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Digital beacon receiver for ionospheric TEC measurement
developed with GNU Radio
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A simple digital receiver named “GNU Radio Beacon Receiver (GRBR)” was developed for the satellite-
ground beacon experiment to measure the ionospheric total electron content (TEC). The open-source software
toolkit for the software defined radio, GNU Radio, is utilized to realize the basic function of the receiver and
perform fast signal processing. The software is written in Python for a LINUX PC. The open-source hardware
called Universal Software Radio Peripheral (USRP), which best matches the GNU Radio, is used as a front-
end to acquire the satellite beacon signals of 150 and 400 MHz. The first experiment was successful as results
from GRBR showed very good agreement to those from the co-located analog beacon receiver. Detailed design
information and software codes are open at the URL http://www.rish.kyoto-u.ac.jp/digitalbeacon/.
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1. Introduction

The ground-based reception of radio beacon signals
transmitted from Low Earth Orbit Satellites (LEOS) is a his-
torical method to measure the total electron content (TEC)
of the ionosphere. Observations of this kind were initiated
right from the beginning of the space era (e.g., Aitchison
and Weekes, 1959; Garriott, 1960). The principle of the
experiment is based on the frequency dependence of the re-
fractive index of radio waves in the ionospheric plasma. The
most commonly used frequencies are 150 and 400 MHz—
in a ratio of 3:8—generated from a common oscillator sig-
nal at 50 MHz. The most common beacon satellite con-
stellation is the polar-orbiting Navy Navigation Satellite
System (NNSS) (Leitinger et al., 1984). One of the re-
cent developments of the TEC measurement is the use of
GPS receivers. We now have both world-wide and regional
networks of GPS receivers that constantly monitor large-
scale structures of the ionosphere (e.g., Saito et al., 1998).
The LEOS beacon experiment should be complimentary to
these by providing information on the smaller scale struc-
tures. Another improvement is the use of a third frequency
to enhance the robustness of the experiment (Bernhardt
and Siefring, 2006). Such tri-band beacon transmitters are
now on board several LEOS, such as, in the FORMOSAT-
3/COSMIC constellation (Lion et al., 2007) and C/NOFS
(De La Beaujardiere et al., 2004).

Beacon receivers developed in the past have been mostly
analog receivers for 150- and 400-MHz signals, and some
of these are commercially available. The phase relation-
ship between the two signals is detected by an analog cir-
cuit, and the resultant phase values are digitized at sev-
eral tens of Hertz only. One digital receiver was devel-
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oped as a special piece of equipment on board the CITRIS
satellite (Bernhardt and Siefring, 2006). The development
of a software-defined radio (SDR) system is now possible
by using off-the-shelf universal hardware and software for
digital signal processing. A digital receiver for the dual-
band LEOS beacon reception has been developed based
on the open-source software toolkit named GNU Radio
(http://gnuradio.org/) and its friendly open-source hardware
called Universal Software Radio Peripheral (USRP) (http:
/[www.ettus.com/). The aim of this paper is to describe the
hardware and software of the new beacon receiver and to
show an example of its successful TEC measurement.

2. Basic Description of the Dual Beacon Experi-
ment
The theoretical framework of the beacon TEC measure-
ments is discussed, for example, by Davies (1980) and ref-
erences therein. Radio wave propagation in a plasma with
refractive index n is expressed as

u:Ucos{an(Zc— —t)}:Ucos{an(% —t)} ey
p

where U is amplitude, f is frequency, ¢, is phase velocity,
¢ =2.998 x 108 m s~! is the speed of light, x is position,
and ¢ is time. The refractive index n at VHF or higher
frequencies can be simply described by a function of f [Hz]
and number density of free electrons in plasma N [m~3] as

n=c/c,=1—{A/(2f*)}N )
where, A = 54— = 80.6 m’ 52, ¢ = 8.854 x

1072 F m~! is the permittivity of free space, and e =
—1.602 x 107" C and m = 9.109 x 1073 kg are the
charge and mass of an electron, respectively. Total phase
W at travel length L is described as
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where [ Ndx is TEC, and 7 is the system phase bias that
is an unknown constant. We can eliminate L by using two
radio waves at f; = pf; and f, = ¢gf;. Normally, we use
fi = 50MHz, p = 3,and ¢ = 8, i.e.,, fi = 150 MHz
and f, = 400 MHz. The phases corresponding to both
frequencies are W, and, W,, and the phase difference & at
[ 1s written as follows.

U, U, mA/[1 1 ,
P=—-—=—"—|5-5 Ndx+7n# &)
p q fic \q p

In this technique, TEC is measured as the difference of path
length of signals at two frequencies. As Eq. (4) is its ex-
pression in phase, there is an inherent ambiguity that ac-
tually comes as integer multiples of 2. Also, the system
phase bias remains as described by n’. According to the
motion of the satellite, TEC between the satellite and the re-
ceiver, which is the slant TEC, varies in time. This is due to
the change in the elevation angle of the satellite and is also
caused by the spatial variation of the ionospheric plasma.
The ground-based receiver then measures the relative vari-
ation of the slant TEC during the satellite pass. Absolute
TEC can be estimated, for example, if we have data from
two or more locations (Leitinger et al., 1975). This is, how-
ever, beyond the scope of this short paper.

