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GPS observation of the first month of postseismic crustal deformation
associated with the 2003 Tokachi-oki earthquake (M4 8.0),
off southeastern Hokkaido, Japan
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To investigate the postseismic crustal deformation associated with the Tokachi-oki earthquake (M4 = 8.0) of
26 September 2003 in Japan Standard Time (JST), off southeastern Hokkaido, Japan, we newly established thirty
GPS sites just after the mainshock in the eastern part of Hokkaido. Rapid data analysis for one month after the
mainshock clearly indicated postseismic displacements only in the horizontal components. Observed maximum
horizontal displacement was 6.6 cm from 28 September to 24 October, 2003. Absence of the vertical suggests that
afterslip occurred in and around the coseismic fault rather than at downdip extension. Time series of coordinates
are characterized by logarithmic decay functions with 4—11 days relaxation times. This suggests that postseismic
deformation was due to afterslip on the fault following the large earthquake.
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1. Introduction

In the southwestern Kuril trench, off eastern Hokkaido,
large earthquakes have been recurring due to the subduction
of the Pacific Plate at about 8.3 cm/yr (DeMets et al., 1994).
The Tokachi-oki earthquake (M4 = 8.0) on 26 September
2003 in JST (on 25 in UTC), ruptured almost the same focal
region as the 1952 Tokachi-oki earthquake (M 4 = 8.2)
(Yamanaka and Kikuchi, 2003). Focal mechanism solutions
of these earthquakes indicated typical shallow dipping thrust
faulting between the subducting Pacific and overriding plates
(e.g. Yamanaka and Kikuchi, 2003).

Interseismic subsidence had been observed in the south-
eastern part of Hokkaido from tide gauges (e.g. Katsumata
et al., 2002), leveling (e.g. Geographical Survey Institute
of Japan (GSI), 2002), and recent continuous GPS observa-
tions (e.g. Aoki and Scholz, 2003). Coseismic subsidences
associated with past interplate events (1952 Tokachi-Oki
(Mypya = 8.2), 1973 Nemuro-Hanto-Oki (M 4 = 7.4))
have also been reported (Shimazaki, 1974; Kasahara, 1975;
Kasahara and Kato, 1981). These observations indicate that
only subsidence takes place in this region. Recently, Heki
(2004) proposed an idea that the continuous subsidence ob-
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served in northeastern Japan is due to the deep basal subduc-
tion erosion.

On the other hand, sediment analysis including tsunami
deposits from lagoons along the Pacific coast in east-
ern Hokkaido revealed the occurrence of rapid postseis-
mic uplifts (Sawai, 2001; Sawai et al., 2002; Sawai,
2002). These events are hypothesized to occur together with
the “multi-segment” earthquakes which generated unusual
mega-tsumami (Hirakawa, 2000; Nanayama et al., 2003).
These visible ground uplifts requested the sizable slips at the
downdip extension of the seismogenic part, where we believe
that plate interface is decoupled.

These studies showed that there are two characteristics
postseismic deformation types in the subduction earthquakes
series in eastern Hokkaido. It is therefore very important to
investigate the mode of postseismic deformation associated
with the 2003 Tokachi-oki earthquake.

Recent continuous GPS observations have revealed re-
markable postseismic crustal deformations following large
earthquakes with high precision in spatiotemporal domain
(e.g. Nakano and Hirahara, 1997; Heki et al., 1997; Mel-
bourne et al., 2002). Some of those showed that additional
moment released by the afterslip is comparative to the main
shock. This suggests that continuous GPS observations for
postseismic crustal deformation are important to reveal the
whole picture of an earthquake.

371



378 H. TAKAHASHI et al.: POSTSEISMIC DEFORMATION OF THE TOKACHI-OKI EARTHQUAKE
= I - '
\\/ 1 0 50. 100 s w0
. . . [ ] . s | » "ii'\h
{ = ,
45N - No! erican plate% “ (] . 4 N o
' / L A & & " om oum A“_"-“' 43N
. 'a R ] u A7
/5\’\/‘. Hokkaido - -7 . T | NSRO
- A A
i’ N\
~ W m m s TRFPS
] 8 % M\. m
L I L7 s -
40N 5 \ - n, i 26 September 2003
7T0'ho 7 mB-SYPS M8.0 42N
/_; Pacific plate ERM ® *‘_x
& ( M This study
40Q49"f(Fixed site) A GS|
140E 145E 142E 143E 144E 145E
Fig. 1. Tectonic setting and the distribution of GPS sites newly established by JUNCO (Japan UNiversity GPS COnsortium) (black squares), and the

nationwide continuous GPS network (GEONET) operated by the Geographical Survey Institute of Japan (black triangles). We also show the fixed site
in this study (940049). Star indicates the epicenter of the 2003 Tokachi-oki earthquake and mechanism solution taken from Yamanaka and Kikuchi

(2003). Broken lines indicate the plate boundary.

