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Subsurface structures derived from receiver function analysis and relation to
hypocenter distributions in the region from the eastern Shikoku
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We carried out receiver function imaging to estimate detailed configurations of the Philippine Sea (PHS) slab
beneath the Shikoku and Chugoku districts and crustal structures in the region. We used two temporary seismic
arrays with an average station spacing of about 10 km in the Chugoku district. Beneath Shikoku a clear northward
dipping discontinuity at about 20–40 km depth was found, with other discontinuities below. We present a new
interpretation that the clear boundary corresponds to the under surface of a low velocity layer in the upper part of
the PHS slab. We also found a discontinuity at about 60 km depth beneath the Chugoku district, which is thought
to be the aseismic PHS slab. Small scale discontinuities were found in the crust beneath the source area of the
2000 western Tottori Earthquake and around the Median Tectonic Line. The discontinuities might relate to the
occurrence of large inland earthquakes.
Key words: Receiver function, Philippine Sea plate, hypocenter distribution.

1. Introduction
Detailed distributions of earthquakes have recently been

obtained from dense seismic networks operated by uni-
versities, national institutes and the Japan Meteorological
Agency (JMA) in Japan. Miyoshi and Ishibashi (2004) ob-
tained contour maps of the top of the Philippine Sea (PHS)
slab from hypocenter distributions in southwest Japan. As
a result, the seismic PHS slab was well-defined beneath
the Setouchi Inland Sea. Also, Nakanishi (1980) suggested
there was an aseismic PHS slab in western Chugoku by an-
alyzing ScSp phases.
Yamauchi et al. (2003) and Shiomi et al. (2004) obtained

depth contour maps of the PHS slab in southwest Japan by
receiver function analyses for the recent seismic network
data. They interpreted the PHS slab image as the oceanic
Moho discontinuity of the PHS plate. In this interpretation,
earthquakes are thought to occur in the upper mantle of the
subducting PHS plate beneath eastern Shikoku. Similarly,
Kurashimo et al. (2002) reported that the earthquakes ex-
isted in the mantle beneath there from results of refraction
and wide-angle reflection surveys.
On the other hand, Ohkura (2000) concluded the earth-

quakes occurred in the oceanic crust of the PHS plate and/or
the plate boundary, since guided phases were recorded at
stations in the Chugoku district from earthquakes occur-
ring beneath Shikoku. Shibutani (2001) obtained an S-
wave velocity structure by analyzing receiver functions and
wide-angle reflection phases below eastern Shikoku, and
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suggested that the subcrustal earthquakes occurred in the
oceanic crust and/or at the plate boundary.
A large earthquake (Mw 6.6) occurred on 6 October 2000,

in western Tottori Prefecture in southwest Japan (Shibutani
et al., 2002, 2005). Nishida et al. (2002) carried out seismic
explosion surveys in the aftershock area of this earthquake,
and obtained reflectors at the depths of about 12, 30 and
60 km. In eastern Shikoku, there exists the Median Tectonic
Line (MTL) which is the most significant fault in southwest
Japan. Ito et al. (1996) found a sharp reflector dipping 30–
40◦ north in the upper crust by a seismic reflection survey.
Kawamura et al. (2003) and Sato et al. (2005) also found
that the sharp reflector extended to the lower crust from a
recent seismic explosion survey. Although the subsurface
structures in these regions have become clearer by analyz-
ing geophysical data, the relations among the structures or
between the structures and hypocenter distributions are not
still clear.
In this study, we estimated the subsurface structures

from the crust to the upper mantle, and compared them
to hypocenter distributions. To investigate the subsurface
structures, we used dense seismic networks deployed from
the northern Chugoku and eastern Shikoku districts, includ-
ing the source area of the 2000 western Tottori Earthquake
(Fig. 1), and analyzed receiver functions calculated by a
multiple-taper method (Park and Levin, 2000). The pur-
poses of this study are (1) to investigate relationships be-
tween the locations of hypocenters and the configuration
of the PHS slab in the eastern Shikoku region, (2) to im-
age the Moho discontinuity and the discontinuity at 60 km
depth beneath the northern Chugoku district, and to discuss
the relationships between the discontinuity at the 60 km
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Fig. 1. Distributions of seismic stations (inverted triangles) used in this
study and hypocenters in southwest Japan determined by JMA. Plus
signs show hypocenters (M > 0.5) from 2002–2004. Open circles
indicate DLF earthquakes. Thin solid lines show active faults. The
earthquakes and DLF earthquakes in the boxes A–A′ and B–B′ are
plotted in the depth sections of A–A′ and B–B′, respectively.

depth and the aseismic PHS slab, and (3) to find relation-
ships between discontinuities and hypocenter distributions
in the crust in the source area of the 2000 western Tottori
Earthquake and around the MTL.

