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Seismograms of microearthquakes are complex; however, their envelopes broaden as the travel distance
increases. P-waves are recorded in transverse components, S-waves are recorded in the longitudinal component,
and waves are observed at sites even in the nodal direction of the source radiation. These phenomena, which are
typically found in short-period seismograms, can be interpreted to be the result of scattering due to lithospheric
inhomogeneity. We report here our study of a simple statistical model in which the propagation of waves radiated
from a point source in two-dimensional (2-D) random elastic media is characterized by a Gaussian autocorrelation
function. For the case that the wavelength is shorter than the correlation distance, two methods based on the
Markov approximation are introduced for the direct synthesis of vector wave envelopes. One is to analytically
solve the stochastic equation for the two-frequency mutual coherence function; the validity of the solution is
confirmed by using finite difference simulations. The second is to numerically solve the stochastic equation
for the mutual coherence function. The two methods are equivalent, but the latter is applicable to nonisotropic
source radiation. For the case of a point shear dislocation source, a peak delay from the onset and a smoothly
decaying tail are found to be common to synthesized envelopes in all azimuths. Scattered waves are excited even
at receivers in the nodal direction, and amplitudes become independent of the radiation pattern as lapse time
increases.
Key words: Scattering, random media, envelope, simulation.

1. Introduction
Seismic observations of local microearthquakes have re-

vealed that high-frequency seismograms are strongly de-
formed by the propagation process through the randomly
inhomogeneous structure of the lithosphere. In addition to
the excitation of coda waves (Aki and Chouet, 1975), P-
waves are seen in transverse components, S-waves are also
seen in the longitudinal component (Matsumura and Sato,
1981), and waves are observed at sites even in the nodal
direction of source radiation. Peak delay and the broaden-
ing of the envelope with increasing travel distance are also
direct evidence of wave scattering due to medium inhomo-
geneity (Sato, 1989).

There have been developments in the modeling of wave
envelopes in random media and analysis of observed seis-
mogram envelopes (see Sato and Fehler, 1998). Complex
waveforms have been deterministically and numerically
simulated in inhomogeneous media (Frankel and Clayton,
1986; Yomogida and Benites, 1995). On the other hand, the
radiative transfer theory with the statistical characterization
of medium inhomogeneity has been often used as the ba-
sic framework of the envelope synthesis of high-frequency
seismograms. Most of these studies treat energy propaga-
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tion focusing on the coda portion of seismogram envelopes
with the assumption of isotropic scattering (Sato, 1977;
Zeng et al., 1993). Sato et al. (1997) provided an exact
solution to the radiative transfer equation for isotropic scat-
tering and a point shear dislocation source. This solution
has been used in the inversion of strong motion records
for the high-frequency radiation from an earthquake fault
(see Nakahara et al., 1998); however, isotropic scattering
assumption is not suitable for the envelope near the direct
arrival where strong forward scattering dominates. There
have been attempts to synthesize polarized vector wave en-
velopes, including the studies of Bal and Moscoso (2000),
who analyzed the depolarization of S-waves after multiple
scattering, and of Margerin et al. (2000), who synthesized
envelopes by using scattering amplitudes of spherical inclu-
sions distributed in uniform media and Stokes vectors. The
radiative transfer theory is heuristic, but some studies have
introduced scattering coefficients predicted from velocity
inhomogeneity spectrum by using the Born approximation.
Sato (1984) simulated three-component envelopes in ran-
dom elastic media for a point shear dislocation source in the
framework of single scattering approximation. Gusev and
Abubakirov (1996) studied how the degree of nonisotropic
scattering affects envelope shape. Recently, Przybilla et al.
(2006) showed an excellent coincidence of envelopes syn-
thesized by using the Monte Carlo method for the radiative
transfer theory and those calculated from finite difference
simulations in two-dimension (2-D) random elastic media.
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These researchers used scattering amplitudes derived from
the Born approximation with the wandering effect of travel
time.

When the wavelength is smaller than the characteristic
scale of medium inhomogeneity, conversion scattering is
weak and scattering occurs around the forward direction,
where the parabolic approximation is suitable for the syn-
thesis of waves near the direct arrival. In this case, en-
velopes in random media can be well synthesized by the
Markov approximation for the two-frequency mutual coher-
ence function (TFMCF), which is a stochastic extension of
the phase screen method (Ishimaru, 1978). Sato (1989) ap-
plied its solution for the interpretation of envelope broaden-
ing of observed S-wave seismograms in Kanto, Japan. Saito
et al. (2002) theoretically solved the envelope broadening
of spherically outgoing waves in von Kármán-type 3-D ran-
dom media that have a realistic power-law spectrum at large
wavenumbers. Fehler et al. (2000) confirmed the validity of
the Markov approximation for scalar waves from a compari-
son with finite difference simulations in 2-D random media.
Wegler et al. (2006) numerically examined the applicable
range of the Markov approximation, and the radiative trans-
fer solution with Born scattering amplitudes and that with
isotropic scattering for scalar waves taking the finite differ-
ence simulation envelope as a reference in 2-D random me-
dia. Compared with the radiative transfer theory with Born
scattering amplitudes, the Markov approximation method
can not explain conversion scattering; however, if we fo-
cus on wave envelopes near the direct arrival, this approx-
imation has the advantage that the envelope characteristics
can be well described by a small number of statistical pa-
rameters. Extension of the Markov approximation to vector
wave envelopes has been carried out recently by Korn and
Sato (2005) and Sato (2006, 2007), who established a rig-
orous derivation of vector wave envelopes in random elastic
media characterized by a Gaussian autocorrelation function
(ACF) that uses the TFMCF of potential field. The valid-
ity of the Markov approximation for vector waves was con-
firmed from a comparison with finite difference simulations
only for plane wave envelopes in the 2-D case (Korn and
Sato, 2005).

