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A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the
standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this
standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend
on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes,
the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies
individual models for intermediate- and short-term (immediate) forecasts is presented within the framework based
on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase
of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at
the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II
plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of
short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and
some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically
important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified
scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step
for establishing the methodology for forecasting large earthquakes.
Key words: Rational constitutive law, earthquake rupture, physics of rock friction and fracture, inhomogeniety,
physical scaling, physical modeling, a unified scenario for earthquake forecasting.

1. Introduction
Two important properties have to be considered for real-

istic modeling of the earthquake generation process: that is,
inhomogeneity, and physical scaling. The seismogenic layer
and individual faults therein are inherently inhomogeneous.
It is widely recognized that a large earthquake at shallow
crustal depths never occurs alone, but is necessarily accom-
panied by aftershocks, and often preceded by seismic activ-
ity (small to moderate earthquakes) enhanced in a relatively
wide region surrounding the fault during the process leading
up to the event. This is a reflection of the above fact that the
seismogenic layer is inhomogeneous.
If, for instance, an entire earthquake fault were homoge-

neous and very weak, strong motion seismic waves would
not be generated. For strong motion waves to be generated,
the fault itself must be inhomogeneous, and include local ar-
eas (which may be called patches) of high resistance to rup-
ture growth in the fault zone. Indeed, seismological observa-
tions and their analyses (e.g., Kanamori and Stewart, 1978;
Aki, 1979, 1984; Kanamori, 1981; Bouchon, 1997) com-
monly show that individual faults are heterogeneous, and in-
clude what is called “asperities” or “barriers”. The presence
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of “asperities” or “barriers” on a fault is a clear manifestation
that real faults comprise strong portions of high resistance to
rupture growth with the rest of the fault having low (or little)
resistance to rupture growth.
The resistance to rupture growth has a specific physical

meaning in the framework of fracture mechanics, and it is
defined as the shear rupture energy required for the rupture
front to further grow (see Ohnaka, 2000). It has been sug-
gested from laboratory experiments that some of the “asper-
ities” or “barriers” on an earthquake fault are strong enough
to equal the strength of intact rock (Ohnaka, 2003). Such
strong portions of high resistance to rupture growth on a fault
are required for an adequate amount of the elastic strain en-
ergy to accumulate in the elastic medium surrounding the
fault with tectonic loading, as a driving force to bring about
a large earthquake or to radiate strong motion seismic waves.
We can thus conclude that an earthquake rupture at shal-

low crustal depths is shear rupture instability that takes place
on an inhomogeneous fault embedded in the seismogenic
layer, which is also inhomogeneous. Fault inhomogeneity
includes geometric irregularity of the rupture surfaces, which
in turn not only causes stress inhomogeneity but also plays
an important role in scaling scale-dependent physical quan-
tities inherent in the rupture (e.g., Ohnaka and Shen, 1999;
Ohnaka, 2003). More specifically, it has been found with re-
cent laboratory experiments (Ohnaka, 2003) that the funda-
mental cause of the scaling property lies at the characteristic
length scale defined as the predominant wavelength repre-

773



774 M. OHNAKA: EARTHQUAKE CYCLES & PHYSICAL MODELING OF THE PROCESS TO A LARGE EARTHQUAKE

senting geometric irregularity of the rupture surfaces.
Thus, the properties of inhomogeneity and physical scal-

ing are the key to physical modeling of the process leading
up to a large earthquake, and hence they must be incorpo-
rated into its physical model. The purpose of this paper is
first to discuss thoroughly what the rational constitutive law
for earthquake ruptures ought to be from the standpoint of
rock physics on the basis of solid facts observed in the labo-
ratory. We will then present a model of the cyclic process for
a typical, large earthquake. Finally, we will show how con-
sistently the process leading up to a typical, large earthquake
can be modeled in terms of the underlying physics within
the context of the earthquake cycle model, by incorporating
the properties of inhomogeneity and physical scaling. The
models presented here will be significant and useful as a nec-
essary step for establishing the methodology for forecasting
large earthquakes.

2. Constitutive Formulation for Earthquake Rup-
tures

It has been established to date that the shear rupture pro-
cess is governed by the constitutive law. However, it is still
controversial how the constitutive law for earthquake rup-
tures should be formulated. It is therefore critically impor-
tant to discuss closely what it ought to be. I wish to discuss in
this section how the constitutive law for earthquake ruptures
should be formulated from the standpoint of the physics of
rock friction and fracture on the basis of solid evidence ob-
served in the laboratory. The constitutive formulations so far
attempted can be categorized into two different approaches:
the rate-dependent formulation, and the slip-dependent for-
mulation.
One of the simplest attempts to formulate the constitu-

tive law for earthquake ruptures may be to assume that the
shear traction τ is a function of slip rate (or velocity) Ḋ
alone, which is characterized by a velocity-weakening prop-
erty (e.g., Carlson and Langer, 1989; Carlson et al., 1991;
Nakanishi, 1992). This formulation, however, does not lead
to a self-consistent constitutive law (Rice and Ruina, 1983;
Ruina, 1985), because it predicts that the rupture is necessar-
ily unstable since dτ/d Ḋ < 0. This contradicts the common
observation that the shear rupture can proceed stably even in
the purely brittle regime. The formulation also contradicts
the observational fact that the shear traction during the dy-
namic process is not a single-valued function of the slip rate
(Ohnaka et al., 1987, 1997; Ohnaka and Yamashita, 1989).
To resolve these contradictions, Dieterich (1978, 1979, 1981,
1986) and Ruina (1983, 1985) introduced an evolving state
variable which is a measure of the quality of surface contact,
and they proposed a rate- and state-dependent constitutive
law for frictional slip failure.
The rate- and state-dependent constitutive formulation as-

sumes that the slip rate Ḋ and, at least, one evolving state
variable � are independent and fundamental variables, and
that the transient response of the shear traction τ to Ḋ is es-
sentially important. In this formulation, therefore, the role
of Ḋ is emphasized, and τ is expressed as an explicit func-
tion of Ḋ and �. This formulation is based on experimen-
tal data observed at very slow slip speeds less than 1 mm/s
(Dieterich, 1978, 1981), and on their interpretation on those

data. The law can specifically be expressed as (Dieterich,
1986; Okubo, 1989; Linker and Dieterich, 1992):

τ = (μ0 + μ1 − μ2)σ
eff
n (1a)

d�

dt
= 1 − �Ḋ

dc
(1b)

where

μ1 = b ln

(
�Ḋ∗

dc
+ 1

)
(1c)

and

μ2 = a ln

(
Ḋ∗
Ḋ

+ 1

)
. (1d)

In the above equations, σ eff
n represents the effective normal

stress defined as σ eff
n = σn − Pp (σn , normal stress; Pp, pore

fluid pressure), μ0 represents frictional coefficient indepen-
dent of � and Ḋ, μ1 represents the contribution of state vari-
able � to friction, μ2 represents the contribution of slip rate
Ḋ to friction, Ḋ∗ represents the reference slip rate, and a, b
and dc are the constitutive law parameters. The above equa-
tions have been derived by considering the effects of � and
Ḋ alone, under the condition that direct effect of slip dis-
placement D on friction is negligible (∂μ/∂ D ∼= 0), which
may be attained only after an adequate amount of the slip dis-
placement. The assumption that μ0 is constant is justifiable
only under the condition that ∂μ/∂ D = 0. Note, however,
that the direct effect of slip displacement may be more domi-
nant during actual rupture processes than the effects of� and
Ḋ, which will specifically be discussed later in this section.
Using a set of the above equations, Bizzarri et al. (2001),