2. Method
2.1 Data
We used waveform data recorded at 63 seismic stations in

a cross-shaped array (A–A′ and B–B′ lines in Fig. 1) from
2002 to 2004. The arrays included 28 permanent stations of
the National Research Institute for Earth Science and Dis-
aster Prevention (NIED), JMA, Kochi University and Ky-
oto University. The two lines of stations intersected in the
source region of the 2000 western Tottori Earthquake. The
average station spacing of the arrays was about 10 km in
the Chugoku district. These temporary stations were op-
erated by the Japanese University Group of the Joint Seis-
mic Observation in the Southwestern Japan (2002). Most
stations were equipped with three-component short-period
seismometers with a natural period of 1 s. The earthquake
parameters used in this study are provided by the U.S. Geo-
logical Survey (USGS). 70 earthquakes with epicentral dis-
tances between 30 and 80◦ and closer events with the depths
greater than 300 km were chosen, as shown in Fig. 2. Fig-
ure 3 shows an example of the P waveforms of the vertical
and radial components recorded along the A–A′ line. The
waveforms have good correlations among the stations and
also between the components. Phases within several sec-
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Fig. 2. Epicenter distribution of teleseismic events used in this study. Gray
scale shows depths of the events.
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Fig. 3. Record sections of the vertical (upper figure) and the radial (lower
figure) components of an earthquake recorded along the A–A′ line in
Fig. 1. The earthquake (Mw 6.4) occurred in the Malay Archipelago on
October 18, 2003. The origin of the x-axis is the epicenter of the 2000
western Tottori Earthquake.

onds after the P onset may be caused by source processes.
We try to remove the source effects and emphasize phases
caused by velocity discontinuities beneath each station by
the receiver function analysis.
2.2 Analyses
2.2.1 Receiver function estimation The P-wave and

its coda from teleseismic events contain information of the
earthquake source and local structure, especially phases
converted from P to P (Pp) and P to S (Ps) at local dis-
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Fig. 4. Example of radial receiver functions ordered by back azimuths at
station AYKH. Arrows show the phases of the Ps converted waves.

continuities, and reverberations. Because the effect of the
earthquake source and P-wave reverberations are removed,
S-waves arriving at the surface are enhanced in receiver
functions (e.g., Langston, 1979; Owens et al., 1984; Am-
mon, 1991). We assume that individual Ps phases corre-
spond to structure boundaries. Receiver functions are cal-
culated by a deconvolution of the radial component by the
vertical component which contains mainly P-waves. The
simplest way to accomplish this calculation is to divide the
frequency spectrum of the radial component by the spec-
trum of the vertical component. In order to stably calculate
this division in the frequency domain, a water level (a min-
imum allowable amplitude) is often applied to the power
spectrum of the vertical component in order to fill spectral
holes in the denominator (e.g., Helmberger and Wiggins,
1971). The spectral holes occur as a result of using a taper
with a limited time length or a waveform with a low signal-
to-noise ratio (Soda et al., 2001). Smaller water levels can
not sufficiently fill the spectral holes, while larger water lev-
els tend to contaminate the spectral amplitudes. Therefore,
we have to choose carefully water levels according to the
power spectrum of the individual vertical component.
Since we calculated many receiver functions in this study,

the water level method was unsuitable. To circumvent this
problem, we applied the multiple-taper method (Park and
Levin, 2000) for the calculation of receiver functions. We
fixed parameters of the multiple-taper method to be P = 4
and K = 3, where P is the time-bandwidth product and
K is the number of the eigentapers. The taper length T
was 60 s. Since the half width of spectral leakage W is
calculated by P/T (Park et al., 1987), W becomes about
0.07 Hz. The time domain receiver functions obtained with
these parameters tended to have low amplitudes for delay
times greater than 8 s. We excluded high frequency noise
by a Gaussian low-pass filter with a corner frequency of
about 1–2 Hz (e.g., Owens et al., 1984). Figure 4 shows
a record section of receiver functions ordered by back az-
imuths at station AYKH on the A–A′ line, processed by the
multiple-taper deconvolution. In order to enhance coherent
phases of the receiver functions, a singular value decom-
position (SVD) filter was applied to the waves in the time
domain. The SVD filtering with the largest six eigenval-
ues provided a better receiver function image (Chevrot and
Girardin, 2000).
2.2.2 Imaging Since the phases of receiver functions