There is yet another envelope synthesis, called the
stochastic ray path method (Williamson, 1972, 1975),
which is based on the joint use of the Markov approxi-
mation for the mutual coherence function (MCF) and ray
travel times. The Monte Carlo method commonly used for
the envelope simulation based on the radiative transfer the-
ory treats travel distance and scattering angle as stochastic
processes (Hoshiba, 1994; Yoshimoto, 2000). In contrast,
the stochastic ray path method treats ray bending angle as a
stochastic process and interprets the distribution of the ac-
cumulated travel times arriving at a given distance as the
time trace of wave intensity. This method has the advantage
that it is easily applicable to nonisotropic source radiation.
In addition, it needs a relatively small number of shots for
a stable estimation of envelopes compared with the conven-
tional Monte Carlo method based on the radiative transfer
theory.

In this paper, we report the results of a basic study of vec-
tor seismograms of micro-earthquakes in the lithospheric

inhomogeneity. To this end, we mathematically simulate
vector-wave envelopes for a point source radiation in 2-
D random elastic media characterized by a Gaussian ACF.
Using the Markov approximation for the TFMCF of poten-
tial, we solve vector wave envelopes for isotropic radiation
from a point source. The synthesized envelopes are then
compared with the ensemble-averaged envelopes of finite
difference simulations. Next, using the Markov approxi-
mation for the MCF of potential, we derive the stochastic
master equation appropriate for cylindrical waves. Using
the stochastic ray path method—that is, numerically solv-
ing this equation and using ray travel times—we synthe-
size vector wave envelopes. The equality of two simula-
tion methods of the Markov approximation is numerically
confirmed for the case of isotropic radiation from a point
source. Finally, applying the stochastic ray path method
to the radiation from a point shear dislocation source, we
synthesize vector wave envelopes at receivers in different
azimuths.

2. Markov Approximation for the Two-Frequency
Mutual Coherence Function

2.1 Two-frequency mutual coherence function
Wave propagation through 2-D inhomogeneous elastic

media is studied in the case that the velocity inhomogeneity
is small and the wavelength is shorter than the characteristic
scale of inhomogeneity a. The spatial derivative of wave ve-
locity can then be neglected, and the conversion scattering
between the P- and S-waves is very small. The potential
field φ (x, z, t) is governed by the wave equation in Carte-
sian coordinates (x, z),

(
∂2

x + ∂2
z

)
φ − 1

V 2
0

∂2
t φ + 2ξ

V 2
0

∂2
t φ = 0, (1)

where ξ (x) is fractional velocity fluctuation around the av-
erage velocity V0.

We study the propagation of waves isotropically radiated
from a point source located at the origin. At a distance r
from the origin, which is larger than the wavelength (r �
1/k0) and correlation distance (r � a), we may write
outgoing waves as a sum of harmonic cylindrical waves of
angular frequency ω using polar coordinates (r, θ) as

φ (r, θ, t) = 1

2π

∞∫
−∞

dω
U (r, θ, ω)

ik0
√

r
ei(k0r−ω t), (2)

where θ is the polar angle measured from the z-axis and
k0 = ω/V0 is the wave number. Substituting Eq. (2) into
Eq. (1), we obtain the parabolic wave equation for U as

2ik0∂rU + ∂2
θ U

r2
− 2k2

0ξU = 0, (3)

where we neglect both a second derivative term with respect
to radius since a � 1/k0 and a term proportional to the
inverse square of distance since r � 1/k0.

We imagine an ensemble of fractional fluctuations {ξ},
where ξ(x) is assumed to be a statistically homogeneous
and isotropic random function of space coordinate x. Here
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we suppose that the randomness is statistically charac-
terized by a Gaussian ACF R(x) ≡ 〈ξ(x′)ξ(x′ + x)〉 =
ε2 exp[−|x|2/a2], where angular brackets represent the av-
erage over the ensemble. Parameters ε and a are root
mean square (RMS) fractional fluctuation and correlation
distance, respectively. The mean velocity is given by V0 =
〈V (x)〉 since 〈ξ(x)〉 = 0.

According to Fehler et al. (2000), we first define the
TFMCF as the correlation of field U between two lo-
cations rθ ′ and rθ ′′ within a small distance from the
global ray direction θ=0 on the transverse line at dis-
tance r at different angular frequencies ω′ and ω′′,
	2(r, θ ′, θ ′′, ω′, ω′′) ≡ 〈U (r, θ ′, ω′)U (r, θ ′′, ω′′)∗〉. For
quasi-monochromatic waves of central wavenumber kc =
(k ′

0 + k ′′
0 )/2 and difference wavenumber kd = k ′

0 − k ′′
0 , we

use the stochastic average of the parabolic wave Eq. (3) to
obtain the master equation for TFMCF as

∂r	2 + i
kd

2k2
c r 2

∂2
θd

	2 + k2
c [A (0) − A (rθd)] 	2 + k2

d

2
A (0) 	2 = 0,

(4)

where back scattering is neglected and causality is used
for the derivation. This is called the Markov approxima-
tion. We used ∂2

θ ′	2 = ∂2
θ ′′	2 = ∂2

θd
	2 since 	2 de-

pends only on the difference angle between two locations
θd = θ ′ − θ ′′ and is independent of the center of mass angle
θc = (θ ′+θ ′′)/2 because of the homogeneity of randomness
and the isotropic radiation. The second term in Eq. (4) gives
the ray propagation in the background homogeneous media,
and the third term represents the interaction with medium
inhomogeneity. Function A in Eq. (4) is the longitudinal in-
tegral of ACF as a function of difference transverse distance
xd = rθd :

A (xd) ≡
∫ ∞

−∞
R (z, xd) dz = √

πε2ae− x2
d

a2

≈ √
πε2a

[
1 − x2

d

a2

]
for |xd | � a. (5)

At a long travel distance, the dominant contribution origi-
nates from the small transverse distance only. Factorizing
	2 into the product of 0	2 and an exponential term as

	2 = 0	2e
− ω2

d A(0)r

2V 2
0 , (6)

we obtain the master equation for 0	2:

∂r 0	2 + i
kd

2k2
c r2

∂2
θd 0	2 +

√
πε2k2

c r2θ2
d

a
0	2 = 0. (7)

Here we put the initial condition for a coherent impulsive
isotropic radiation from a point source at the origin as

	2 (r → 0, θd , ωd , ωc) =0 	2 (r → 0, θd , ωd , ωc) = 1/(2π).

