it may be possible to routinely deter-
mine a larger number of earthquake source parameters than
nine parameters of CMT (five for the moment tensor un-
der the condition that its trace is zero, three for the cen-
troid location and the centroid time). As such an attempt,
we performed waveform inversion of long period body wave
data to investigate whether it is possible to determine space-
time distribution of the moment release of the September 25,
2003 Tokachi-Oki earthquake (origin time: 19:50:06 UTC,
September 26, 04:50:06 local time at epicenter; location:
41.78◦N 143.86◦E; depth: 27 km; Mw: 8.1 after USGS).

2. Analysis
We assumed the source region of the 2003 Tokachi-Oki

earthquake based on the available information before we
started our analysis with the hypocenter, magnitude, and
rupture models (i.e., Yagi, 2003). Figure 1(a) shows the
assumed source region in this study. We put the 5 × 5
grids horizontally (Fig. 1(a)), and 3 grids vertically at depths
of 20, 30 and 40 km. Assuming that the rupture process
time is 60 seconds, we put 5 grids in time with the constant
interval (i.e., the time interval between the adjacent grids is
15 seconds). We calculated the Green’s function for each
moment tensor component for each pair of the space and
time grids using the Direct Solution Method (Cummins et
al., 1994; Takeuchi and Geller, 1996). We used PREM
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(Dziewonski and Anderson, 1981) as an earth model for
which the Green’s functions were computed.
We retrieved long period channel data from IRIS DMC.

The number of seismograms was 69. We did not set the dis-
tance range for data selection. We edited the parts of seis-
mograms between the beginnings of the records and the ar-
rivals of surface waves, calculated the Fourier spectra, cor-
rected the instrumental response, and employed the spectra
in the frequency band between 0.01–0.02 Hz as dataset of
the present study.
First, in order to investigate the resolving power of the

current dataset for space distribution of the moment release,
we performed inversion for moment tensor using the Green’s
function computed for each pair of the space and time grids.
That is, the number of model parameters is five under the
condition that the trace of the moment tensor is zero, and
we performed inversion 375 times (25 horizontal grids ×3
vertical grids ×5 time grids). Figures 1(b) and (c) show
a part of the results obtained using the Green’s function
computed for sources at a depth of 30 km for a time grid 30
seconds after the origin time. We have determined the largest
variance reduction for this depth and time grid. Similar
large variance reductions were obtained for many grids. The
source mechanisms determined for those grids are similar to
each other. This suggests that the resolution of the current
dataset for spatial distribution was poor, and that it is difficult
to obtain a precise spatial distribution. Therefore, we fixed
the centroid location in the following analysis to determine
the temporal distribution of the moment release. Based on
the results shown above together with the rupture model
(Yagi, 2003), we put the centroid on 42◦N, 144◦E.
We assumed that synthetic seismograms are expressed by

summation of the product of the moment tensor component
at each time grid and its corresponding Green’s function and
performed waveform inversion of observed seismograms to
determine the moment tensor at each time grid simultane-
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Fig. 1. (a) The source region assumed in this study. The plus signs denote the horizontal grids. (b) The variance reduction obtained by inversion using the
Green’s functions computed for each grid at a depth of 30 km for a time grid 30 seconds after the origin time. The diameters of circles are proportional
to the variance reduction. The scales are shown in the right-hand side of the figure. (c) The obtained source mechanisms.
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Fig. 2. The temporal distribution of the moment release for the 2003 Tokachi-oki earthquake. The vertical axis shows the scalar moments of subevents.

Fig. 3. The resolution matrix coefficients for Mrr. The diamonds, squares, triangles, and crosses denote the coefficients between 0 sec and 0–90 sec, 30
sec and 0–90 sec, 60 sec and 0–90 sec, 90 sec and 0–90 sec, respectively.

ously. This inverse problem is linear and the temporal change
of the source mechanisms is allowed. In order to determine
the precise temporal distribution, we lengthened the assumed
rupture duration to be 90 seconds, and put 10 grids with the
constant interval (i.e., the time interval between the adjacent
grids is 10 seconds). The number of the unknowns was 50,
since we assumed that the trace of the moment tensor was
zero (5 moment tensor components ×10 time grids). We
adopted the smoothness constraint that enforced the smooth-
ness between the same moment tensor components on the
adjacent time grids. We solved the following equation:

(
GT G + α2S

)
m = GT d (1)

where G is the kernel matrix consisting of the Green’s func-
tions, S is the smoothness matrix, α2 is the weight of the

smoothness constraint, m is the model vector consisting of
moment tensor components of subevents, and d is the data
vector. T denotes the transpose of matrices. We varied the
value of α2 to find a solution that is consistent with the pre-
liminary CMT solution by Hara (2003) in that scalar mo-
ments of subevents are of the same order of the scalar mo-
ment of the CMT solution, and in that the scalar moment
of the sum of subevents are comparable to that of the CMT
solution. We found such consistent solutions for a range of
α2 = 10−6 − 10−7 and those solutions were qualitatively
similar to each other.
Figure 2 shows the solution obtained for α2 = 10−7.

The large moment release was found 20–30 seconds
after the origin time, and the main rupture duration was
about 40 seconds. This characteristics are similar to the
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moment rate function inferred from teleseismic broad-
band P and SH waves (e.g., Yagi, 2003; Yamanaka and
Kikuchi, 2003). The source mechanisms of the subevents
during the first 40 seconds were primarily reverse faults,
which is consistent with preliminary source mecha-
nism solutions of this earthquake such as Harvard CMT
(http://www.seismology.harvard.edu/CMTsearch.html) and
USGS Fast moment tensor solution (http://wwwneic.cr.
usgs.gov/neis/eq depot/2003/eq 030925/neic zdap q.html).
Although the source mechanisms of the subevents at 0 sec
and during 50–90 sec were different from those during
10–40 sec, the absolute values of their estimates were
around 2 times of their standard deviations. Therefore, it is
difficult to conclude that there was a significant change of
source mechanism during the rupture.
Figure 3 illustrates the temporal resolution. Since the co-

efficients of the resolution matrix between the different mo-
ment tensor components are negligible, we showed the coef-
ficients for Mrr. The resolution for the other components was
similar to that for Mrr. The temporal resolution was about 20
sec, and it was possible to detect a change of source mech-
anism if its time scale was around or larger than this resolu-
tion. Therefore, in the present study, no significant change
of the source mechanism whose time scale was around or
larger than 20 sec was inferred. For the time grids of 30 and
60 sec (squares and triangles in Fig. 3), the large negative co-
efficients were obtained at 0 and 90 sec, respectively. These
coefficients were not likely to affect solutions considerably,
because the moment release before and after the assumed
rupture process time was set to zero, and because the scalar
moments of subsvents at the starting and ending time grids
were likely to be relatively small due to the smoothness con-
straint.

3. Discussion
We have shown that it is possible to obtain a reliable tem-

poral distribution of moment release using long period body
wave data. Considering its simple data processing and inver-
sion scheme, it is likely to be easy to apply the technique of
the present study to analyses of large earthquakes on a rou-
tine basis. Although there have been many previous studies

that determined temporal distribution of moment release for
large earthquakes (e.g., Ruff and Miller, 1994; Riedesel et
al., 1986), there are few attempts for routine determination.
The project of the University of Michigan group is an attempt
in this direction (Tanioka and Ruff, 1997). Since the dataset
employed in the present study is different from that used by
University of Michigan group, it may be possible to provide
independent information by application of the technique of
the present study. We plan to start such an attempt as the
next step of the present study.
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