Here, we report the preliminary results of a new GPS net-
work near the focal region of the 2003 Tokachi-oki earth-
quake, established by the Japanese UNiversity COnsor-
tium of GPS research (JUNCO) to monitor and investigate
the postseismic deformation of the 2003 Tokachi-oki earth-
quake, especially check whether there is postseismic slip at
the downdip extension of the seismogenic part.

2. GPS Observation and Data Analysis

The new GPS sites were established immediately after the
occurrence of the earthquake. Figure 1 shows the distribution
of thirty GPS sites newly deployed by JUNCO together with
the nationwide continuous GPS network (GEONET) oper-
ated by the GSI. The relatively large GPS network was de-
signed to monitor the afterslips not only near the focal region
of the mainshock but its along-trench and/or downdip exten-
sions. The size of aftershock region, that is about 160 x 160
km (Takahashi et al., 2004), implied that the average inter-
site distance of GEONET (25-35 km) was insufficient for
afterslip investigation. Our GPS sites were distributed to
fill the gap of GEONET sites especially near the focal area
(Fig. 1). GPS antennas were fixed on the roof tops of school
and local government reinforced-concrete buildings using
buried stainless bolts and/or antenna attachments. We used
dual frequency GPS receivers recording carrier phases at ev-
ery 30 seconds. Observations continued at five sites, KMUS,
SYPS, RFPS, OTCM and NSRO, until 29 October 2003.

In this preliminary report, we analyse GPS data obtained
from these five sites. The data cover about a month after the
mainshock. The GPS data were processed using the Bernese
GPS Software Version 4.2 (Hugentobler et al., 2001) with
International GPS Service for Geodymamics (IGS) precise
ephemeris and earth orientation parameters. The station co-
ordinates and tropospheric parameters were estimated daily
and every 3 hours, respectively. We selected the station
940049 (Murakami, Niigata Prefecture, Japan; Fig. 1) oper-

ated by GSI, sufficiently far from the focal region, as the ref-
erence station in the analysis. The coordinates of the station
940049 were collocated with the YSSK (Yuzhno-Sakhalinsk,
Russia; Fig. 1), an IGS station, in the International Terrestrial
Reference Frame 2000 (Altamimi et al., 2002).

The estimated station coordinates of GPS sites could be
affected by the instability of the reference site. To examine
this problem, we analysed the data using a different reference
station, GSI’s 950196 (Asahi, Niigata Prefecture, Japan).
The results of the two different analysis do not indicate any
artificial noise caused by instability of the fixed sites in this
analyzed period. We therefore adopt positions relative to the
station 940049, hereafter.

3. Results and Discussion

Figure 2 shows the daily site coordinate series in horizon-
tal and vertical components at KMUS, SYPS, RFPS, OTCM
and NSRO operated by JUNCO. Clear postseismic displace-
ments were observed at each GPS site in horizontal compo-
nents. The maximum postseismic horizontal displacement of
6.6 cm to N120E direction was observed at SYPS, between
28 September and 24 October, 2003. It can be seen there
was no significant subsidence or uplift signals in the vertical
component.

We can recognize an irregular jump data on 11 and 12
October, 2003, at all the sites. This jump does not disappear
by changing the reference station to 950196. It therefore
indicates that this was not caused by the instability of the
reference station. There were no geodetic signals on the
fused-quartz extensometer records observed at ERM, 15 km
east of the site SYPS (Fig. 1). Hence, this jump would not
be due to real crustal deformation. On the other hand, a
passage of an intense cold front over the Japanese Islands
was observed in this period. Therefore, these apparent site
movements would be due to the excess pass delay of GPS
signals due to large atmospheric gradient (Miyazaki et al.,
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Fig. 3. (a) Theoretical uplift by a hypothetical deep afterslip. Solid and open rectangles illustrate parts of the faults of the assumed afterslip, and the

coseismic rupture from Yamanaka and Kikuchi (2003), respectively. Star indicates the epicenter of the mainshock. (b) A vertical deformation profile
along the line X-X' in Fig. 3(a) computed from a deep afterslip (a solid rectangle in Fig. 3(a)). Thick dotted line indicates the assumed fault. (c) Same
as Fig. 3(b) but from a shallow afterslip shown by an open rectangle in Fig. 3(a).