(8)

Fehler et al. (2000) analytically solved the master equation
(7) under this initial condition as

0	2 (r, θd , ωd , ωc) = 1

2π

√
s0

sin s0
e
−

(
1−s0 cot s0

s2
0

)
2V0rk2

c tM θ2
d
,

(9)

Table 1. Assumptions and results.

Assumption Result

Small fractional fluctuation ε �
1 and short wavelength ak0 � 1

No conversion scattering. Para-
bolic equation for potential.
Multiple small-angle scattering
around the forward direction.

Ensemble of random media Stochastic equation for field mo-
ments.

Causality and no backscattering Markov-type stochastic master
equation for TFMCF.

Long travel distance Contribution comes from small
transverse distances in A.

Type of random media:
-Gaussian ACF
-von Kármán-type ACF

Envelope width:
-is independent of frequency.
-increases with frequency.

where s0 = 2eπ/4√tMωd and the characteristic time tM =√
πε2r2/ (2V0a), which is practically independent of cen-

tral angular frequency.
The Fourier transform of the exponential term in the RHS

of Eq. (6) is

w (r, t) = 1

2π

∞∫
−∞

dωd e
− A(0) r

2V 2
0

ω2
d
e−iωd t = V0√

2π
√

πε2ar
e

− V 2
0 t2

2
√

πε2ar ,

(10)

which does not influence the broadening of individual wave
packets but shows the wandering effect from statistical av-
eraging of the phase fluctuations of different rays. The time
width of the wandering effect is proportional to the square
root of travel distance. We note that lim

r→0
w (r, t) = δ (t) and∫ ∞

−∞ w dt = 1.
How each assumption affects the approximation and the

results are summarized in Table 1.
2.2 Intensity spectral density

For P-waves, the angular-component intensity at a dis-
tance r is written as an integral of the intensity spectral den-

sity (ISD)
�

I P
θ over central angular frequency:

〈∣∣u P
θ (r, t)

∣∣2
〉

=
〈
∂θ ′φ (r, θ ′, t)

r

∂θ ′′φ (r, θ ′′, t)∗

r

〉
θ ′=θ ′′

= 1

(2π)2

1

r

∞∫
−∞

dω′
∞∫

−∞

dω′′

·
〈
∂θ ′U (r, θ ′, ω′)

k ′
0r

∂θ ′′U (r, θ ′′, ω′′)∗

k ′′
0r

〉
θ ′=θ ′′

·ei(ω′−ω′′)(t−r/V0)

≈ 1

(2π)2

1

r

∞∫
−∞

dωc

∞∫
−∞

dωd

·
[
− 1

k2
c r 2

∂2
θd

	2 (r, θd , ωd , ωc)

]
θd =0

e−iωd (t−r/V0)

= 1

(2π)2

1

r

∞∫
−∞

dωc

∞∫
−∞

dωd e
− A(0) r

2V 2
0

ω2
d

·
[
− 1

k2
c r 2

∂θd
2
0	2 (r, θd , ωd , ωc)

]
θd =0

e−iωd (t−r/V0)

= 1

2π

∞∫
−∞

dωc

�

I P
θ (r, t; ωc) , (11)



212 H. SATO AND M. KORN: CYLINDRICAL WAVE ENVELOPES IN 2-D RANDOM ELASTIC MEDIA

where we assumed that TFMCF is independent of θc. In a
band with central angular frequency ωc, and width � f (=
�ω/2π) and width

�

I P
θ the time trace of

�

I P
θ � f gives the

mean square (MS) envelope. ISD can be written as a con-

volution of ISD without wandering effect
�

I P
0θ and the wan-

dering term w in time domain as

�

I P
θ (r, t; ωc) =

∞∫
−∞

dt ′w
(
r, t − t ′) �

I P
0θ

(
r, t ′; ωc

)
, (12)

where
�

I P
0θ is given by

�

I P
0θ (r, t; ωc) ≡ 1

2πr

∞∫
−∞

dωd

[
− 1

k2
c r 2

∂θd
2
0	2 (r, θd , ωd , ωc)

]
θd =0

·e−iωd (t−r/V0)

= 1

2πr

4V0tM

r

1

2π

∞∫
−∞

dωd

·e−iωd (t−r/V0) 1 − s0 cot s0

s2
0

√
s0

sin s0

= 4V0

r

1

2πr

1

2π

∞∫
−∞

dωd e−iωd (t−r/V0) ∂

i∂ωd

√
s0

sin s0

= 4V0tM

r

(t − r/V0)

tM

�

I
R

0 (r, t; ωc) . (13)

Here we define the reference ISD without wandering effect
�

I R
0 as the Fourier transform of 0	2 as

�

I R
0 (r, t; ωc) = 1

2πr

∞∫
−∞

dωd

·0	2 (r, θd = 0, ωd , ωc) e−iωd (t−r/V0)

= 1

2πr

1

2π

∞∫
−∞

dωd

√
s0

sin s0
e−iωd (t−r/V0), (14)

which is the ISD of a cylindrical scalar wave as de-
rived in Fehler et al. (2000). For the derivation of the
last line in Eq. (13) we used the relation 2π iug (u) =∫ ∞
−∞ dωde−iωd u∂ωd ĝ (ωd), where ĝ is the Fourier transform

of time function g.
Using the leading term in Eq. (3), ∂rU ≈ (i/2k0r2)∂2

θ U ,
we have the radial-component intensity as

〈∣∣u P
r (r, t)

∣∣2
〉
= 〈

∂rφ
(
r, θ ′, t

)
∂rφ

(
r, θ ′′, t

)∗〉
θ ′=θ ′′

= 1

(2π)2

1

r

∞∫
−∞

dω′
∞∫

−∞
dω′′

·
〈(

U ′ + ∂rU ′

ik ′
0

) (
U ′′ + ∂rU ′′

ik ′′
0

)∗〉
θ ′=θ ′′

·ei(ω′ −ω′′)(t−r/V0)