and Cocco and Bizzarri (2002) performed two-dimensional
numerical simulations of dynamic rupture regime at high slip
speeds. Based on their simulated results, they argued that
“there is no need to assume that friction must become inde-
pendent of slip rate at high speeds to resemble slip weak-
ening” (Cocco and Bizzarri, 2002). However, this argument
seems logically inconsistent, because the effect of high ve-
locity cutoff has been incorporated into Eq. (1d) used in
their simulation. Note that the cutoffs to the rate- and state-
dependencies have been made by including the +1 term in
the argument of the logarithm in Eqs. (1c) and (1d) (Okubo
and Dieterich, 1986; Dieterich, 1986; Okubo, 1989). In par-
ticular, Eq. (1d) is formulated so as for the effect of Ḋ on
friction to saturate at high slip rates, and this saturation (or
high velocity cutoff) is required for agreeing with the facts
observed in the dynamic regime of frictional slip (Okubo
and Dieterich, 1986; Okubo, 1989). Hence, the parameter
Ḋ∗ cannot have an arbitrary value, but has to have a specific
value constrained by the observation. Bizzarri et al. (2001)
concluded in their paper that the rate- and state-dependent
constitutive formulation yields a complete description of the
rupture process. However, their computer-simulated results
are not compared with any observational evidence, and there-
fore it is not clear from their paper how and to what extent
their simulated results quantitatively account for dynamic
regime of rupture processes in the real world. For the physics
of earthquakes to aim for an exact science, I believe it is criti-
cally important to check in quantitative terms how simulated
results agree with the observational evidence.
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From the fact that the effect of Ḋ on frictional sliding sat-
urates at high slip velocities, it follows that the dynamic rup-
ture regime at high slip velocities is independent of Ḋ. This
indicates that Ḋ is not appropriate as an independent vari-
able for the constitutive formulation, at least in the dynamic
regime of high slip velocities. In addition, this particular
formulation does not lead to a unifying constitutive law that
governs both frictional slip failure and the shear fracture of
intact rock, which is a prerequisite for the constitutive for-
mulation for earthquake ruptures (Ohnaka, 2003). Hence,
the rate-dependent formulation cannot be the governing law
for earthquake ruptures that are a mixture of frictional slip
failure and the shear fracture of intact rock.
Although the rate effect has been found for frictional slid-

ing of wide materials (Dieterich and Kilgore, 1996), its quan-
titative effect is very small if compared with the effects of
the displacement and the effective normal stress. It should
be noted that the rate effect can be measured only after an
adequate amount of slip displacement by which the direct ef-
fect of slip displacement (or ∂μ/∂ D) has been reduced (Di-
eterich, 1979, 1981). Indeed, laboratory experiments show
that the parameter a has a very small value ranging from
0.003 to 0.015 for granite rock (Dieterich, 1981; Gu et al.,
1984; Tullis and Weeks, 1986; Blanpied et al., 1987). Thus,
the effect of slip rate during the rupture process may be
masked completely by a dominant effect induced by the slip
displacement on friction on an inhomogeneous fault whose
surfaces are geometrically irregular. The rate effect may also
be masked by the effect of perturbation (or fluctuation) of
the normal stress and/or pore water pressure, which possibly
occurs in the fault zone during the rupture process. Indeed, it
has been shown that the rate effect is not necessarily required
for explaining dynamic rupture regime of actual earthquakes
if their fault inhomogeneities, which are an inherent property
of natural faults in the Earth’s crust, are taken into account
(Beroza and Mikumo, 1996). Hence, I believe that there is
no compelling reason to emphasize the effect of the slip rate
in the constitutive formulation for earthquake ruptures.
One may argue that the rate effect is more important in

a much slower slip rate range. Indeed, laboratory experi-
ments show that frictional resistance increases linearly with
a logarithmic decrease in the slip rate in the range of very
slow rates (Dieterich, 1978). This effect may certainly play
a significant role in fault re-strengthening (or healing) after
the arrest of dynamic rupture. One must recognize, how-
ever, that the slip rate effect is not the only mechanism for
fault re-strengthening. There are other mechanisms for the
fault re-strengthening. Aochi and Matsu’ura (2002) showed
that the fault re-strengthening can be attained if the time-
dependence of adhesion of real contact areas due to such
an effect as thermal diffusion is considered on the fault sur-
faces. Real rupture surfaces of inhomogeneous rock are
not flat planes, but exhibit geometric irregularity. The re-
strengthening on such irregular fault surfaces can also be at-
tained by a displacement-induced increase in friction, due to
an increase in the sum of the real areas of asperity contact,
interlocking, and/or ploughing on the fault with proceeding
displacement. Although this direct effect of displacement
has been overlooked in the constitutive formulation, I em-
phasize that it can in reality be a dominant mechanism for the

time-dependent increase in frictional resistance on the fault
under the compressive stress. The re-strengthening may also
be reinforced by a gradual increase in the effective normal
stress with tectonic loading during the inter-seismic period.
Thus, the fault re-strengthening can easily be attained with-
out having to assume the effect of slip rate, so that we again
cannot find any compelling reason to emphasize the slip rate
effect in the constitutive formulation for earthquake ruptures.
As understood from the basic fact that three fundamen-

tal modes (mode I, II, and III) of fracture are defined in
terms of the crack-tip displacement in fracture mechanics,
the displacement plays a fundamental and primary role in
the fracturing process. One has to recognize that the slip-
dependency is a more fundamental property of the shear rup-
ture than the rate-dependency, and this basic fact must be
taken into account when the constitutive law for earthquake
ruptures is formulated. Thus, the governing law for earth-
quake ruptures should be formulated in such a manner that
the shear traction τ is a primary function of the slip displace-
ment D, with its functional form that may be affected by
a parameter of slip rate Ḋ or stationary contact time. This
formulation assumes that the slip displacement is an inde-
pendent and fundamental variable, and that the transient re-
sponse of the shear traction to the slip displacement is essen-
tially important.
The slip-dependent constitutive relation derived from lab-

oratory experiments can commonly be illustrated as shown in
Fig. 1(a). This constitutive relation is self-consistent as the
governing law for the shear rupture (Rice, 1980, 1983, 1984;
Rudnicki, 1980, 1988). In addition, the slip-dependent for-
mulation not only makes it possible to unify both frictional
slip failure on a pre-existing fault and the shear fracture of
intact rock consistently (Ohnaka, 2003), but also is justified
from the standpoint of microcontact physics (Matsu’ura et
al., 1992). Hence, it is quite reasonable from physical view-
points to assume the slip-dependent constitutive law as the
governing law for earthquake ruptures.
The constitutive law may be expressed as (Ohnaka, 1996;

Ohnaka et al., 1997):

τ = f (D; Ḋ, λc, σ
eff
n , T,CE) (2)

where f represents the constitutive relation between τ and
D, which is in general affected by not only Ḋ but also such
parameters as scaling parameter λc (which will be defined
later), σ eff

n , temperature T , and chemical effect of interstitial
pore water CE. We have to keep in mind that the effect of Ḋ
is secondary compared with the primary effect of D (this is
the reason why the law is referred to as slip-dependent law).
A simplified model (see Fig. 1(b)) of the functional

form (2) has often been employed for theoretical model-
ing of earthquake ruptures and for their numerical simula-
tions (Ida, 1972; Andrews, 1976a, b; Day, 1982; Campillo
and Ionescu, 1997; Campillo et al., 2001; Madariaga et
al., 1998; Madariaga and Olsen, 2000, 2002; Bizzarri et
al., 2001; Fukuyama and Madariaga, 2000; Fukuyama and
Olsen, 2002; Uenishi and Rice, 2003). Although such a sim-
plified slip-weakening model is certainly useful, note that
the model necessarily leads to a singularity of slip accelera-
tion near the front of a dynamically propagating rupture (Ida,
1973), which is physically unrealistic. To avoid such an un-
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(a) (b)