correspond to boundaries of the S-wave velocity structure,

the time axis of the receiver functions can be transformed
into the depth axis using a 1-D velocity structure, such as
JMA2001 (Ueno et al., 2002). Assuming that a plane P-
wave impinging on an interface from below, the delay time,
Tps , of the converted Ps phase from the direct Pp phase, is
given by the following equation,

Tps(Z) =
∫ Z

0

(√
1

β(z)2
− p2 −

√
1

α(z)2
− p2

)

dz,

where α and β are P and S-wave velocities as a function of
depth z, respectively. Z denotes the depth of the interfaces.
p is the ray parameter. The depth series of each receiver
function can be represented by a bending ray with the ray
parameter and a backazimuth. We projected the rays onto
1 km by 1 km cells for the two array profiles. When two or
more rays were projected onto the same cell, the amplitudes
were averaged. Figures 5–8 show the images of Ps con-
verters obtained by this method. In the figures, the positive
(negative) amplitudes of the receiver functions are shown
with red (blue) colors and indicate velocity discontinuities
from fast (slow) to slow (fast) for upward rays.

3. Results
3.1 Estimates of receiver functions

The receiver functions calculated with the multiple-taper
method were more stable than those with the water level
method. Strong positive pulses at 3 and 4.5 s are observed
in the radial receiver functions shown in Fig. 4, and they in-
dicate interfaces in the crust and the upper mantle beneath
station AYKH. The pulses appear from back azimuths of
110 to 250◦. This result indicates that the receiver func-
tions are affected by different structures for different arrival
directions of the incident P-waves. We identified these
pulses as velocity discontinuities (i.e., the Moho disconti-
nuity and/or the plate boundary of the PHS plate). The im-
ages obtained in this study show clearer results in Chugoku,
the Seto Inland Sea and northern Shikoku, than previous re-
ceiver function studies (e.g., Yamauchi et al., 2003; Shiomi
et al., 2004) because of a higher density of seismic obser-
vation stations. From the result of these two profiles, we
obtained the velocity discontinuity structures.
3.2 A–A′′′′′′′′ line
Figure 5(a) shows the receiver function image of the Ps

converted waves beneath the A–A′ line in Fig. 1. Contin-
uous red cells (R1) are located clearly at 20–40 km depth
beneath the Shikoku and the southern Chugoku districts.
The R1 surface with a dip of about 10◦ becomes gradu-
ally deeper towards the north. In the northern Chugoku dis-
trict, there are continuous red cells (R2) at 30 km depth and
deepen to about 40 km towards the south in the middle of
the Chugoku district. Moreover, there are continuous yel-
low cells (R1′) dipping towards the north at about 60 km
depth beneath the northern Chugoku district. In addition,
there are small scale discontinuities at depths of 12–20 km
in the crust, especially beneath the aftershock area of the
2000 western Tottori Earthquake and around the deeper por-
tion of the MTL.
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Fig. 5. Cross sections of receiver function images. (a) and (b) show the
images along the A–A′ and B–B′ lines shown in Fig. 1, respectively.
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Fig. 6. Cross sections of the receiver function images with seismic activity.
Solid lines indicate clear discontinuities, the plate boundary and the
Moho discontinuity. Dashed lines indicate other discontinuities in the
crust and upper mantle. Plus signs and open circles indicate earthquakes
and DLF earthquakes, respectively. A star shows the hypocenter of
the 2000 western Tottori Earthquake, which indicates the origin of the
x-axis.

3.3 B–B′′′′′′′′ line
Figure 5(b) shows the receiver function image of the Ps

converted waves beneath the B–B′ line in Fig. 1. At the
depth of 30 km, there are continuous horizontal red cells
(r2). This discontinuity is disturbed beneath Mt. Daisen.
It is possible that this is an artifact as discussed in the
next section. Continuous yellow cells (r1′) are found at
approximately 60 to 70 km depth, which correspond to R1′

in Fig. 5(a).