≈ 1

(2π)2

1

r

∞∫
−∞

dω′
∞∫

−∞
dω′′

·
〈
U ′U ′′a∗ + ∂2

θ ′U ′

2k ′
0

2r2
U ′′∗ + U ′ ∂

2
θ ′′U ′′∗

2k ′′
0

2r2

〉
θ ′=θ ′′

·ei(ω′ −ω′′)(t−r/V0)

≈ 1

(2π)2

1

r

∞∫
−∞

dωc

∞∫
−∞

dωd

·
[(

1 + 1

r2k2
c

∂2
θd

)
	2 (r, θd , ωd , ωc)

]
θd=0

·e−iωd (t−r/V0)

= 1

(2π)2

1

r

∞∫
−∞

dωc

∞∫
−∞

dωde
− A(0) r

2V 2
0

ω2
d

·
[(

1 + 1

r2k2
c

∂2
θd

)
0	2 (r, θd , ωd , ωc)

]
θd=0

·e−iωd (t−r/V0)

= 1

2π

∞∫
−∞

dωc
�

I P
r (r, t; ωc) , (15)

where the radial component ISD
�

I P
r is written as a convolu-

tion of ISD without wandering effect
�

I P
0r and the wandering

term w as

�

I P
r (r, t; ωc) =

∞∫
−∞

dt ′w
(
r, t − t ′) �

I P
0r

(
r, t ′; ωc

)
. (16)

We note that
�

I P
0r is written as

�

I P
0r (r, t; ωc) = 1

2πr

∞∫
−∞

dωd

·
[(

1 + 1

r2k2
c

∂2
θd

)
0

	2 (r, θd , ωd , ωc)

]
θd=0

·e−iωd (t−r/V0)

= �

I R
0 (r, t; ωc) − �

I P
0θ (r, t; ωc) (17)

The initial condition of Eq. (8) represents the isotropic radi-
ation of a wavelet characterized by a delta-fucntion for the
source time function’s square per frequency:

�

I R
0 (r, t; ωc) = �

I P
0r (r, t; ωc) = 1

2πr
δ

(
t − r

V0

)

and
�

I P
0θ (r, t; ωc) = 0 as r → 0. (18)

For a given source time function’s square per angular fre-

quency i (t; ωc), we calculate the convolution
�

I P
θ ⊗ i for

the angular component and
�

I P
r ⊗ i for the radial component

since constituent waves are incoherent.
For the case of isotropic radiation of an S-wavelet from

a point source, replacing P with S and substituting the

average S-wave velocity into V0,
�

I P
r and

�

I P
θ represent the

angular and radial component wave intensities
�

I S
θ and

�

I S
r ,

respectively.
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Fig. 1. Temporal change in
�

I R
0 and (t − r/V0)

�

I R
0 /tM against reduced

time t − r/V0 for a point source radiation in random elastic media
characterized by a Gaussian ACF.

0                   10                 20                  30                  40

0.04

0.3

0.2

0

0.1

0

0.02

t -1∝

t -1.5∝

Lapse Time [s]

R
M

S 
A

m
pl

it
ud

e 

Radial Component

Angular Component
(a)

(b)

R
M

S 
A

m
pl

it
ud

e

50km

200km150km

100km

Fig. 2. Square root ISD envelopes of P-waves for an isotropic radiation
from a point source in random elastic media characterized by a Gaus-
sian ACF predicted by the Markov approximation for TFMCF: (a) the
angular component and (b) the radial component. Thin solid curves and
gray bold curves show square root of ISDs without wandering effect
and those with wandering effect, where the source time function of a
2-Hz wavelet. Broken curves show peak amplitude decays according to
a power of lapse time.

2.3 Characteristics of resultant ISDs
As was done in Fehler et al. (2000), we can numeri-

cally evaluate the reference ISD without wandering effect
by Eq. (14) by using an Fast Fourier Transform (FFT). In

Fig. 1 we plot
�

I R
0 as a gray curve against reduced time

t−r/V0. It takes the maximum value of about 3.15/(2πr tM)

at the reduced time of about 0.12tM . The peak height of
�

I R
0

is proportional to the inverse cube of travel distance since
the characteristic time is proportional to the square of dis-

tance. A black curve shows (t − r/V0)
�

I R
0 /tM , which has

the maximum value of about 0.49/(2πr tM) at the reduced
time of about 0.21tM , which is nearly twice the peak delay

of
�

I R
0 . This means that

�

I P
0θ has a maximum value of about

0.31V0/r2. The peak height of
�

I P
0θ is nearly proportional

to the inverse cube of travel distance as
�

I R
0 when the peak

height of
�

I P
0θ is negligible. There are constraints on the time

integral of ISDs. We have
∫ ∞

r/V0
dt

�

I R
0 = 1/ (2πr); however,

the time integral of
�

I P
0θ is independent of travel distance as∫ ∞

r/V0
dt

�

I P
0θ = ε2/

(
3
√

πa
)
, suggesting that the time inte-

gral of
�

I P
0θ offers a stable measure of the ratio of velocity

inhomogeneity to the correlation distance.

Fig. 3. Schematic illustration of one realization of a random elastic
medium characterized by a Gaussian ACF (ε = 5% and a = 5 km) and
the configuration of a source (star) and four receiver arrays (circles) used
for FD numerical simulations, where mean P- and S-wave velocities are
6 km/s and 3.46 m/s, respectively.

Fig. 4. Examples of FD simulation traces at a distance of 150 km in one
realization of a random elastic medium characterized by the Gaussian
ACF for the isotropic radiation of a 2-Hz P-wavelet from a point source.
Only every second trace is plotted.

