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Magnetohydrodynamic parametric instabilities of parallel propagating
incoherent Alfvén waves
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Numerical experiments for parametric instabilities of incoherent Alfvén waves in the context of one dimen-
sional Hall-MHD equation sets are studied. The reason why the decay instability of incoherent waves can be
explained in terms of that of the coherent wave is understood through analysis on nonlinearly driven finite am-
plitude density fluctuations. Numerical results suggest the importance of modulational instabilities of left-hand

polarized Alfvén waves.
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1. Introduction

Large amplitude Alfvén waves are ubiquitous in the so-
lar wind (Bruno and Carbone, 2005; Goldstein et al., 2005),
and are believed to play important roles in the acceleration
and heating of the solar wind plasma (see Suzuki and In-
utsuka, 2006). The solar wind Alfvén waves are typically
robust for linear ion-cyclotron damping (due to small wave
frequencies) and also for linear Landau damping (due to
the small propagation angle relative to the background mag-
netic field). On the other hand, through parametric instabil-
ities, they can transfer their energy into longitudinal waves,
which subsequently heat the background plasma through
the ion Landau damping.

Parametric instabilities of a parallel propagating coherent
(monochromatic) Alfvén wave have been investigated both
theorically (Champeaux et al., 1999; Nariyuki and Hada,
2006a, b, and references therein) and numerically (Tera-
sawa et al., 1986; Hoshino and Goldstein, 1989; Agim et
al., 1995; Vasquez, 1995; Del Zanna et al., 2001; Turk-
mani and Torkelsson, 2003; Laveder et al., 2003; Bugnon
et al., 2004). The decay instability of incoherent (broad
band) Alfvén waves was first considered by Umeki and
Terasawa (1992), who numerically studied evolution of the
instability starting from a power-law-type spectrum, as ac-
tually observed (Tu and Marsch, 1995; Narita et al., 2006).
They found that the decay of the waves can be consistently
explained by one of the coherent waves when the plasma
B (=the squared ratio between the sound velocity to the
Alfvén velocity) is small. Malara and Velli (1996) subse-
quently developed a formulation for the decay instability
of incoherent Alfvén waves, and Malara et al. (2000) dis-
cussed the nonlinear evolution and saturation of the insta-
bility without the Hall effect. Agim et al. (1995) discussed
the decay instability of the right-hand polarized incoherent

Copy right© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.

dispersive Alfvén waves and compared the numerical re-
sults with observations.

The motivation of the present study is to clarify the rea-
son why the decay instability of incoherent waves can be
understood in a manner consistent with that of the coher-
ent wave. We perform simple numerical experiments in the
context of one-dimensional Hall-MHD equation sets and
explain the mechanism of parametric instabilities of inco-
herent left-hand polarized waves as a consequence of insta-
bilities nonlinearly driven by finite amplitude density fluc-
tuations. We show the numerical results in Section 2 and
summarize the results and discuss some future issues in
Section 3.

2. Numerical Results
2.1 Basic equations

We consider a set of one-dimensional Hall-MHD equa-
tions,
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where b = b, +ib. and v = v, +iv; are the complex trans-
verse magnetic field and velocity, respectively, u = v, is the
longitudinal velocity, and other notations are standard. All
of the normalizations have been made using the background
constant magnetic field, density, Alfvén velocity, and ion
gyro-frequency, all defined at a certain reference point. For
simplicity, we assume the equation of state to be isothermal,
p = Bp.

We numerically solved Egs. (1)—(4) using the rational-
ized Runge-Kutta scheme for time integration and the spec-
tral method for evaluating spatial derivatives under periodic
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boundary conditions. In order to handle the formation of
strong shocks, we have included in the set of equations
small dissipation terms (proportional to the second order
spatial derivatives, with coefficients ~10~* to 10~3). Un-
less otherwise noted, the number of grid points is 2048 with
cell spacing 0.25.