4. Discussion
We obtained the 2-D images of the receiver functions

(Figs. 5–7) on an assumption that the structure does not
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Fig. 8. Enlarged shallow portions of the cross section of the receiver func-
tion image in Figs. 5(a) and 6(a) around the 2000 western Tottori Earth-
quake (a) and the MTL (b). i, ii, iii show small scale discontinuities. In
the lower two figures, seismicity near the cross sections is superimposed
on the same images as in the upper figures.

change very much along the short side of the boxes. The
assumption of the 2-D structure in the box A–A′ is con-
sidered valid because isodepth contours related to the sub-
ducting PHS plate derived from the earthquake distribution
(e.g., Miyoshi and Ishibashi, 2004) and other receiver func-
tion studies (e.g., Yamauchi et al., 2003; Ueno et al., 2008)
and geotectonics in southwest Japan are roughly perpendic-
ular to the A–A′ profile line and do not show abrupt changes
in the studied area. It is not well known that the structure
changes along the short side of the box B–B′. However, the
receiver function image along the profile B–B′ is less sub-
ject to the structural change in the short direction because
most of the receiver functions sample only the southern area
of the box.
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We discuss in detail the relationship between the discon-
tinuities derived from the receiver function analysis and the
hypocenter distributions in the following three sections.
4.1 Relation of slab to subcrustal earthquakes in east-

ern Shikoku
Our receiver function images and hypocenter distribu-

tion shown in Fig. 7(a) show that the hypocenters beneath
Shikoku are located beneath the continuous red cells (R1),
indicating that most of the earthquakes are below the dis-
continuity. The depth of R1 is similar to one derived from
previous receiver function studies. Yamauchi et al. (2003)
and Shiomi et al. (2004) suggested that the continuous red
cells (R1) from southern Shikoku to central Chugoku corre-
spond to the oceanic Moho discontinuity in the PHS plate.
If their suggestion is correct, the subcrustal earthquakes be-
neath eastern Shikoku occur below the oceanic Moho dis-
continuity and deep low frequency (DLF) earthquakes oc-
cur around the oceanic Moho discontinuity.
Kurashimo et al. (2002) constructed a P-wave velocity

model from refraction and wide-angle reflection data and
pointed out that the oceanic Moho discontinuity was shal-
lower than the subcrustal earthquakes. However, the phases
of reflections from the oceanic Moho discontinuity in their
study were obscure. Although the clear R1 cells in this
study locate at similar depths to the oceanic Moho discon-
tinuity, it seems improbable that they correspond to the ob-
scure reflectors of Kurashimo et al. (2002).
Kodaira et al. (2002) pointed out the existence of water

at the PHS plate boundary by analyzing reflected phases
with large amplitudes recorded in an onshore-offshore deep
seismic survey conducted in the western Nankai Trough
seismogenic zone, and estimated the very thin layer (about
300 m) with very low velocity at the plate boundary.
Kurashimo et al. (2002) also suggested a very low velocity
layer with 1 km thickness at the upper most part of the PHS
slab obtained from the same waveform calculation for very
clear reflected phases as Kodaira et al. (2002). Although
there are slight differences between their low velocity mod-
els (i.e., the location and the thickness of the low velocity
layer), they both suggested the existence of the low velocity
layers around the plate boundary. The R1 discontinuity pos-
sibly indicates the lower boundary of the low velocity layer,
though there is a question that receiver functions can detect
such thin layers. Ueno et al. (2008) calculated synthetic re-
ceiver functions for a thin low velocity layer, and showed
that the receiver function was sensitive to a thin layer with
at least 1 km thickness when a large velocity gap existed.
Recently, Sato et al. (2005) determined that the thickness

of the reflective layer around the PHS plate boundary was
about 7 km from a seismic reflection survey across the over-
all Outer Zone of Southwest Japan from eastern Shikoku to
eastern Chugoku. They interpreted the reflective layer as a
contamination zone of the oceanic layers 1 and 2 and the
base of the continental plate. The R1 discontinuity is lo-
cated at the similar depth of the base of the reflective layer.
In addition, Yamaguchi et al. (1999) gave a similar result

by a network MT investigation in eastern Shikoku and sug-
gested that the thin high-conductive layer (about 10 km) is
caused by pore water and/or sediments in the upper part of
the subducting PHS plate. Katsumata and Kamaya (2003)