Fig. 1. (a) A slip-dependent constitutive relation for the shear rupture. In the figure, τi is the initial strength on the verge of slip, τp is the peak shear
strength, τb is the breakdown stress drop defined by τb = τp − τr (τr , residual frictional stress), Da is the critical displacement at which the peak
shear strength is attained, and Dc is the breakdown displacement defined as the critical slip required for the shear traction to degrade to the residual
frictional stress. The shear rupture energy Gc is equal to the area of the hatched portion. (b) A simplified slip-weakening constitutive relation. In this
model, no slip displacement is necessary for the shear stress to increase from the initial strength τi to the peak shear strength τp . Dc is the breakdown
displacement required for the shear traction to degrade to the residual frictional stress τr , and Gc is the shear rupture energy.

realistic singularity of slip acceleration, specific functional
form (2) has to be determined so as to incorporate the slip-
strengthening property (Ida, 1973; Ohnaka and Yamashita,
1989). This is particularly important when strong motion
source parameters such as the peak slip velocity and ac-
celeration in dynamic rupture regime of high slip veloci-
ties are discussed in quantitative terms (Ohnaka and Ya-
mashita, 1989). Specific expressions of the form (2) have
been proposed by earlier authors (Ohnaka and Yamashita,
1989; Matsu’ura et al., 1992; Ohnaka, 1996; Aochi and
Matsu’ura, 2002); however, its mathematical expression is
not of primary concern, so that it will not be presented here.
The effects of Ḋ, λc, σ eff

n , T , and CE are implicitly ex-
erted on the law through the constitutive law parameters τi ,
τp, τb, Da , and Dc. Here, τi is the initial shear stress on
the verge of slip, τp is the peak shear strength, τb is the
breakdown stress drop defined as τb = τp − τr (τr , resid-
ual friction stress), Da is the critical slip at which the peak
strength is attained, and Dc is the breakdown slip displace-
ment defined as the critical slip required for the shear traction
to degrade to τr . For instance, laboratory experiments show
that τp depends on Ḋ, σ eff

n , T , and CE, and hence τp may in
general be written as (Ohnaka et al., 1997):

τp = τp(Ḋ, σ eff
n , T,CE) (3)

It has been documented that there are two competing rate
effects on τp, one of which has already been discussed (see
Eq. (1d)). The rate effect formulated by Eq. (1d) is operative
during frictional sliding on a pre-existing fault. The other
rate effect has been found for the shear fracture of intact
rock (Masuda et al., 1987; Kato et al., 2003b). This rate
effect is more enhanced in wet environments than in dry
environments (Kato et al., 2003b), so that the mechanism

may be ascribed to stress-aided corrosion. Its quantitative
effect on τp also obeys a logarithmic law (Masuda et al.,
1987; Kato et al., 2003b); that is, τp decreases linearly with
a logarithmic decrease in the rate of deformation. Note,
therefore, that the physical mechanism of this rate effect is
completely different from that of the rate effect expressed by
Eq. (1d). Note also that their effects on the shear traction
are opposite, in the sense that the rate effect expressed by
(1d) increases the shear traction with a decrease in the slip
rate, whereas the rate effect observed for the shear fracture
of intact rock decreases the shear traction with a decrease in
the rate of deformation.
Although the rate effect observed for the shear fracture of

intact rock has conventionally been expressed in terms of the
strain rate ε̇, it may equivalently be expressed in terms of Ḋ
as:

τp = g(σ eff
n )

[
1 + γ ln

(
Ḋ

Ḋ + Ḋ0

)]
(4)

because ε̇ is directly proportional to Ḋ. In the above equa-
tion, g is a function of σ eff

n , Ḋ0 is the reference rate of slip (or
relative displacement) along the shear fracture surfaces, and
γ is a numerical constant. Equation (4) has been formulated
so as for the rate effect to saturate when Ḋ � Ḋ0. When
Ḋ � Ḋ0, equation (4) is reduced to:

τp = g(σ eff
n )

[
1 + γ ln

(
Ḋ

Ḋ0

)]
. (4’)

The functional form g(σ eff
n ) is expressed as a linear function

of σ eff
n as follows (see Ohnaka, 1995):

g(σ eff
n ) = c0 + c1σ

eff
n (5)

where c0 and c1 are constants. From laboratory experiments,
we have γ = 0.01–0.02, c0 = 100–140 MPa, and c1 = 0.7–
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0.75 for the shear fracture of intact granite (Masuda et al.,
1987; Kato et al., 2003a, b; Ohnaka, 1995). We thus find
that the rate effect expressed by Eq. (4) or (4’) is also very
small. Although the rate effect expressed by (4) or (4’) has
been found for intact rock, it should be noted that the same
effect is possibly operative at asperity junctions of high stress
concentration on a pre-existing fault in wet environments.
The other constitutive law parameters τi , τb, Da , and

Dc may also depend on Ḋ, σ eff
n , T , and CE; however, their

effects on τi , τb, Da , and Dc are not known at present, so
that they will be left for a future study.
The shear rupture that proceeds on irregular rupturing sur-

faces is governed by not only nonlinear physics of the con-
stitutive law but also geometric properties of the rupture-
surface irregularity. Indeed, it has been found with labora-
tory experiments (Ohnaka, 2003) that the fundamental cause
of the scaling property lies at the characteristic length λc,
which is defined as the predominant wavelength that repre-
sents geometric irregularity of the rupturing surfaces. The
constitutive law displacement parameters Da and Dc scale
with λc according to the following laws (Ohnaka, 2003):

Da = c2Dc (6)

Dc = K(τb/τp)
mλc (7)

where c2, K , and m are dimensionless constants. Since Da

and Dc are the constitutive law parameters that scale with
λc, the scaling property is automatically incorporated into
the slip-dependent constitutive law. It has been shown that
scaling of scale-dependent physical quantities inherent in the
shear rupture is commonly reduced to the scale-dependence
of Dc (Ohnaka and Shen, 1999; Ohnaka, 2000, 2003, 2004).
In general, a larger fault includes a geometrically larger

asperity area of high resistance to rupture growth in a statis-
tical sense, and the irregular rupture surfaces of such a geo-
metrically larger asperity area contain a longer predominant
wavelength component λc. Accordingly, λc is longer for a
larger earthquake fault, and consequently, Dc is larger for a
larger earthquake. For instance, such scale-dependent physi-
cal quantities as the length of the nucleation zone and its du-
ration, the slip acceleration, and the apparent shear rupture
energy Gc, scale with Dc, which in turn scales with λc ac-
cording to Eq. (7) (Ohnaka and Shen, 1999; Ohnaka, 2003,
2004). Thus, λc plays a fundamental role in scaling scale-
dependent physical quantities inherent in the shear rupture
of a broad scale range (Ohnaka, 2003). It will be shown in
Section 5 how the nucleation zone length and its duration
scale with λc.
When the shear traction τ is specifically given as a func-

tion of D as shown in Fig. 1(a), the apparent shear rupture
energy Gc is given by (Palmer and Rice, 1973):

Gc =
Dc∫

0

[τ(D) − τr ]d D. (8)

As intuitively understood from the fact that the value of
integral (8) is equal to the area of the hatched portion in
Fig. 1(a), the slip-dependent constitutive law automatically
satisfies the Griffith energy balance fracture criterion. In

addition, as discussed above, the slip-dependent constitutive
law can be formulated so as to incorporate both the rate
property and the scaling property into itself. In this sense, the
slip-dependent constitutive law is a more universal, physical
law than the Griffith criterion. Gc represents the energy
required for the rupture front to further grow, and hence the
resistance to rupture growth is defined as Gc.
In this section, I have attempted a thorough discussion

on what the constitutive law for earthquake ruptures ought
to be from the standpoint of rock physics on the basis of
solid facts observed in the laboratory. The arguments pre-
sented in this section lead to the conclusion that the govern-
ing law for earthquake ruptures should be formulated as a
slip-dependent constitutive law with parameters that may be
an implicit function of slip rate or time. In the subsequent
sections, I will concentrate my attention on how the entire
process of one cycle for a typical, large earthquake can be
modeled, and then how consistently the process leading up
to a large earthquake is modeled in the framework of fault
mechanics based on the slip-dependent constitutive law, and
the earthquake cycle model.