The initial Alfvén waves are given as

ky
F,= Z Fk’; exp(i (wot — kox + ¢r,)) )

ko=k,

where F = b, v, o = k3(1 + ay), v, = —kobj, /wo, and
h = r, [ stands for the right-hand (RH) and left-hand (LH)
polarizations, respectively. We adopt the notation that the
positive (negative) wy corresponds to the RH (LH) polarized
waves. The initial waves are given within the interval of k;
and k; (the case k; = k; corresponds to the coherent wave).
The phase ¢y, is given as random.

2.2 Coherent Alfvén wave and density mode

Before running the simulation with incoherent Alfvén
waves, we first show the results of a simple numerical ex-
periment on “nonlinear” parametric instabilities, using a co-
herent finite amplitude Alfvén wave (kg = k; = k), small
amplitude white noise (the r.m.s. amplitude = 10~ for all
the variables), and a finite amplitude monochromatic sound
wave, pgexp(i (Qot — Kox)), where Qo/Ko = /B (we
choose here +).

Figure 1(a) and (b) shows time evolution of the magnetic
field power spectrum. The parameters used are, for both of
the figures, B = 0.4, b} = 0.3, b}, = 0, ko = 0.49, w =
0.63, pp = 0.1, and Ky = 0.60 for Fig. 1(a) and Ky = 0.65
for Fig. 1(b). Superposed within the figures are the linear
growth rate (assuming that finite amplitude sound wave is
absent). The coupling between the initial Alfvén wave at
k = ko and the initial sound wave at k = K, produces a
‘seed’ of transverse daughter waves at k; = ky = ko £ Ko,
which we will call Initially Coupled Mode (ICM) hereafter.
If the ICM happens to be within the decay unstable regime,
it is preferentially amplified, as shown in Fig. 1(b). In
contrast, if k; is outside the decay unstable regime, the
wave at k; gradually ceases away by the dissipation, while
the daughter wave corresponding to the maximum growth
of the decay instability grows gradually. This is seen in
Fig. 1(a), where k; approximates —0.1 and & approximates
—0.2.

The wave at the maximum growth does not become dom-
inant in Fig. 1(b) since much of the parent wave energy is
used in the growth of the ICM. The results here indicate
that the finite amplitude density fluctuations can nonlinearly
control the final (much longer than the linear growth time
scale) state of the decay instability.

A similar argument holds for the modulational instability
as well. In general, the fate of the instability is determined
by relative amplitude of the initial trigger (pg of the ICM in
the case discussed above) compared with that of the noise.
2.3 Incoherent Alfvén waves

When incoherent Alfvén waves are initially given as a
broadband power-law type spectrum (see Umeki and Tera-
sawa (1992), and also the numerical experiments below),
density fluctuations are instantaneously produced due to en-
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Fig. 1. Time evolution of magnetic field power spectrum (Alfvén waves).
Linear growth rate x 10? of the decay instability is superposed as white
dotted lines. Parameters used are: f = 0.4, b’kio = 0.3, beO =0,
ko = 049, wg = 0.63, pp = 0.1, and (a) K9 = 0.59, so that
ki = ko — Ko = —0.10, and (b) Ko = 0.64, k; = —0.15. In
(a) the daughter Alfvén wave around the maximum linear growth is
amplified eventually, while in (b) instead, the initially coupled mode
(ICM), triggered due to the presence of the parent Alfvén and the sound
waves, is preferentially amplified.
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Fig. 2. The linear growth rates of parametric instabilities plotted versus K,
the wave number of the daughter density fluctuations. Parameters used
are: B = 0.35 for all the cases, bfo = 0.1 (thin lines) and 0.37 (thick
lines), and ko = 0.37. Dashed and solid lines represent the cases with
the RH. (& = r) and L.H. (h = [) polarized parent wave. The wave
numbers of the daughter Alfvén waves are given as kg + K.