In Fig. 2, we plot the time traces of square root ISDs,
which is a more appropriate means for a comparison with
RMS envelopes, where ε = 5% and a = 5 km and the av-

erage P-wave velocity is 6 km/s. We note that
�

I P
0θ exceeds

�

I R
0 as the reduced time increases, indicating a violation of

the approximation. Theoretical curves are plotted only in

the range of
�

I P
0θ <

�

I R
0 . The asymptotic peak decay curve

of the angular component
√

�

I P
0θ and that of the radial com-

ponent
√

�

I P
0r are shown by power law curves t−1 and t−1.5,

respectively, as plotted by broken curves.
2.4 Comparison with finite-difference simulations

A standard finite difference technique in space-time do-
main is employed for the syntheses of vector waves in vari-
ous realizations of 2-D random elastic media. The practical
scheme is the same as that reported in Korn and Sato (2005),
where the equations for particle velocities and stresses in an
isotropic inhomogeneous elastic medium are solved on a
staggered grid. The accuracy is second-order in time and
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Fig. 5. Comparison of RMS envelopes of FD simulated waves (bold
gray curves) and theoretical envelopes directly predicted by the Markov
approximation (thin black curves) in random media characterized by a
Gaussian ACF for the isotropic radiation of a 2-Hz P-wavelet from the
point source.

fourth-order in space. Absorbing boundary conditions are
implemented at the boundaries of the computational grid.
The size of the model is 450×450 km, as illustrated in
Fig. 3. In the following simulation, we used ε = 5% and
a = 5 km. Mean P- and S-wave velocities are 6 km/s, and
3.46 km/s, respectively. The fractional fluctuation of mass
density is chosen as 0.8ξ (x) according to Birch’s law (see
Sato, 1984). This model is scaled to be a representative of
an average crust for high-frequency seismic wave propaga-
tion.

The far-field pulse shape of the outgoing P-wavelet in
a homogenous medium radiated isotropically from a source
located at the center is given by the convolution ur = g2⊗h,
where the 2-D Green function g2(r, t) = 2V0 H(V0t −
r)/

√
V 2

0 t2 − r2 (Morse and Feshbach, 1953, p. 842) is

approximated as g2 (r, t) ≈ √
2V0/

√
r (V0t − r) near the

wave front t ≈ r/V0. The source time function is given by

h(t) = c

[
sin

Nπ

T
t − N

N + 2
sin

(N + 2) π

T
t

]
for 0 ≤ t ≤ T, (19)

where T is the duration of the wavelet, and N is a param-
eter indicating the number of maxima and minima of the
wavelet. Choosing N = 2 and T = 0.5 s, we have a 2-Hz
wavelet with a band-limited spectrum of half-width � f be-
tween 0.8 and 4.1 Hz. Around the source a homogeneous
region of 1-km width is introduced to ensure pure isotropic
P-wave radiation. Factor c in the source time function is
chosen to satisfy

∫ T
0 2πr |ur |2 dt = 1 near the source.

The wave field is recorded at circular arrays of receivers
at r = 50, 100, 150 and 200 km, respectively. Each circular
array consists of 72 receivers at intervals of 5◦, as shown by
open circles in Fig. 3. The spatial discretization in the finite-
difference (FD) scheme is 0.1 km, and the temporal dis-
cretization is 6 ms, slightly below the stability limit of the
numerical scheme. This choice ensures that the numerical
errors remain small. The wavelength of a 2-Hz P-wavelet
is smaller than the correlation distance and the medium in-
homogeneity is weak.

Figure 4 shows examples of FD waveforms that have
travelled 150 km through one realization of random elastic
medium. Strong distortions of pulse shape and travel time

fluctuations are clearly seen. The P-wave is followed by
scattered waves in the radial-component traces, and scat-
tered waves also appear in the angular-component traces.
We obtain the ensemble-averaged envelope at each travel
distance by averaging the square of wave traces over 72 re-
ceivers along the circular array in five realizations of ran-
dom media, smoothing with time constant 0.5 s, and tak-
ing the square root. The bold gray curves in Fig. 5 show
RMS envelopes at four travel distances, clearly revealing
that the peak delay and the time width of the envelope in-
crease with travel distance—in both the radial and angular
components. The existence of wave trains in the angular
component provides clear evidence of scattering caused by
random inhomogeneity. At each travel distance, the peak
amplitude of the angular component is smaller than that of
the radial component; however, the former amplitude de-
creases more slowly than that of the latter amplitude. The
peak delay of the angular component looks larger than that
of the radial component.

Using ISDs with wandering effect calculated from the
Markov approximation for the same parameters character-
izing random media, we perform the convolution with the
source time function’s square of the 2 Hz P-wavelet; then,

taking square root
√

�

I P
θ ⊗ i and

√
�

I P
r ⊗ i , we obtain RMS

envelopes, where we practically put i (t) = 2πr |ur |2 of
the FD simulation near the source. Theoretical RMS en-
velopes according to the Markov approximation are shown
by the plots of gray curves in Fig. 2. Each envelope has a
longer time width and a smaller peak height compared with
the corresponding envelope without wandering effect. We
find that the difference becomes smaller as the travel dis-

tance increases. In Fig. 5, RMS envelopes
√

�

I P
θ ⊗ i and√

�

I P
r ⊗ i predicted by the Markov approximation are plot-

ted as thin black curves together with FD envelopes. We
find that the Markov approximation envelopes well explain
the peak height, the delay of the peak arrival from the onset,
and the envelope broadening of FD envelopes at four dis-
tances. We also find a small discrepancy between them as
reduced time increases at each travel distance since FD en-
velopes contain large angle scattering and conversion scat-
tering that the Markov approximation neglects. The impor-
tance of conversion scattering for P-coda is carefully ex-
amined by Przybilla et al. (2006). With the exception of
the coda portion, FD envelopes are quantitatively well ex-
plained by Markov envelopes.

The time integral of FD envelopes∫
2πr(|ur |2 + |uθ |2)dt takes nearly the same value as

that predicted from the Markov approximation at four dis-
tances and the relative error is less than 2%, where the time
window length is chosen as 7, 12, 18, and 24 s at 50, 100,
150 and 200 km, respectively. The ratio of time integrals of
FD envelopes

∫ |uθ |2dt/
∫

2πr(|ur |2 + |uθ |2)dt is nearly
equal to the predicted ratio ε2/(3

√
πa) with a relative

error of less than 4%. These results show that the partition
of the power into the angular component is a stable and
reliable measure of randomness. Our results indicate that
the predictions made by the Markov approximation are
reliable for the case of velocity fractional fluctuation ε up
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to 5%.