3. Cyclic Process for Typical Large Earthquakes
There is a pervasive hypothesis that the Earth’s crust is

in the state of perpetual self-organized criticality in which
any small earthquake may cascade into a large event, and
that earthquakes are in principle unpredictable catastrophes.
The Gutenberg-Richter frequency-magnitude power law has
been cited as evidence that the Earth’s crust is in the self-
organized critical state. If the Gutenberg-Richter frequency-
magnitude power law were, in a strict sense, applicable to
all earthquakes over the entire range of magnitude, it would
mean that there is no characteristic length scale in the Earth’s
crust. There are, however, increasing amounts of evidence
against this. It would suffice to give a few counterexamples,
which will be shown below.
Global seismicity catalogs including large earthquakes in-

dicate that large earthquakes do not fall on a Gutenberg-
Richter frequency-magnitude power law curve (Engdahl and
Villasenor, 2002). Paleoseismological data suggest that indi-
vidual faults and fault segments tend to generate character-
istic earthquakes having a relatively narrow range of magni-
tude, which do not follow the Gutenberg-Richter frequency-
magnitude power law (Schwartz and Coppersmith, 1984;
Sieh, 1996). These show that there is no doubt that a number
of characteristic length scales exist in the Earth’s crust, such
as the depth of seismogenic layer, fault and/or its segment
sizes. This is not in favor of the hypothesis that the Earth’s
crust is in the state of perpetual self-organized criticality.
An earthquake cannot occur anywhere in the Earth’s crust,

but can occur only in the region where an adequate amount
of elastic strain energy as its driving force has been accu-
mulated. Once an earthquake occurs in such a region, the
elastic strain energy is necessarily consumed, and hence the
stored energy in the region is lowered to a sub-critical level.
When the size of earthquake is small, the energy released is
restricted within a small region, so that the released energy
may easily be restored to its critical level by such means as
fault-fault interaction and/or dynamic stress transfer imme-
diately after the event. When the size of earthquake is large,



778 M. OHNAKA: EARTHQUAKE CYCLES & PHYSICAL MODELING OF THE PROCESS TO A LARGE EARTHQUAKE

however, a large amount of the elastic strain energy stored in
a wide region is consumed and is lowered to a sub-critical
level. The large amount of energy released in a wide region
cannot easily be restored to its critical level immediately af-
ter the event, even by means of fault-fault interaction and/or
dynamic stress transfer. Tectonic loading due to perpetual
slow plate motion is necessarily required for this. The next
large earthquake therefore cannot occur in the region for a
long time until an adequate amount of elastic strain energy is
accumulated again up to its critical level with tectonic load-
ing. In this respect, large earthquakes are distinctly different
from small earthquakes.
Historic records and paleoseismological data suggest that

large earthquakes, in particular those along plate boundaries,
have occurred repeatedly, neither in clusters nor at random
but quasi-periodically, on a single fault, and that average re-
currence time intervals are well defined (Schwartz and Cop-
persmith, 1984; Sieh, 1996; Ishibashi and Satake, 1998;
Utsu, 1998). For instance, large earthquakes occurring re-
peatedly on a quasi-periodic basis (1361, 1498, 1605, 1707,
1854, and 1946) along the plate interface are best docu-
mented in history in the Nankai region in the southwest of
Japan. Whether temporal distribution of such large events on
a specific fault is clustered or quasi-periodic can be checked
statistically under the assumption that the sequence of iden-
tical events is independently distributed. If it is further as-
sumed that the probability density function w(τ) of the time
interval distribution is represented by the Weibull distribu-
tion: w(τ) = αβτβ−1 exp(−ατβ) (α and β being constants),
the probability p(u|t) that the next event occurs in a time
interval from t to t + u is (Utsu, 1984, 1999, 2002)

p(u|t) = 1 − exp{−α[(t + u)β − tβ]} (9)

and the mean time interval E[τ ] and its variance V [τ ] are

E[τ ] = α−1/β�(1/β + 1) (10)

V [τ ] = α−2/β{�(2/β + 1) − [�(1/β + 1)]2}. (11)

The time series of event occurrences on a single fault can be
classified in terms of β into the following four cases (Utsu,
1998): 0 < β < 1 if events are clustered, β = 1 if events
are random, β > 1 if events are intermittent, and β → ∞ if
events are strictly periodic. Utsu (1998) showed in his simu-
lation that events virtually occur periodically when β > 10,
and quasi-periodically even when β = 3 − 6. For those
large historical earthquakes along the plate interface in the
Nankai region, the average recurrence interval with its stan-
dard deviation has been evaluated to be 117.1 ± 21.2 years,
and β = 6.09 (Utsu, 1998). It can thus be concluded that the
sequence of large historical earthquakes in the Nankai region
have occurred repeatedly on a quasi-periodic basis.
The elastic strain energy builds up to the critical level

much faster in the elastic medium along plate boundaries
than in regions away from plate boundaries. Hence, it is ex-
pected that large earthquakes occur intermittently more of-
ten along plate boundaries than in regions away from plate
boundaries, and that the recurrence time interval for inter-
plate earthquakes is much shorter than that for intra-plate
earthquakes in regions away from plate boundaries. The re-
currence interval is on the order of 102 years for large earth-
quakes that occur along a plate boundary fault between two

tectonic plates whose relative motion has a rate of a few
cm/year. Such a typical example is the large historical earth-
quakes along the plate interface in the Nankai region men-
tioned earlier. In contrast, it has been inferred for intra-plate
paleoearthquakes that the recurrence time interval is on the
order of 103 to 104 years or longer, depending on the rate
of tectonic strain buildup (e.g., Kumamoto, 1998; Matsuda,
1998). With slower loading rates, the length of the recur-
rence interval is affected more by factors other than the load-
ing rate. Nevertheless, the observations indicate that the re-
currence interval depends on the tectonic loading rate. This
fact is incompatible with the hypothesis that the crust is in
the perpetual critical state. If the crust were in the perpetual
critical state, it should continue to have a potential to cause
the next large earthquake even immediately after the occur-
rence of a large event. One might therefore expect that large
earthquakes occur more often in the same region, irrespec-
tive of the tectonic loading rate. This, however, does not
agree with the observations. Thus, the observations consis-
tently lead to the conclusion that the hypothesis of perpet-
ual self-organized criticality is at least not applicable to large
earthquakes.
An alternative, more rational approach is to assume that

the crust immediately after a large earthquake is in a sub-
critical state, and that crustal deformation proceeds toward
the critical state with tectonic loading. An essential feature of
this model is that the process from a sub-critical state to the
critical state is repeated intermittently on a single fault un-
der perpetual tectonic loading. We consider a system where
an inhomogeneous, pre-existing fault that has a potential to
cause a large earthquake is embedded in the brittle seismo-
genic layer, which is also inhomogeneous. Such a fault may
be called a master fault. In particular, we specifically con-
sider the deformation process of a crustal region including
a master fault such as a plate boundary fault, from a sub-
critical state toward the critical state with tectonic loading,
which can be regarded as the process leading up to a large
earthquake.
The entire process of one cycle for a typical, large earth-

quake may commonly be modeled as shown in Fig. 2
(Ohnaka, 1998). Shortly after the occurrence of a large
earthquake, the fault heals and is re-strengthened (phase I
in Fig. 2), and hence the elastic strain energy can again be
accumulated in the region surrounding the fault (phase II in
Fig. 2), as tectonic stress builds up perpetually. The fault
thus regains a potential to cause the next large earthquake.
At an early stage of phase II, the tectonic stress is far below

the critical level, and the amount of the elastic strain energy
accumulated in the region is inadequate. This stage is there-
fore characterized by quiescent seismicity (i.e., background
seismicity), and it may be recognized as quiescent period
of seismicity when attention is paid to its time domain, and
as seismic gap when attention is paid to its spatial domain.
Indeed, the well-known concept of seismic gaps (Imamura,
1928/29; Fedotov, 1965; Mogi, 1968; Sykes and Nishenko,
1984) has been proposed from seismicity studies. As the tec-
tonic stress reaches higher levels, and gradually approaches
its critical level, the crust begins to behave in-elastically, and
consequently, seismicity in the region surrounding the mas-
ter fault of the next large event becomes progressively ac-