velope modulation of the magnetic field (see Agim et al.,
1995). Such density modes are usually stable to the decay
instability owing to their small wave numbers (see Vasquez,
1995), and thus they do not play major roles in the non-
linear evolution of the instability. This is the main reason
why the decay of incoherent Alfvén waves remains essen-
tially the same as that of the coherent Alfvén wave (Umeki
and Terasawa, 1992). Another point of practical impor-
tance is that the unstable region of the decay instability is
often quite narrow in the wave number space in numerical
simulations: as an example, we compare the decay insta-
bility (kg < K, where K is the wave number of longitu-
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Fig. 3. Numerical simulation of the R.H. polarized incoherent Alfvén
waves. Shown is the time evolution of the magnetic field power spec-
trum. Parameters used are: g = 0.35, k1 = 037, ki, = 1.1,
\b;0|2 o |k|73, and b, = 0.1. The linear growth rate x 103 of the
decay instability for the parent wave at ko = 0.37, bzo = 0.37 is super-
posed. Evolution of the incoherent Alfvén waves can be explained using
the linear growth of the coherent wave (thin and thick dashed lines in
Fig. 2): it is seen that the daughter Alfvén wave with the wave number
k ~ —0.15 ~ k1 — K4y is dominantly excited.

dinal fluctuations) and modulational instability (kg > K)
growth rates in Fig. 2. When the system size is 256 and
bro approximates 0.1 (thin lines), values typically used in
previous numerical studies, the regime with positive decay
growth includes only a few modes, and the nonlinear cou-
pling we argued above may not be realized simply due to
the lack of enough spatial resolutions. As shown in Fig. 2,
when 8 < 1 in the fluid system, the RH polarized waves are
unstable only to the decay instability, while the LH polar-
ized waves are unstable to both the decay and modulational
instabilities (see Champeaux et al., 1999).

Figure 3 shows the time evolution of the magnetic field
power spectrum for 8 = 0.35, k& = 0.37, k, = 1.1,
b1 o k|73, and b = 0.1. The linear growth due to
the Alfvén wave at ky = k; (the thick dashed line in Fig. 2)
is superposed. As expected, the decay of the RH polarized
incoherent Alfvén waves take place in a manner consistent
with that of the coherent wave. The daughter Alfvén wave
atk ~ —0.15 ~ k; — Kpax 1s the most dominantly excited.

The LH polarized incoherent Alfvén waves evolve quite
differently (Fig. 4). Since the density fluctuations produced
by the envelope modulation are unstable to the modula-
tional instability (the thick solid line in Fig. 2), they grow
using much of the energy originally stored in the initial
Alfvén waves, leaving the decay instability to be inactive
even though it has the largest linear growth rate.

Finally, we remark that the finite correlation among wave
phases is more strongly generated by the modulational in-
stability than by the decay instability. From the compari-
son of structure functions of a given wave data and that of
the phase-shuffled/phase-correlated surrogates, a method to
quantitatively evaluate the phase coherence among waves
has been proposed and applied to foreshock MHD waves
(Hada et al., 2003). We have applied the method to the mag-
netic field data produced by the decay and the modulational
instabilities shown in Figs. 3 and 4. The phase coherence
index (C4) being close to 0 indicates that the waves phases
are almost randomly distributed, while larger values of Cy
imply the presence of phase coherence. Figure 5 shows time
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Fig. 4. The same as Fig. 3, but for the L.H. polarized incoherent Alfvén
waves, which propagate in the same direction as the initial R.H. waves
in Fig. 3. Parameters used are: B8 = 0.35, ky = —0.37, kp = —1.1,
|b,’m|2 oc k|73, and bf, = 0.1. Evolution of incoherent Alfvén waves
cannot be explained using the linear growth of the coherent wave (thick
and thin solid lines in Fig. 2). Rather than the decay instability (k > 0),
the modulational instability (k < 0) becomes dominant, as it is non-
linearly triggered by the density fluctuations produced by the magnetic
field envelope modulation, even though the linear growth rate for the
decay is larger than that of the modulational instability.

evolution of Cy for the run shown in Fig. 3 (black) and in
Fig. 4 (gray). The phase coherence is clearly produced as
a consequence of the modulational instability, while that
of the decay instability appears to be weak. This differ-
ence comes from the long-range correlation in the Fourier
space among wave modes through the modulational insta-
bility (see figure 13 in Nariyuki and Hada, 2006a). We point
out that finite phase correlation among waves are generated
in the solar wind (Hada et al., 2003).