3. Stochastic Ray Path Method
We introduce a stochastic master equation for MCF of

potential field on the basis of the Markov approximation.
The stochastic ray path method of Williamson (1972) uses
the solution of this stochastic equation with ray travel times
for the evaluation of scalar wave envelope at a given travel
distance. Extending this method to vector waves, we calcu-
late vector component intensities for a point source radia-
tion.
3.1 Markov approximation for the MCF

For waves isotropically radiated from a point source lo-
cated at the origin, we define the MCF of field U between
different locations on the transverse line (x-axis) at a large
distance r as 	1(r, θ ′, θ ′′, ω) ≡ 〈U (r, θ ′, ω)U (r, θ ′′, ω)∗〉.
The MCF is a function of the difference transverse coordi-
nate xd ≡ rθd = r(θ ′ − θ ′′) since it is independent of the
center of mass angle θc = (θ ′ + θ ′′)/2 because of isotropy
of randomness and isotropic source radiation. Neglecting
backward scattering and using causality, we can derive the
master equation for MCF according to the Markov approx-
imation as

∂r	1 + k2
0 [A (0) − A (rθd)] 	1 = 0, (20)

where A is the longitudinal integral of ACF as defined by
Eq. (5) (see p. 244, Sato and Fehler, 1998). Integrating
Eq. (20) for an increment �r , we have a solution of MCF
at r + �r as

	1 (r + �r, xd , ω) = e−k2
0 [A(0)−A(xd )]�r 	1 (r, xd , ω) .

(21)

Using Eq. (21) successively by a split step method with an
increment �r , we get 	1 at any distance r . The angular
spectrum function (ASF) is defined as the Fourier transform
of MCF in the transverse plane,

	̆1 (r, kx , ω) =
∫ ∞

−∞
dxde−ikx xd 	1 (r, xd , ω) (22)

This gives the distribution of ray wavenumbers. We may
write Eq. (21) as a convolution for ASF,

	̆1 (r + �r, kx , ω) = 1

2π

∫ ∞

−∞
dk ′

x
̆

· (�r, kx − k ′
x , ω

)
	̆1

(
r, k ′

x , ω
)

(23)

where the integral kernel is


̆ (�r, kx , ω) =
∫ ∞

−∞
dxde−ikx xd e−k2

0 [A(0)−A(xd )]�r . (24)

The meaning of ASF becomes clear if we change the
argument from wavenumber kx to local ray angle φ ≈
kx/k0 in the case of small angle scattering. Replacing
k0
2π

	̆1 (r, k0φ, ω) with 	̆φ (r, φ, ω), we re-define the ASF for
ray angle φ. We may then write Eq. (23) as

	̆φ (r + �r, φ, ω) =
∫ ∞

−∞
dφ′
̆φ

· (�r, φ − φ′, ω
)
	̆φ

(
φ′, r, ω

)
, (25)

where the transfer function for φ is


̆φ (�r, φ, ω) ≡ k0

2π

̆ (�r, k0φ, ω)

= 1

2π

∫ ∞

−∞
dwe−iφwe−k2

0

[
A(0)−A

(
w
k0

)]
�r

, (26)

which is normalized as
∫ ∞
−∞ 
̆φdφ = 1. Equation (26)

means that ray bending process is essentially governed by
the spectrum of random media through function A. Ray
bending is small when the wavelength is shorter than the
correlation distance and velocity fluctuation is small. As
travel distance increases, the incoherent term controlled by
the transfer function at a small transverse distance domi-
nates over the coherent term. For the envelope synthesis at
a long travel distance, it is enough to use the transfer func-
tion at a small transverse distance only (see, for example,
Ishimaru, 1978, p. 321). For the case of Gaussian ACF,
substituting Eq. (5) into Eq. (26), we have a Gaussian-type
transfer function as


̆φ (�r, φ, ω) ≈ 1
√

2π

√
2
√

πε2�r
a

e
− φ2

2

(
2
√

πε2�r
a

)
, (27)

where the standard deviation
√

2
√

πε2�r/a is independent
of angular frequency.

Intensity in the angular-frequency domain is defined by
the ensemble average of the Fourier transform of displace-
ment vector ûP (r, ω). The angular component intensity in
angular-frequency domain is given by

�

J P
θ (r; ω) ≡

〈∣∣û P
θ (r, ω)

∣∣2
〉

=
〈

∂θ ′U
(
r, θ ′, ω

)
r k0

√
r

∂θ ′′U
(
r, θ ′′, ω

)∗

r k0
√

r

〉
θ ′=θ ′′

= 1

r

[
− 1

k2
0r2

∂2
θd

	1 (r, θd , ω)

]
θd=0

. (28)

This can be written as an integral over local ray angle θ :

�

J P
θ (r; ω) = 1

r

[
− 1

k2
0

∂2
xd

	1 (r, xd , ω)

]
xd=0

= 1

r

[
1

2π

∫ ∞

−∞
dkx

k2
x

k2
0

	̆1 (r, kx , ω)

]

≈ 1

r

∫ ∞

−∞
dφφ2	̆φ (r, φ, ω) . (29)

The radial-component intensity in angular-frequency do-
main is given by

�

J P
r (r; ω) ≡

〈∣∣û P
r (r, ω)

∣∣2
〉

≈ 1

r

[(
1 + 1

r2k2
0

∂2
θd

)
	1 (r, θd , ω)

]
θd=0

,(30)

which is written as an integral over local ray angle φ:

�

J P
r (r; ω) = 1

r

[(
1 + 1

k2
0

∂2
xd

)
	1 (r, xd , ω)

]
xd=0

= 1

r

[
1

2π

∫ ∞

−∞
dkx

(
1 − k2

x

k2
0

)
	̆1 (r, kx , ω)

]

≈ 1

r

∫ ∞

−∞
dφ

(
1 − φ2

)
	̆φ (r, φ, ω) . (31)



216 H. SATO AND M. KORN: CYLINDRICAL WAVE ENVELOPES IN 2-D RANDOM ELASTIC MEDIA

Fig. 6. Ray bending process through cylindrical layers with thickness �r
in an inhomogeneous random medium.