M. OHNAKA: EARTHQUAKE CYCLES & PHYSICAL MODELING OF THE PROCESS TO A LARGE EARTHQUAKE 779

Fig. 2. A model of the cyclic process for large earthquakes.

tive with time, as shown schematically in Fig. 3. This is
because the crust is inherently inhomogeneous and includes
numerous faults of small-to-moderate sizes. This later stage
of phase II can thus be characterized by activation of seis-
micity.
Seismic activity is enhanced by fluid-rock interaction, and

triggering effect by stress transfer at the later stage of phase
II where the tectonic stress is in close proximity to the criti-
cal state. For instance, a small stress perturbation due to the
occurrence of neighboring earthquakes and/or the Earth tides
may trigger small to moderate earthquakes at this stage. In-
deed, a recent, elaborate study (Tanaka et al., 2002) strongly
suggests that a small stress change due to the Earth tide can
trigger earthquakes in the region where the tectonic stress is
in close proximity to the critical state. Activated seismicity
at this stage may be recognized as premonitory phenomena
for the ensuing mainshock earthquake.
Eventually, rupture nucleation begins to proceed locally at

a place where the resistance to rupture growth is the weakest
on the master fault (phase III in Fig. 2), when the tectonic
stress has reached its critical level, and when an adequate
amount of the elastic strain energy has been accumulated.
The nucleation necessarily leads to the ensuing mainshock
rupture on the fault (phase IV in Fig. 2), accompanied by
rapid stress drop and dissipation of a great amount of the
elastic strain energy, resulting in radiation of seismic waves.
The arrest of the mainshock rupture results in its aftereffect
that includes re-distribution of local stresses on and around
the fault, leading to aftershock activity (phase V in Fig. 2).
Using the JMA earthquake catalogue data from 1977

through 1997, Maeda (1999) carefully examined temporal
and spatial distributions of representative foreshocks as func-
tions of the time from the mainshock origin time and the
distance from the mainshock location, and he found that
immediate (roughly within one day) foreshocks concentrate
in the vicinity of the hypocenter of the pending mainshock



780 M. OHNAKA: EARTHQUAKE CYCLES & PHYSICAL MODELING OF THE PROCESS TO A LARGE EARTHQUAKE

Fig. 3. A model of seismic activity enhanced during the deformation process leading up to a large earthquake. Seismic activity occurs after tectonic stress
exceeds a threshold level (point a in the figure), and thereafter seismicity becomes progressively active with time. Mainshock rupture nucleation begins
to proceed at point c in the figure.

earthquake. This prominent feature is well explained by
a model of the rupture nucleation (Ohnaka, 1992) put for-
ward based on laboratory experiments (Ohnaka et al., 1993),
which demonstrates that micro-seismic activities are indeed
induced during the slip failure nucleation that proceeds on
an inhomogeneous fault. During the nucleation of a typical,
large earthquake, a region of a few kilometers in dimension
(referred to as the nucleation zone) on the seismogenic fault
would slip, initially at a very slow and steady rate and subse-
quently at accelerating rates, over a distance of the order of
1 m. Such a slip at an initially slow and steady rate, and sub-
sequently at accelerating rates over a distance of the order of
1 m proceeds with or without inducing micro-earthquakes,
depending on the fault structure and such ambient condi-
tions as temperature (Ohnaka, 2000). If, for instance, a
non-uniform fault in the brittle regime has sizable asperity
patches on which irregularities (or micro-asperities) of short
wavelength components are superimposed, slow slip failure
in an asperity patch will necessarily bring about fracture of
micro-asperities in the patch. In this case, the nucleation pro-

cess carries micro-earthquakes (i.e., immediate foreshocks)
(Fig. 3). Note that fracture of micro-asperities during the
nucleation occurs despite the fact that the overall shear stress
decreases (because of slip-weakening) in the nucleation zone
(Ohnaka et al., 1993). Immediate foreshock activities in-
duced during the mainshock nucleation have been discussed
for such earthquakes as the 1978 Izu Oshima Kinkai earth-
quake (Ohnaka, 1992, 1993), the 1983 Central Japan Sea
earthquake (Shibazaki and Matsu’ura, 1995), and the 1992
Landers earthquake (Dodge et al., 1995, 1996).
The above is a model of the cycle process for a typical,

large earthquake that takes place in the brittle seismogenic
layer characterized by heterogeneities. In this model, phases
I to V come in cycles. In particular, phases II and III are in-
tegral parts of the process leading up to a typical, large earth-
quake that inevitably occurs in the brittle seismogenic layer.
Since the present paper is concerned with a physical model
with predictive capability for a typical, large earthquake, we
need to focus on phases II and III of the cycle process. It
has been argued by earlier authors (Imamura, 1928/29; Fe-
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Fig. 4. A plot of the cumulative Benioff strain release against time. Open circles indicate data points of earthquakes with magnitude 5 or greater, and a
thick curve represents the result of the best-fit regression analysis. Reproduced from a paper by Bufe and Varnes (1993).

dotov, 1965; Mogi, 1968; McCann et al., 1979; Sykes and
Nishenko, 1984; Nishenko, 1991) that seismic gaps, which
are interpreted as quiescent seismicity at an early stage of
phase II in the context of the present model, are useful for
long-term forecasting. For more information about long-
term forecasts based on the concept of seismic gaps, see a
recent paper by Kanamori (2002), who provides an overview
of the status quo and problems of earthquake prediction in
general. In the subsequent sections, our focus will be di-
rected on the later stage of phase II for physical modeling of
intermediate-term forecasting, and on phase III for physical
modeling of short-term (or immediate) forecasting.

4. Physical Modeling for Intermediate-Term Fore-
casting

I here concentrate on how the process leading up to a large
earthquake in phase II can be modeled in the context of the
seismic cycle model presented above. Phase II defined above
can be regarded as the preparation process for a large earth-
quake, in the sense that the elastic strain energy as the driving
force to bring about a next large earthquake, builds up in this
phase with tectonic loading, and also in the sense that the de-
formation of the crust proceeds toward the catastrophic fail-
ure with tectonic loading. In view of this property of phase
II, models for intermediate-term forecasting have been pro-
posed by earlier authors.
For instance, the well-known time-to-failure function

model (e.g., Bufe and Varnes, 1993; Bufe et al., 1994; Jaume
and Sykes, 1999) is a typical model for intermediate-term
forecasting. The model focuses on accelerating seismic ac-
tivity observed during the deformation process of the in-
homogeneous crust leading up to a major earthquake with
tectonic loading in phase II, and is based on the laboratory

observation that the deformation process of an inhomoge-
neous body leading to the ensuing catastrophic failure obeys
a power law of the form (Saito, 1969; Varnes, 1989):

d�(t)

dt
= k

(t f − t)n
(12)

where �(t) represents strain or any of measurable quantities
(such as event count, Benioff strain, or seismic moment) as
a function of time t , t f represents the time of failure, and k
and n are constants. Integration of (12) leads to:

�(t) = � f − k

1 − n
(t f − t)1−n (n �= 1) (13)

where � f = �(t f ).
Figure 4, taken from a paper by Bufe and Varnes (1993),

shows a plot of �(t) against time t for the period 1855–
1989 for northern California earthquakes of magnitude 5
or greater. �(t) in this figure is defined as the cumulative
Benioff strain release, which is given by (Bufe and Varnes,
1993):

�(t) =
N (t)∑
i=1

ωi (14)

where ωi is the Benioff strain release for each event, cal-
culated from logωi = 0.75Mi + d. Here, Mi represents
the magnitude of the i-th event in the sequence of N earth-
quakes that occurred in a certain region, and d is a constant.
The Loma Prieta earthquake (M7.1) occurred on October 18,
1989, and one can see from Fig. 4 that seismic activity in
the region accelerated progressively towards the 1989 Loma
Prieta event, and that the accelerating seismicity is well ex-
plained by the power law of Eq. (13).
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Fig. 5. A model of rupture nucleation. The rupture begins to grow stably at a steady, slow speed Vst to a critical length 2Lsc (at t = tsc), from which it
extends spontaneously at accelerating speeds up to another critical length 2Lc (at t = tc). Beyond the critical length 2Lc , the rupture propagates at a
steady, high speed Vc close to the shear wave velocity. The hatched portion represents the zone in which the breakdown (or slip-weakening) proceeds
with time. Xc denotes the breakdown zone length, and 2Lc denotes the critical length of the nucleation zone.