suggested that the most plausible liquid causing tremor is
water because a large quantity of water is transported by
the subduction of the PHS plate. Nugraha and Mori (2006)
found that the DLF earthquakes occur at high Vp/Vs area
and suggested that the occurrence of the DLF earthquakes
were involved with fluids. The layer with a large amount of
water indicates very low velocity and the DLF earthquakes
occur in it. As shown in Fig. 6(a), the DLF earthquakes
occur around the R1. Therefore, the R1 can be the lower
boundary of the low velocity layer.
To summarize this section, the reflective low velocity

layer obtained from the seismic surveys and the high-
conductive layer from the MT investigation are considered
to be commonly caused by the existence of water supplied
in the subducting processes beneath the onshore-offshore
region in eastern Shikoku. As the result, a large velocity
contrast exists at the base of the reflective low velocity layer
and the R1 in our receiver function image can correspond to
the discontinuity as shown in Fig. 7(b). Consequently most
earthquakes associated with the subducting PHS plate oc-
cur at the plate boundary and/or the oceanic crust beneath
eastern Shikoku as well as in other regions, such as west-
ern Shikoku and the eastern Kii Peninsula. Ohkura (2000)
found later phases in seismograms at observation stations
in the Chugoku and Kinki districts for earthquakes beneath
Shikoku, and interpreted the later phases as guided waves in
the low velocity layer in the oceanic crust. The conclusion
that the earthquakes occurred within the low velocity layer
is consistent with our interpretation.
4.2 Upper mantle discontinuities beneath Chugoku

In the northern Chugoku district, the Moho discontinuity
appeared clearly at 30 km depth (R2 in Fig. 5(a)). This
discontinuity reaches about 40 km in the central Chugoku
district. This dipping Moho beneath the Chugoku district is
consistent with low Bouguer gravity anomalies in the region
(Gravity Research Group in Southwest Japan, 2001). In the
B–B′ line (Fig. 5(b)) the Moho discontinuity (r2) is also
located at about 30 km depth. r2 becomes obscure beneath
Mt. Daisen at about 20 km along the horizontal axis. It
is possible that this is an artifact because seismic stations
located in this area did not have good recordings due to
thick pyroclastic material from Daisen volcano.

DLF earthquakes occur around the Moho discontinuity
beneath the aftershock area of the 2000 western Tottori
Earthquake as shwon in Fig. 7(a). Most DLF events are not
tremor, but earthquakes which have predominant frequen-
cies of 2–4 Hz, and P-waves with a high-frequency compo-
nent in the onset (Ohmi and Obara, 2002). Ohmi and Obara
(2002) indicated that the mechanism of DLF earthquakes
were single-forces which suggested transport of fluids, such
as water or magma. These fluid materials might affect the
S-wave velocity. However, we could not obtain any charac-
teristic receiver function images at the Moho discontinuity
around the hypocenters of DLF earthquakes. The volume
of these fluids might not be large enough to be detected by
the receiver function analysis.
In Fig. 5, a discontinuity (R1′ or r1′) is seen at 50–60 km

depth beneath the source area of the 2000 western Tottori
Earthquake. This discontinuity was recognized also by a
reflection survey (e.g., Nishida et al., 2002; Doi et al.,
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2003), and inclines to the north (Fig. 5(a)). Although the
r1′ image is week, it is deeper beneath east area than west
(Fig. 5(b)). As shown in Fig. 6, this discontinuity seems to
be an extension of the upper part of the PHS slab (R1′). The
discontinuity is not as clear as R1 in Fig. 5(a). A possible
reason for the diffuse observation is a characteristic of the
multiple-taper method which tapers the amplitudes of the
receiver functions for delay times greater than 8 s, that is,
for the depths greater than 60 km.
4.3 Hypocenter distributions and discontinuities in the