The isotropic radiation of coherent waves from the ori-
gin is written by the initial condition 	1 (r → 0, xd , ω) =
1/(2π), that is, 	̆φ (r → 0, φ, ω) = δ (φ) /(2π). When

the medium is homogeneous,
�

J P
r (rω) = 1/(2πr) and

�

J P
θ (rω) = 0. Once ASF 	̆φ is obtained in random media,

it is easy to calculate both radial and angular-component

intensities
�

J P
r and

�

J P
θ at a given distance from the point

source. We should note that Eqs. (29) and (31) describe
stationary state.

For the case of S-waves, replacing P with S in
�

J P
r and

�

J P
θ , we have the angular and radial-component wave inten-

sities in angular-frequency domain, respectively.
3.2 Cylindrical layers and ray travel times

The split-step solution - Eq. (25) - describes how rays
are bent according to the velocity inhomogeneity in a layer
of thickness �r for stationary state. Williamson (1972)
interpreted the convolution integral equation Eq. (25) as
a Wiener process in that the change in ray direction is
stochastically controlled by the spectrum of random media
through factor A. To extend the above solution to non-
stationary state problem, he used the accumulated travel
time for each ray path from a source to a receiver. He
proposed this method for the synthesis of scalar wave en-
velopes for the case of the Gaussian transfer function.
Williamson (1975) denoted this method as the stochastic
ray path method, and a compact summary is given in Us-
cinski (1977, Chapter 6).

The ray bending process takes place in a small region
which can be well described using local Cartesian coordi-
nates; however, it is necessary to use polar coordinates to
describe the ray trajectory from a point source located at the
origin. As illustrated in Fig. 6, we divide a random medium
into many cylindrical layers with a small thickness of �r .

Fig. 7. Distribution of ray coordinate angle θ and that of local ray angle φ

(ASF) at three distances. The initial ray direction is θ = 0 and φ = 0.
SD means the standard deviation.

At the n-th boundary, the absolute ray location is given by
ray coordinates (θn, rn), where rn is the radius from the
source, θn is the ray angle from the initial ray direction from
the source θ = 0, and local ray angle φn is measured from
a radial direction from the source. At the n + 1th bound-
ary after an increment of radius �r in the n-th layer, the
ray coordinate becomes (θn+1, rn+1), and the incident an-
gle to the n + 1th boundary is φ′

n . The path length �ln

satisfies �ln sin φn = rn+1 (θn+1 − θn) and �ln sin φ′
n =

rn (θn+1 − θn); that is, sin φ′
n/ sin φn = rn/ (rn + �r). For

a small local ray angle, we have φ′
n = rnφn/ (rn + �r) ≈

(1 − �r/rn) φn . The local ray angle at the n + 1-th bound-
ary is bent by the medium inhomogeneity as a stochastic
process, which is written by

φn+1 = φ′
n + Random ≈ (1 − �r/rn) φn + Random.

(32)

Random angles are practically generated by using the
Monte Carlo method for the transfer function Eq. (27). The
ray coordinate angle at the n + 1-th boundary then becomes

θn+1 ≈ θn + (�r/rn) φn. (33)

When the travel time of this ray at the n-th boundary is tn ,
the travel time at the n + 1-th boundary becomes

tn+1 = tn + �ln

V0
≈ tn + �r

V0

(
1 + φ2

n

2

)
. (34)

For the synthesis of wave envelopes in the case of impul-
sive radiation from a point source, we shoot many particles
from the origin to a fixed direction and calculate ASF with
travel time distribution at a given receiver. We use inte-
grals over ray angles (29) and (31) for the calculation of
two vector component intensities. Since we calculate the
travel time for each layer by using the average velocity V0,
the resultant travel time distribution gives intensity without
wandering effect. If we need intensity with wandering ef-
fect, we just calculate the convolution of the intensity here
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Fig. 8. Square root intensity envelopes at a distance of 100 km for isotropic
radiation from a point source in 2-D random elastic media characterized
by a Gaussian ACF: (a) P-wave case, (b) S-wave case. Comparison
of the Markov approximation for TFMCF without wandering effect of
(gray curves) and the stochastic ray path method (thin black curves).

obtained with the wandering term as given by Eqs. (12) and
(16).
3.3 Coincidence of two vector envelope simulations for

isotropic source radiation
For the synthesis of vector-wave envelopes for radiation

from a point source, we shoot many particles from the ori-
gin and calculate the travel time distribution at a given radial
distance and a ray coordinate angle θ . The Monte Carlo
method is used to realize the ray bending process of each
particle in each cylindrical layer. Here we synthesize vec-
tor envelopes in random elastic media characterized by a
Gaussian ACF with ε = 5% and a = 5 km and mean P-
and S-wave velocities of 6 km/s, and 3.46 km/s, respec-
tively, where the number of shots is 100,000 and �r = 2
km. Figure 7 shows the distribution of ray coordinate an-
gle θ and that of local ray angle φ; this distribution means
that the ASF spreads with increasing travel distance for the
P-waves, where the initial ray direction is θ = 0 and φ = 0.

For the case of isotropic source radiation, we use a convo-
lution of the resultant intensity and the uniform ray coordi-
nate angle distribution. The thin black curves having small
zigzag fluctuations in Figs. 8(a) and (b) show square root
intensities calculated from the stochastic ray path method
at a distance of 100 km from the P-wave source and S-
wave source, respectively. The apparent duration of the
S-wavelet is larger than that of P-wavelet. We plot corre-
sponding solutions derived from the Markov approximation
for TFMCF for comparison; these are shown as bold gray
curves in Figs. 8(a) and (b). We find a good agreement be-
tween vector envelopes derived from the stochastic ray path
method and those derived from the Markov approximation
for TFMCF for the case of isotropic radiation from a point
source. The coincidence of two methods for scalar wave
case in 3-D was shown by Williamson (1972).