In conventional analog receivers, the calculations of
W /p and W, /g in Eq. (4) are realized by the phase-locked
loop (PLL) circuitry. In our digital receiver system, on the
other hand, the phase of both signals are separately eval-
uated by digital processing, and TEC is calculated as de-
scribed in Section 4.

3. System Description of the Receiver

GNU Radio is an excellent software toolkit for imple-
menting the SDR systems. Its front-end is based on the
script language Python, while the performance-critical en-
gine of the digital signal processing is written in C++. Be-
cause of this software design, developers can select func-
tions suitable for their specific requirements from Python
codes, define the flow of signal processing, and run the pro-
gram. The programing style is analogous to the design of
hardware radio, i.e., determine the functions of the sys-
tem, organize them as a block diagram, then implement
the radio. It is also possible to expand the capabilities of
the GNU Radio by adding more signal processing codes
in C++. The advantage of the GNU Radio is enhanced by
its friendly hardware for data acquisition, called the USRP.
The USRP consists of a main board connected to a host
computer through the USB 2.0 interface. It can be op-
erated as a two-channel receiver and a two-channel trans-
mitter simultaneously. In the receiving mode, the USRP
main board has four analog-to-digital converters (ADC),
each with 12 bits per sample, 64 M sample/s; it is sensitive
to signal frequencies of about 200 MHz. All analog signals
are fed through daughter boards that can be attached to the
main board, and some daughter boards can down-convert
the signal frequency by analog circuitry. An FPGA (field-
programmable gate array) on the USRP main board is used
for fast digital processing. By selecting specific daughter
boards, the USRP is applicable to various radio systems in
the frequency range from near DC to several GHz. The
GNU Radio and USRP are both an open-source software
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Fig. 1. Block diagram of the GNU Radio Beacon Receiver (GRBR).
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Fig. 2. Quadrifilar helix (QFH) antenna for the 150- and 400-MHz beacon.
(Note: Tilted 90° to the left for editorial reason.)

and hardware, respectively, so that all information, includ-
ing circuit design and FPGA code, is open.

Figure 1 shows the block diagram of the newly devel-
oped receiver. A LINUX PC and the USRP are the main
components. Signals from 150- and 400-MHz antennas are
amplified and filtered by band-pass filters (BPFs) for anti-
aliasing purpose. The 150-MHz signal is directly applied
to the ADC, and the undersampled digital signal is aliased
into 22 MHz. The 400-MHz signal is down converted to
less than 10 MHz on the daughter board and then sampled
by the ADC at the same rate. Further signal processing is
carried out in the FPGA on the main board, as follows. The
digitized signals are multiplied with ‘SIN’ and ‘COS’ sig-
nals generated by the NCO (numerically controlled oscilla-
tor), and converted to the base-band complex signals. The
total effective sampling speed is then reduced to 320 kHz,
corresponding to a decimation factor of 200, after low-pass
filtering by the CIC (cascaded integrator-comb) filter. Af-
ter transferring the data to the LINUX PC, the GNU Radio
program further limits the signal bandwidth by a FIR (finite
impulse-response) filter and reduces the sample rate to 32
kHz. The expected Doppler shift at 400 MHz is about £10
kHz, which is well within the final bandwidth. Both signals
are then stored in separated files as discrete series of com-
plex data. Sound monitoring of the signals is also possible.

The QFH (quadrifilar helix) antenna is an unique an-
tenna that has a quasi omni-directional beam pattern of
the circular-polarized radio wave and is suitable for the
LEOS beacon experiment (e.g., Kilgus, 1969; Adams et al.,
1974). The QFH antennas were in-house fabricated with
PVC pipes and copper wires, as shown in Fig. 2. The 400-
MHz antenna element is nested inside the 150-MHz ele-
ment to avoid phase variation owing to the satellite mo-
tion. The intensity of the beacon signals is estimated by
assuming the transmission of 1 W from a LEOS, the max-
imum propagation distance of 4000 km, and the use of
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omni-directional antennas at both ends. Power and volt-
age into a 50-2 load induced at the receiving antenna are
1.6x10""" Wand 2.8x 1077 V at 150 MHz, and 2.3x 10~ ¢
W and 1.1 x 1077 V at 400 MHz, respectively. The smallest
detectable voltage of the ADC is about 0.5 mV, considering
its 12-bit resolution to the 1 V input. Hence, the necessary
amplification from antenna to the ADC is then 65 dB and
74 dB for 150 and 400 MHz, respectively. For this system,
pre-amplifiers are located at the bottom of the antennas. An
additional amplifier is used for the 150 MHz signal. The
daughter board for 400 MHz has enough amplification on
its own.