crust
We found small scale discontinuities in the crust in this

study. A shallow portion of our results is enlarged in Fig. 8.
In the Chugoku district beneath the area of the 2000 western
Tottori Earthquake, there are two discontinuities at about 12
and 20 km depth (‘i’ and ‘ii’ in Fig. 8). The discontinuity
‘i’ exists beneath the source area of the 2000 western Tot-
tori Earthquake and may correspond to a reflector observed
by Nishida et al. (2002), and to the top of a zone of large
scattering coefficient (Matsumoto et al., 2002; Asano and
Hasegawa, 2004). Another discontinuity ‘ii’ exists beneath
the southern region of the source area. This discontinuity
does not coincide with any large scattering coefficient zone
although the spatial resolution of their studies may not be
adequate to be compared with our result in this region. As
shown in Fig. 8(a), comparing ‘i’ and ‘ii’ with the hypocen-
ter distribution, we found the shallower discontinuity ‘i’ is
located at the base of the seismogenic zone and the deeper
discontinuity ‘ii’ is located several kilometers below. There
might be a distinctive relationship among the discontinu-
ities, the areas of large inland earthquakes and active faults.
Ueno et al. (2005) suggested a relationship between veloc-
ity discontinuities and seismogenic zones in the crust be-
neath the Atotsugawa Fault which is an active fault located
in central Japan. The fault is approximately 60 km long
with right-lateral displacement. They identified discontinu-
ities from reflection and refraction surveys, and presented a
four layer model composed of a surface, upper crust (brit-
tle), middle (brittle-ductile transition), and lower (ductile)
layers. The ‘i’ and ‘ii’ discontinuities may correspond to
the boundaries between the upper and middle, and middle
and lower crust, respectively. The ‘i’ discontinuity is seen
only beneath the area of the 2000 western Tottori Earth-
quake, and may be a characteristic structure around a large
earthquake.
Beneath the area around the MTL in Shikoku, there is

a dipping discontinuity (‘iii’ in Fig. 8). This discontinu-
ity is distributed under the northern portion of the surface
trace of the MTL. The location of this discontinuity is sim-
ilar to a reflector derived from a seismic explosion survey
(Kawamura et al., 2003; Sato et al., 2005). Therefore, we
can identify the boundary as the deep extension of the MTL.
The distribution of hypocenters around the MTL dips north-
wards at an angle of 30–40◦. The discontinuity ‘iii’ is lo-
cated several kilometers below the dipping distribution of
hypocenters. Tabei et al. (2002) presented a model with a
35–45◦ northward dipping fault plane for the MTL, which
is fully locked in the upper portion to a depth of 15 km,
and slips steadily in the right lateral motion at 5 mm/yr be-
low that depth. The model explained the GPS velocity field

from which elastic deformation caused by the PHS subduc-
tion had been removed. The discontinuity ‘iii’ possibly cor-
responds to the aseismic fault plane of Tabei’s model. The
MTL is one of the most active and longest faults on land in
Japan, and is a potential source of large destructive earth-
quakes (Goto et al., 2001). This discontinuity ‘iii’ might
be a special structure below the area of large inland earth-
quakes.
Ito (1999) constructed a model explaining a relation-

ship between the lower limit of seismogenic zones and
heat flow structures. He suggested large inland earthquakes
would occur in areas where the depths of seismogenic zones
changed abruptly. This lateral change of the seismogenic
layer thickness was correlated to the large lateral tempera-
ture gradients caused by high pressure and high temperature
fluid or magma in the crust (Ito, 1999). The discontinuities
(‘i’, ‘ii’, ‘iii’) in the crust are possibly related to the struc-
tures affected by such materials.

5. Conclusions
We applied a multiple-taper receiver function method to

the teleseismic waveform data recorded by temporary seis-
mic arrays and permanent stations. Since we used a high
density set of seismic stations, we were able to obtain high
resolution receiver function images along the arrays in the
region from eastern Shikoku to northern Chugoku districts,
southwest Japan. From the results, we concluded as fol-
lows,

1) In the Shikoku to southern Chugoku districts, a clear
discontinuity dips slightly to the north. We infer this
to be the lower surface of the low velocity layer in the
upper part of the PHS slab. This interpretation implies
that most subcrustal earthquake occurs at the plate
boundary and/or in the oceanic crust beneath eastern
Shikoku.

2) In the northern Chugoku district, we observe the Moho
discontinuity at about 30 km depth. We also find a dis-
continuity at 50–60 km depth dipping to the northwest.
This discontinuity might indicate the deep extension of
the PHS slab.

3) Small scale discontinuities in the crust seem to be lo-
cated at the base of the seismogenic zone and at several
kilometers below in the area of the 2000 western Tot-
tori Earthquake. These discontinuities correspond to
seismic reflectors. Around the MTL, we found a north
dipping boundary in the lower crust which may cor-
respond to the fault plane of the MTL, which inferred
from GPS velocity field. These discontinuities may in-
dicate a relationship between a characteristic structure
and large inland earthquakes.
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