2003).

If we assume an aseismic slip on the downdip extension
of the mainshock fault, ground uplift should be observed
at all GPS sites. Figure 2 suggests that systematic verti-
cal displacements exceeding 6 cm would be detectable from
our GPS observation because standard deviations of vertical
component were lass than 3 cm. We estimated the theoreti-
cal vertical deformation using a fault model shown in Fig. 3
with Okada’s (1985) formula. The amount of the assumed
aseismic slip on the deeper extension of the mainshock fault
is 1.0 m, which corresponds to the 17% of the maximum
mainshock slip (Yamanaka and Kikuchi, 2003). This af-
terslip predicts 10-20 cm uplift at our GPS sites (Fig. 3(a),
3(b)). This computed model implies that GPS sites in this re-
gion can detect more than 0.6 m aseismic slip on the deeper
fault, because the amount of uplift is proportional to the slip
amount on the fault (Okada, 1985). However, uplift of such
an amount is not observed at any of our GPS sites. We there-
fore conclude that there was little afterslip on the deeper ex-
tension of the mainshock fault until end of October 2003. On
the other hand, an assumption of afterslip on the coseismic
fault predicts half to one-fifth subsidence of uplift caused by
the deeper one (Fig. 3(b)). Absence of detectable system-
atic subsidence at all GPS sites implies that afterslip on the
seismic fault is less than 0.6 m, which corresponds to the
10% of the maximum mainshock slip. Therefore, the large
horizontal displacement without sizable vertical movements
suggests that relatively small afterslip in comparison with
the coseismic one occurred in the shallower part of the plate
boundary.

The postseimic deformation rates seem to change with
time. We tried to estimate the time-dependent relaxation
function for each site. To extract the characteristics of the
deformation, we examined a logarithmic decaying model,

which is commonly used to model afterslips (Scholz, 1990;
Marone et al., 1991). An exponential model, which is often
used to model viscoelastic processes (Scholz, 1990), was
excluded because our observation period is much shorter
than its time constants which often exceed 50 days (Nakano
and Hirahara, 1997; Ergintav et al., 2002). The logarithmic
decay model is expressed as

R(A, 1) =AIn(1 +1¢/7)

where ¢ is the time elapsed after the mainshock, A is the
amplitude of the function, and t is the time constant. Un-
known parameters, A and T were estimated from the length
of the daily horizontal displacement projected onto the di-
rection along which the horizontal signals are the largest for
each GPS site.

Figure 4 shows the best-fit logarithmic functions with their
time constants and the observed data. They show better fits
for all sites. The time constants for these sites were estimated
to be 4.5 to 11.4 days except for the NSRO (t = 22.5 days).
We suppose this rapid decay is one of typical characteristics
of afterslips of large earthquakes (Scholz, 1990).

If the postseismic crustal deformation is the manifestation
of the same afterslip at depth, the time constant should be
the same for all sites. Amplitudes of logarithmic function
estimated by fixing the time constant to 7.7 days, which
corresponds to the SYPS’s value, were (site, amplitude in
cm)=(KMUS, 4.17), (SYPS, 5.56), (RFPS, 2.62), (OTCM,
2.8), (NSRO, 5.8). This implies relatively large amount of
afterslip near the SYPS and NSRO.

4. Conclusion
We successfully established a new network of thirty GPS
sites immediately after the 2003 Tokachi-oki earthquake.
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Fig. 4. Time series of length of the daily horizontal displacement projected
onto the direction along which the horizontal signals are the largest for
each GPS site. Time-constant () for logarithmic functions are also
indicated.

Analysis of the data obtained for a period of one month af-
ter the mainshock clearly indicates large horizontal postseis-
mic crustal deformation in southeastern Hokkaido. Maxi-
mum horizontal displacement one month after the mainshock
reached 6.6 cm at SYPS. Absence of the vertical displace-
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ments suggest there was little significant postseismic slip
on the deeper extension of the mainshock fault, and rela-
tively small afterslip (<10% of the mainshock) on the seis-
mic fault. The coordinate time series are modeled with a
logarithmic function, which agrees with the characteristics
of afterslip of a large earthquake.
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