Both t f and n in Eq. (13) can be evaluated from the best-
fit regression analysis using earthquake events that have oc-
curred prior to the imminent mainshock to be predicted, and
the magnitude of the expected event at t = t f can also be
estimated when n < 1 (Bufe and Varnes, 1993). The thick
curve in Fig. 4 represents the result of the best-fit regression
analysis made using earthquakes of magnitude 5 or greater
that occurred during the period 1927–1988 (Bufe and Varnes,
1993). One can see from Fig. 4 that the time-to-failure func-
tion model is useful for intermediate-term forecasting. The
model seems to well explain accelerating seismic activity ob-
served during the process leading up to a major event in other
regions as well (Bufe et al., 1994; Brehm and Braile, 1998;
Jaume and Sykes, 1999; Yin et al., 2000).
Another model which may also be useful for intermediate-

term forecasting is the load-unload response ratio (LURR)
model (e.g., Yin et al., 1995, 2000). At an early stage of
phase II, the crust behaves elastically. However, it progres-
sively behaves in-elastically as the tectonic stress approaches
its critical level. If, therefore, a measure of the proximity to
the critical state in a region is suitably defined, the imminent
earthquake rupture in the region may be predicted. LURR
is practically defined as the ratio of the cumulative Benioff
strain release during loading to that during unloading as de-
termined by calculating Earth tide induced perturbations in
the Coulomb failure stress on optimally oriented faults (Yin
et al., 2000). LURR thus defined represents a measure of the
proximity to the critical state, and high LURR values (> 1)
indicate that the region is in close proximity to the critical
state that has a potential to cause a major earthquake. Val-
ues for LURR have been calculated for various regions of
different tectonic regimes (Yin et al., 2000, 2002), and the

results indicate that the model provides a useful means for
intermediate-term forecasting (Yin et al., 2000, 2002).
Both models of the time-to-failure function and the load-

unload response ratio are based on the common fact that in-
elastic deformation of the crust develops with tectonic load-
ing in phase II prior to the occurrence of a major earthquake.
It is therefore not by coincidence that the scaling relation be-
tween the critical region size and the magnitude of the final
event (Bowman et al., 1998), estimated from the time-to-
failure function model, agrees with that estimated from the
load-unload response ratio model (Yin et al., 2002). The em-
pirical scaling relation found by Bowman et al. (1998) can
be approximated in terms of the critical region radius Rc and
the rupture area S of the final event as follows (Rundle et al.,
2000):

Rc = 10S1/2. (15)

This relation indicates that the preparation process for a
larger earthquake develops in a wider region, and that ac-
celerating seismic activity during the deformation process of
the crust leading up to a major event occurs in a wide re-
gion with the critical radius Rc being ten times larger than
the characteristic fault length S1/2.

5. Physical Modeling for Short-Term (Immediate)
Forecasting

The power law of Eq. (12) or (13) proposed for
intermediate-term forecasting possibly has a singularity at
t = t f , depending on a value evaluated for the exponent
n. The possible singularity at t = t f comes from the fact
that equation (12) has been derived without considering the
physical process immediately before the imminent event we
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intend to predict. Eq. (12) or (13) may therefore not be suit-
able for short-term (immediate) forecasting, though it is cer-
tainly useful for intermediate-term forecasting.
If we are concerned with physical modeling of the pro-

cess leading up to a large event for short-term (or immedi-
ate) forecasting, we have to direct our focus on the physical
process or phase immediately before the imminent event we
intend to predict. The preparation process immediately be-
fore an imminent earthquake rupture is what is referred to as
the nucleation process (phase IV in Fig. 2). It is therefore
crucial to incorporate the nucleation process into a physical
model for short-term (or immediate) forecasting.
An earthquake rupture (or unstable, dynamic shear rup-

ture) on a fault characterized by inhomogeneities cannot be-
gin to propagate abruptly at speeds close to sonic veloci-

ties from a stable and static state, but is necessarily pre-
ceded by a stable and quasi-static phase of rupture nucleation
and the subsequent accelerating phase. A physical model
of such nucleation that proceeds on an inhomogeneous fault
has been proposed for typical earthquakes (Fig. 5), based on
the results revealed in the high-resolution laboratory exper-
iments (Ohnaka et al., 1986; Ohnaka and Kuwahara, 1990;
Ohnaka and Shen, 1999; Ohnaka, 2000, 2004). In the frame-
work of fault mechanics based on the slip-dependent con-
stitutive law, theoretical studies on rupture nucleation and
its numerical simulations have also been done (Yamashita
and Ohnaka, 1991; Matsu’ura et al., 1992; Shibazaki and
Matsu’ura, 1992, 1995, 1998; Ionescu and Campillo, 1999;
Bizzarri et al., 2001; Uenishi and Rice, 2003). In particu-
lar, Shibazaki and Matsu’ura (1998) clearly showed in their
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numerical simulations that the nucleation process observed
in laboratory experiments can be reproduced completely, if
such non-uniform distributions of the constitutive law pa-
rameters Dc and τb as determined from the laboratory ex-
periments are given specifically along a simulated fault. This
corroborates the findings in laboratory experiments on rup-
ture nucleation.
The shear rupture nucleates at a place where the resistance

to rupture growth is the weakest, and it proceeds stably at a
steady, slow speed Vst to a critical length Lsc (half-length),
beyond which the rupture grows spontaneously at accelerat-
ing speeds to another critical length Lc (half-length), obeying
a power law of the form (Fig. 6):

V/VS = α(L/λc)
n (16)

where V is the rupture growth velocity, VS is the shear wave
velocity, L is the rupture growth length, λc is the character-
istic length defined as the predominant wavelength that rep-
resents geometric irregularity (or roughness) of the ruptur-
ing surfaces in the slip direction, and α and n are numerical
constants (α = 8.87 × 10−29, and n = 7.31; see Ohnaka
and Shen, 1999). Beyond the critical length Lc, the rupture
propagates at a steady, high speed Vc close to elastic wave
velocities (Fig. 5).
The nucleation process for L < Lsc is a quasi-static rup-

ture growth controlled by the rate of an applied load, whereas
the process for Lsc < L < Lc is the subsequent, spontaneous
rupture growth driven by the release of the elastic strain en-
ergy stored in the surrounding medium (Ohnaka and Shen,
1999). The behavior of rupture growth therefore changes at
L = Lsc from a quasi-static phase controlled by the loading
rate to a self-driven, accelerating phase controlled by the in-
ertia. The behavior of the rupture also changes at L = Lc

from the accelerating phase to the phase of a steady prop-
agation at a high-speed Vc. We focus on the critical length
Lc, because the nucleation zone size estimated from seismo-
logical data corresponds to Lc (Ellsworth and Beroza, 1995;
Shibazaki and Matsu’ura, 1998). Note therefore that the crit-
ical length Lc to be discussed below is physically not identi-
cal with the critical length defined by Andrews (1976a, b).
From Eq. (16), we derive a law that governs the nucleation

process leading to the critical point. The critical point is
defined specifically as the critical time tc at which L = Lc

is attained. Noting that dt = d L/V , we have from (16) the
following relation (Ohnaka, 2004):