In the solar wind, density fluctuations also consist
of power-law-type broadband spectrum (Tu and Marsch,
1995). In parametric instabilities of incoherent Alfvén
waves, the density modes with the wave number unstable
to the instabilities mainly play important role in the dissipa-
tion of Alfvén waves. In addition, whatever the finite phase
correlations considered in the initial transverse and longitu-
dinal the present results do not change.

3. Summary and Discussion

By performing one-dimensional Hall-MHD simulations,
we have studied parametric instabilities of parallel propa-
gating incoherent Alfvén waves and shown that the insta-
bilities are strongly influenced by the presence of finite am-
plitude density fluctuations, as they can be the seed popula-
tion for the instabilities. In particular, the incoherent Alfvén
waves with broadband power-law-type spectrum can drive
modulational instability more dominantly than the decay in-
stability, even if the growth rate of the latter is larger than
the former, since the density fluctuations produced by the
magnetic field envelope modulation are likely to fall within
the modulationally unstable regime in the wave number
space.

Such ‘nonlinear’ instabilities (driven by the finite ampli-
tude density fluctuations and finite amplitude Alfvén waves)
are especially important when ion kinetic effects are consid-
ered. Although the density fluctuations are strongly damped
by ion Landau resonance, the ion kinetic effects expand the
decay unstable regime in the wave number space (Vasquez,
1995; Araneda, 1999; Nariyuki and Hada, 2006b). Both the
RH and LH polarized waves become unstable to the modu-
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Fig. 5. Comparison of time evolution of the phase coherence index, Cy,
evaluated for the run shown in Fig. 3 (black) and Fig. 4 (gray). The
modulational instability produces the phase coherence more effectively
than the decay instability.

lational instability in a finite beta plasma such as the solar
wind, and the nonlinearly driven modulational instability
such as those shown Fig. 4 should be taking place in reality.
The presence of the phase coherence among large amplitude
foreshock MHD waves (Hada et al., 2003) may be ascribed
to the modulational type instabilities, rather than the decay.

The maximum linear growth rate of the instability ob-
tained from the dispersion relation is of the order of approx-
imately 0.1|€2¢|, while our simulation suggests that the time
scale for the daughter waves to grow to a ’visible’ amplitude
is somewhat (by a factor of two to three) shorter than the re-
ciprocal of the linear growth rate because of the presence of
finite amplitude initial seed. In real scale, ; /2w is ~0.1
Hz in the solar wind near 1 AU and ~103 Hz in the solar
corona, so that the instability time scale can be roughly es-
timated at ~30 sec and ~1073 sec, respectively, suggesting
that the parametric processes may be important in the dissi-
pation of Alfvén waves in both of these regions. However,
other processes such as the linear wave conversion due to
background field/plasma inhomegeneity may be important
as well, in particular in the coronal heating by Alfvén waves
(see Suzuki and Inutsuka, 2005; Tsiklauri et al., 2005).

Finally, we list the limitations of the present work. We
have considered a one-dimensional system, assuming that
the initially quasi-parallel propagating waves remain to be
so at long (compared with linear growth) time scales. The
assumption breaks down when the background is inhomo-
geneous, or the coupling to oblique daughter waves be-
comes important (see Shukla and Stenflo, 1989; Laveder
et al., 2003). Linear steepening of oblique Alfvén waves
can rapidly produce density perturbations which can drive
the nonlinear parametric instabilities.

Another assumption in the present analysis is the use of
fluid formulation. Accordingly, the important kinetic ef-
fects such as the ion Landau/cyclotron damping, (correct
treatment of) heating and acceleration of the plasma and
the broadening of the modulational instability regime, as
mentioned earlier, are all neglected. Furthermore, inclu-
sion of anomalously accelerated/diffused particles due to
the phase coherent waves may be important (Kuramitsu and
Hada, 2000; Otsuka and Hada, 2006), which are produced
presumably via a parametric process, especially the mod-
ulational instabilities. In order to discuss these issues, nu-
merical studies using two-dimensional hybrid simulations
are being planned.
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