Fig. 9. Square root intensity envelopes at a distance of 100 km for a point
shear dislocation S-source in 2-D random elastic media characterized
by a Gaussian ACF based on the stochastic ray path method: (a) Ra-
diation pattern of S-wave intensity; (b) Square root intensity envelopes
at difference azimuths; (c) Square root intensity envelopes in the radial
component (solid curves) and the angular component (gray curves).

3.4 Vector wave envelopes for the case of a point shear
dislocation source

The stochastic ray path method was originally developed
for the case of isotropic source radiation; however, the ad-
vantage of the stochastic ray path method is that it is directly
applicable to nonisotropic source radiation. A point shear
dislocation source is the most important nonisotropic source
radiation in seismology. The radiation pattern of wave in-
tensity in a plane perpendicular to the null axis is written
by

� (θ) = 2 cos 2θ, (35)

where the normalization is
∫ 2π

0 � (θ) dθ = 2π . Its radi-
ation pattern is shown in Fig. 9(a). We first calculate in-
tensities at a distance of 100 km for a unidirectional ra-
diation (θ = 0) from the origin using the stochastic ray
path method. The number of shots is 100,000 and �r = 2
km. Taking a convolution of the source radiation pattern
(Eq. (35)) and ASF 	̆φ obtained with respect to angle θ ,
we obtain angular- and radial-component intensities at any
azimuth for the point shear dislocation source, where the
whole angle is divided into 24 segments (�θ = 15◦). Fig-
ure 9(b) shows the square root intensities at four different
azimuths at a 100-km distance for the point shear disloca-
tion source radiation of S-waves. The peak amplitude of
the angular-component is the largest at θ = 0◦ as expected.
We find that the peak amplitude of the radial component is
about 20% of that of the angular component at θ = 0◦. We
also find excitation of wave amplitudes in both the angular
and radial components, even in the direction of the nodal
plane of S-wave radiation: the peak amplitude of the angu-
lar component at θ = 45◦ is about 35% of that at θ = 0◦.



218 H. SATO AND M. KORN: CYLINDRICAL WAVE ENVELOPES IN 2-D RANDOM ELASTIC MEDIA

A peak delay from the onset and a smooth decay after the
peak are common to envelopes in all azimuths. We find that
the difference in amplitudes between the radial and angu-
lar components becomes smaller with the reduced time in-
creasing at any angles. As shown in Fig. 9(c), wave ampli-
tudes near the peak arrival well reflect the source radiation
pattern, but the difference in amplitudes for different az-
imuths diminishes as the reduced time increases in both ra-
dial and angular components. These simulations give a pos-
sible explanation for the observed fact that high-frequency
seismograms of local earthquakes are insensitive to the fo-
cal plane solution as compared with those in low frequen-
cies. Observed departure from the double-couple radiation
pattern at high frequencies can be explained by scattering
due to medium inhomogeneity.

4. Summary and Discussion
For the direct envelope synthesis of cylindrical vector

waves in 2-D random elastic media, we have introduced
two methods for the case that the medium inhomogeneity is
small and the wavelength is shorter than the correlation dis-
tance. Since wave conversion between P-and S-waves can
be neglected, potential fields of P- and S-waves are inde-
pendently governed by parabolic equations. The stochastic
master equation for TFMCF of the potential field is derived
using the Markov approximation. For the case of Gaus-
sian ACF, taking the Fourier transform of the analytical so-
lution of TFMCF, we have newly derived two-component
wave envelopes. The resultant envelope of each compo-
nent shows peak amplitude decay, peak delay from the on-
set, and envelope broadening with increasing distance. The
envelope characteristics are independent of frequency, and
they are well quantified by the statistical parameters and the
distance. The excitation of amplitude in the angular com-
ponent for P-waves and that in the radial component for S-
waves are clear evidence of scattering effect. For P-waves,
the ratio of the time integral of the square of the angular
component amplitude trace to that of the square-sum of two
component amplitudes with geometrical correction leads to
the ratio of the MS fractional fluctuation to the correlation
distance. It gives a convenient way to determine this ratio
from envelope data.

We numerically studied vector wave propagation in 2-D
random elastic media (mean P- and S-wave velocities of 6
km/s and 3.46 km/s, respectively) characterized by Gaus-
sian ACF (ε = 0.05, a = 5 km) for an isotropic radiation
of a 2-Hz P-wavelet by using FD simulations. At each
travel distance, we take the square root of the ensemble
average of the square of numerically simulated amplitude
traces to calculate the RMS envelope trace of each com-
ponent, which shows a good coincidence with that derived
from the Markov approximation for TFMCF, with the ex-
ception of the coda portion.

We next introduced the stochastic ray path method, which
jointly uses the Markov approximation for MCF of the po-
tential field and ray travel times. We have numerically con-
firmed the coincidence of the Markov approximation for
TFMCF and the stochastic ray path method for Gaussian
ACF. The advantage of the stochastic ray path method is
that it is directly applicable to nonisotropic source radiation.

We simulated vector wave envelopes at different azimuths
for the case of a point shear dislocation source radiation.
A peak delay from the onset and a smooth decay after the
peak are common to envelopes in all azimuths. The differ-
ence in amplitudes between the radial and angular compo-
nents becomes smaller with increasing reduced time. Peak
amplitudes well reflect the source radiation pattern, but the
difference in amplitudes for different azimuths diminishes
as reduced time increases in both radial and angular compo-
nents. These results qualitatively explain the observed fact
that higher frequency seismograms of local earthquakes be-
come insensitive to the focal plane solution compared with
lower frequency ones. When large angle scattering is neg-
ligible, this method is essentially extendable for more gen-
eral types of random media and a 3-D case. We are cur-
rently seeking a way to simulate wave envelopes by using
the Markov approximation for TFMCF for the nonisotropic
source radiation case.
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