L(t) = Lc

(
ta − tc
ta − t

)1/(n−1)

(t ≤ tc) (17)

where the origin of time t is taken such that the time tsc (at
which L = Lsc) = 0, and ta is defined by:

ta = 1

α(n − 1)

λc

VS

(
λc

Lc

)n−1

+ tc. (18)

As stated previously, real rupture surfaces of heteroge-
neous materials such as rock cannot be flat planes, but they
inherently exhibit geometric irregularity. Although these ir-
regular rupture surfaces exhibit self-similarity, they cannot
be self-similar at all scales but are self-similar within a finite
scale range. This is because the shear rupture process is the
process that smoothes away geometric irregularities of the
rupturing surfaces. In general, shear rupture surface topogra-
phies that exhibit band-limited self-similarity can be quanti-
fied and characterized by two quantities: fractal dimension
and corner wavelength. The corner wavelength is defined
as the critical wavelength that separates the neighboring two
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bands with different fractal dimensions. Of these two quan-
tities, only the corner wavelength represents a characteristic
length λc in the slip direction on the fault. The characteristic
length determined from the corner wavelength is the predom-
inant wavelength representing geometric irregularity (rough-
ness) of the rupture surfaces in the slip direction (see Ohnaka
and Shen, 1999; Ohnaka, 2003).
Figure 7 exemplifies how well equation (17) explains la-

boratory data on frictional slip failure nucleation in quantita-
tive terms (Ohnaka, 2004). In this figure, the rupture growth
length L is plotted against time t for data on the nucleation
tested on a pre-cut fault with the surface roughness charac-
terized by λc = 46 μm. One can clearly see from Fig. 7 that

equation (17) explains well laboratory data on the nucleation
in quantitative terms. This corroborates the theoretical result
that the nucleation process leading up to the critical point
obeys the power law of Eq. (17).
In Fig. 8, data on the nucleation process leading up to the

critical point tested on pre-cut faults with three different sur-
face geometric irregularities (or roughnesses) are compared.
The fault surface roughnesses used are reproduced in Fig. 9
for comparison: the rough surface characterized by the pre-
dominant wavelength of λc = 200 μm, the smooth surface
characterized by λc = 46 μm, and the extremely smooth
surface characterized by λc = 10 μm (see Ohnaka and Shen,
1999).
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Fig. 9. A comparison of three fault surfaces with different roughnesses (from bottom to top): rough, smooth, and extremely smooth. The rough surface was
prepared with grit #60, the smooth surface was prepared with grit #600, and the extremely smooth surface was prepared with grit #2000. Reproduced
from a paper by Ohnaka and Shen (1999).
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It is clear from Fig. 8 that the rupture growth length and
its duration (time to the critical point) are very long for the
nucleation that proceeds on the rough fault with λc = 200
μm, if compared with those for the nucleation that proceeds
on a very smooth fault with λc = 10 μm (inset). It can thus
be concluded from Fig. 8 that both the rupture growth length
L and the duration |t − tc| during the nucleation depend on
the characteristic wavelength (or predominant wavelength)
λc representing geometric irregularity of the fault surfaces,
and that both L and |t − tc| increase systematically with an
increase in λc. This indicates that the rupture growth length
and its duration are scale-dependent, and that λc plays a
crucial role in scaling the nucleation process.
The power law of Eq. (17) explains well experimental

data (Fig. 7); however, this mathematical expression is scale-
dependent (Fig. 8). To derive a scale-independent, universal
expression, we rewrite Eq. (17) as follows (Ohnaka, 2004):

L(t)

Lc
=

(
1

1 − (t − tc)/(ta − tc)

)1/(n−1)

(19)

where

t − tc
ta − tc

= α(n − 1)

(
Lc

λc

)n−1 t − tc
(λc/VS)

. (20)

Expression (19) has a mathematical form that the relation
between L(t)/Lc and (t − tc)/(ta − tc) is scale-invariant, if n
is scale-invariant. In fact, experimental data on frictional slip
failure nucleation shown in Fig. 8 can be unified completely
in quantitative terms by this expression (Fig. 10).
Figure 10 shows a plot of L(t)/Lc against (t − tc)/(ta − tc)

for the data on frictional slip failure nucleation shown in
Fig. 8. Theoretical relation (19) is also over-plotted in Fig. 10
for comparison with the experimental data. One can see

from Fig. 10 that different sets of experimental data tested on
faults with different λc are unified completely in quantitative
terms by expression (19). Since t − tc scales with λc/VS (see
Eq. (20)), it is obvious from Fig. 10 that not only the rupture
growth length but also the nucleation time to the critical
point scale with the characteristic length λc. We can thus
confirm that the characteristic length λc plays a fundamental
role in scaling not only the nucleation zone length but also
the nucleation time to the critical point.

6. Physical Scaling of the Nucleation Process from
Laboratory-Scale to Field-Scale

I have shown in previous section that both the nucleation
zone length and the nucleation time to the critical point scale
with the characteristic length λc that represents geometric
irregularity of the rupturing surfaces. This poses questions
about how long the effective characteristic length λc, the crit-
ical length Lc of the nucleation zone, and the nucleation time
tc to the critical point are for real, typical large earthquakes.

The fact that the rupture growth length L scales with the
characteristic length λc implies that the size of mainshock
earthquake scales with its nucleation zone size. Indeed, a
physical scaling relation between mainshock seismic mo-
ment M0 and its nucleation zone length 2Lc (Lc, critical half
length) can be derived theoretically from a laboratory-based
slip-dependent constitutive law as follows (Ohnaka, 2000):

M0 = c1c2(kκ�/4)3(SA1/aS)3(τb/τ)6μ(2Lc)
3 (21)

under the following assumptions (Ohnaka, 2000): 1) patches
of high resistance to rupture growth on an inhomogeneous
fault are so tough that an adequate amount of the elastic
strain energy is accumulated in the medium surrounding the
patches, 2) the rest of the fault is so weak that little amount
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Fig. 11. A plot of the logarithm of the seismic moment M0 against the logarithm of the critical length 2Lc of the nucleation zone for earthquakes. The
theoretical scaling relation denoted by a thick line is compared with seismological data. Reproduced from figure 6 in a paper by Ohnaka (2000).

of the elastic strain energy is accumulated, and 3) the inter-
action between patches of high resistance to rupture growth
is negligible. In Eq. (21), SA1 is the area of the geometrically
largest patch of high resistance to rupture growth, S is the
mainshock fault area, τb is the breakdown stress drop, τ

is the stress drop averaged over S, μ is the rigidity, and c1,
c2, k, κ , �, and a are dimensionless constants (see Ohnaka,
2000).
Under appropriate assumptions, equation (21) is reduced

to (Ohnaka, 2000):

M0 = 1.0 × 109(2Lc)
3. (22)

This theoretical scaling relation shows that the ensuing main-
shock seismic moment is proportional to the 3rd power of the
critical length of its nucleation zone. Equation (22) explains
well data (Ellsworth and Beroza, 1995; Ohnaka, 2000) on
earthquake nucleation in quantitative terms (Fig. 11). In the
nucleation model shown in Fig. 5, the nucleation zone length
Lc equals the breakdown zone length Xc, and contemplating

that Lc is of the order of Xc, the data on Xc and M0 for
earthquakes analyzed by Papageorgiou and Aki (1983) are
also plotted in Fig. 11 for comparison.
Figure 12 schematically shows an asperity model used for

deriving Eq. (21). The term “asperity” is defined in this paper
as a local area (or patch) of high resistance to rupture growth
on a fault. A stable and slow growth of rupture, which
may initially have been caused by tectonic loading, cannot
begin to propagate spontaneously and dynamically, unless at
least one of the patches of high resistance to rupture growth
is broken down by the stable and slow growth of rupture.
This is because there is no amount of energy available as
a driving force to bring about dynamic rupture, unless the
stored elastic strain energy is released by the breakdown of
any patch of high resistance to rupture growth. In other
words, the breakdown of one of those patches due to a stable
and slow rupture growth is the prerequisite for dynamic high-
speed rupture. Such an initial, stable and slow growth of
patch rupture is what is called the nucleation process.
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Fig. 12. Schematic diagram of an asperity model. S denotes fault area, and SA1 and SA2 denote the areas of patches of high resistance to rupture growth
on the fault.

If the size of an initial, broken-down patch is geometri-
cally large, the amount of the elastic strain energy to be re-
leased is large, so that the ensuing earthquake will be large.
On the other hand, a large amount of Dc is by definition
required for the breakdown of a geometrically large patch.
The critical length Lc of nucleation zone is related to Dc by
(Ohnaka, 2000)

Lc = 1

k

μ

τb
Dc (23)

where k is a dimensionless parameter. This leads to the
conclusion that a large amount of Dc necessarily results in
a large size of the nucleation zone. The above explanation
provides rational, physical grounds for scaling law (21) or
(22).
If, however, the interaction between patches is not negligi-

ble, scaling law (21) or (22) may no longer hold. Consider a
case where the amount of the elastic strain energy released by
the breakdown of a small patch (for instance, A2 in Fig. 12)
is adequate enough to break down a neighboring large patch
(A1 in Fig. 12). In this case, the size of the ensuing main-
shock earthquake will be determined by the amount of the
elastic strain energy released by the breakdown of this large
patch (A1 in Fig. 12). On the other hand, the nucleation
zone size is prescribed by the size of the small patch (A2 in
Fig. 12) that has initially been broken down. Thus, the even-
tual size of mainshock earthquake may not necessarily scale
with its nucleation zone size, when patch-patch interaction is
not negligible. An earthquake of multiple shock type may be
such a case that the size of mainshock earthquake does not
necessarily scale with its nucleation zone size.
The effective λc can be inferred for earthquakes for which

the constitutive law parameters τb and Dc have been esti-
mated by assuming the magnitude for the peak shear strength
τp appropriately (Ohnaka, 2003). Figure 13 shows how large
the effective λc inferred for real earthquakes is. In this fig-
ure, data on small-scale frictional slip failure and fracture in
the laboratory have also been plotted for comparison. From
this figure, one can see that the effective λc for major earth-

quakes has a value ranging from 1 m to 100 m. One can also
see from this figure that laboratory data on small-scale shear
fracture and frictional slip failure, and field data on large-
scale earthquakes can consistently be unified by constitutive
scaling law (7), in spite of a vast scale difference between the
two.
It can be seen from Fig. 13 that both Dc and λc are larger

for larger earthquake faults. The reason for this can be sum-
marized as follows; 1) Rupture surfaces of an inhomoge-
neous fault cannot be flat planes but necessarily exhibit geo-
metric irregularity, 2) A large fault includes a geometrically
large patch of high resistance to rupture growth in a statistical
sense, 3) The irregular rupture surfaces of such a geomet-
rically large patch contain a long predominant wavelength
component λc, and 4) A large amount of Dc is required for
breaking down a geometrically large patch containing large
λc.
Figure 14 shows the physical scaling relation between the

critical length Lc of the nucleation zone and the breakdown
displacement Dc. In this figure, field data on large-scale
earthquakes are compared with laboratory data on small-
scale shear fracture and frictional slip failure. Relation (23)
indicates that Lc is directly proportional to Dc, if τb is
constant. Straight lines in Fig. 14 indicate the proportional
relationships between Lc and Dc under the assumption that
τb = 0.01, 0.1, 1, 10, 100, or 1000 MPa. One can see from
Fig. 14 that different sets of data on small-scale shear frac-
ture and frictional slip failure, and large-scale earthquakes
are consistently unified by theoretical scaling law (23) de-
rived from the slip-dependent constitutive law. One can
also see from Fig. 14 that the nucleation zone size scales
with the breakdown displacement, though the scaling rela-
tion may severely be affected by the magnitude of the break-
down stress drop τb.

Finally, I wish to show how long the nucleation time to the
critical point is for typical, major earthquakes. Given that
the effective λc for major earthquakes has a value ranging
from 1 to 100 m (Fig. 13), the nucleation time to the critical
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Fig. 13. Scaling relation between the breakdown displacement Dc and the characteristic length λc . Solid lines indicate scaling relations between Dc and
λc when τb/τp = 0.01, 0.1 or 1 has been assumed. Field data on earthquakes and laboratory data on shear fracture and frictional slip failure are
unified by scaling relation (7) in text. Reproduced from a paper by Ohnaka (2003).

point for typical earthquakes can be inferred from universal
scaling relations (19) and (20), under the assumption that
the exponent n is scale-invariant. Indeed, the specific time
from point P in Fig. 10 to the critical point has been inferred
to be of the order of several tens of minutes to a few days
or much longer, depending on seismogenic environments
(Ohnaka, 2004). This is contrasted with the time to the
critical point for laboratory-scale rupture, which is of the
order of 10 ms to 1 sec. For laboratory-scale rupture, λc

has a value ranging from the order of 10 μm to the order of 1
mm. The nucleation time to the critical point is therefore four
to five orders or much longer for typical, major earthquakes
than for laboratory-scale rupture (Ohnaka, 2004).
The present results lead to the conclusion that the nucle-

ation zone length and its duration are both longer for larger
earthquakes. If the ongoing nucleation for a typical, large
earthquake can be identified and monitored by any observa-
tional means, equation (17) or (19) may be useful for the
short-term (immediate) forecasting (Ohnaka, 2004). Since

the power law of Eq. (17) or (19) does not have any sin-
gularity over the entire time interval t ≤ tc, it has a great
advantage, in the sense that both the occurrence time and the
size of earthquake expected can be evaluated by determining
tc and Lc by curve fitting. Once Lc has been determined,
the seismic moment for the earthquake expected may be in-
ferred from scaling relation (22). This leads to the consistent
conclusion that it is in principle possible to forecast a large
earthquake, not only on a long-term basis (based on the seis-
mic gap theory, see Section 3) and on an intermediate-term
basis (see Section 4), but also on a short-term (or immediate)
basis if the ongoing nucleation can be identified and moni-
tored by any observational means.

7. Conclusions
A thorough discussion has been made on what the ration-

al constitutive law for earthquake ruptures ought to be from
the standpoint of the physics of rock friction and fracture
on the basis of solid facts observed in the laboratory. From
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this standpoint, it is concluded that a slip-dependent constitu-
tive law with parameters that may be an implicit function of
slip rate or time is the most rational as the governing law for
earthquake ruptures. With the long-term goal of establishing
a rational methodology of forecasting large earthquakes, a
model of the cyclic process for a typical, large earthquake
has been presented, and a comprehensive, consistent sce-
nario for forecasting typical, large earthquakes has been dis-
cussed in terms of the underlying physics, in the context of
the earthquake cycle model, by incorporating the properties
of inhomogeneity and physical scaling. The entire process of
one cycle for a typical, large earthquake commonly includes
the following two phases: accumulation of elastic strain en-
ergy with tectonic loading (phase II), and rupture nucleation
at the critical stage where an adequate amount of elastic
strain energy has been accumulated (phase III). Phase II is
important for physical modeling of intermediate-term fore-
casting, and phase III for physical modeling of short-term
(immediate) forecasting. Thus, the models for intermediate-
term and short-term (immediate) forecasts can be unified in
the context of the earthquake cycle model. These models
commonly show that there are scaling relations between the

size of the ensuing event to be predicted and the critical size
of the region where premonitory phenomena proceed. For
typical, large earthquakes, there is also a scaling relation be-
tween the time to the critical point and the size of the event
to be predicted. It follows from these scaling relations that
typical, large earthquakes are in principle predictable. The
scenario presented will be significant and useful as a ne-
cessary step for establishing the methodology for forecasting
large earthquakes.
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