With reference to the hardware design, it should be noted
that selection of the anti-aliasing filters is important to avoid
unexpected radio interference. It is also important to set
the gain of the amplifiers so as to avoid signal saturation.
Saturation of any signal, even if it occurs at a different fre-
quency range, can cause significant signal distortion. As
the frequency of the NCO is discretely selected, residual
frequency on the order of mHz may remain in the USRP
tuning. This very small offset that breaks the 3:8 frequency
ratio can result in an detectable constant increase or de-
crease of the measured TEC. Careful selection of the tun-
ing frequency reduces the problem. Nevertheless, based on
these tests with accurate signal sources, it is confirmed that
a compensation in the analysis is also possible.

4. Analysis for TEC Estimation

Estimation of TEC from the digital receiver is conducted
by off-line data analysis. The process can be categorized
as follows; (1) spectral peak finding, (2) narrow filtering of
beacon signal, and (3) phase detection and TEC estimation.

(1) The raw data are stored as time series of 32-kHz sam-
pled complex numbers that consist of both signal and noise.
We first calculate the power spectrum of the data by 8192-
point FFT. The Nyquist limit of the spectrum is +16 kHz,
and the distance between spectral points is 3.91 Hz, corre-
sponding to 0.256-s long data. The beacon signal appears
as an intense peak in each spectrum with the Doppler fre-
quency shift corresponding to the satellite motion relative
to the receiver. With the help of a priori information on the
satellite motion, an attempt is made to find the best candi-
date peak of the signal from both 400- and 150-MHz spec-
tra. The precise intensity and frequency of the signals are
then estimated by the zeroth and first order moments of sev-
eral spectral components around the peak, respectively.

(2) The “beacon only” signals are extracted by using
“FFT band-pass filtering”. We select three (for 150 MHz)
and seven (for 400 MHz) complex components of the spec-
trum around the peak frequency, fill zero to all other com-
ponents, and calculate complex time series by the inverse
FFT. This is a very narrow BPF with a pass-band width of
only 20-30 Hz. In order to avoid Gibb’s effect of the filtered
results, we use only the center half portion of the results and
then stagger the calculation by half of the FFT points.

(3) The phase difference between two filtered signals is
evaluated at the common frequency. Assuming that the
filtered results are a pure sinusoidal complex time series,
“M-th power” of the data is to multiply the signal frequency
by the factor M. We then calculate s; = (xl»)8 /( yi)3 , Where
x; and y; denote discrete complex time series with the index
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i at 150 and 400 MHz, respectively. The phase angle of s;
is the differential phase @’ evaluated at the frequency of
the least common multiple of two frequencies, pgf;. The
equation for @’ is

TA
P = pg® = (B — 1) /Ndx +pqn ()
fic\g p

Note that this expression is different from @ of Eq. (4) in
which the common frequency was selected as the greatest
common divisor, f;. As @’ causes number of 27 phase
wrapping in time, the phase values are carefully unwrapped
throughout the observation period and the relative variation
of slant TEC is obtained during the satellite pass.

S. Results from the First Observation

The first observations with the new digital beacon re-
ceiver were conducted in August—September 2007 in the
Uchinoura Space Center of JAXA (Japan Aerospace Ex-
ploration Agency) (31.3°N, 131.1°E). At the same location
we fortunately had an analog beacon receiver, the Coher-
ent Ionosphere Doppler Receiver (CIDR) developed at the
University of Texas at Austin (Coker et al., 2004). Fig-
ure 3 shows the digital-receiver record of intensity and fre-
quency of signals from the FORMOSAT-3/COSMIC satel-
lite constellation. The pass was on August 31, 2007 at
15:35-15:51 UT, which is close to local midnight (the lo-
cal standard time is UT +9 h). The satellite FMS5 of the
FORMOSAT-3/COSMIC constellation appeared from the
south horizon at azimuth 193°, reached the maximum el-
evation 77° at 15:43 UT, and set in the north horizon at az-
imuth 21°. The intensity includes signal and noise power,
and the unit is relative. The signal was lost after 890 s, and
the intensity dropped down to the noise level. From this
figure we can see that the maximum signal-to-noise ratio
for 150 and 400 MHz is more than 40 and 30 dB, respec-
tively. There were several drop-offs of the signal, and some
of these suffered mis-estimation of the frequency. The sig-
nals show overall negative frequency offset, which is due to
frequency offset of the time base on the USRP main board.
This is a hardware limitation of using a small crystal oscil-
lator (64 MHz) without temperature control. However, this
does not affect the results because the TEC estimation de-
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Fig. 3. Signal strength (top) and Doppler frequency (bottom) of the signal
from FORMOSAT-3/COSMIC FMS5 on August 31, 2007 at 15:35:39
UT. Data of 400- and 150-MHz signals are shown by black and red
lines, respectively.
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Fig. 4. Relative TEC estimated by the digital receiver (black
line) and co-located analog receiver CIDR (red line) from FOR-
MOSAT-3/COSMIC FMS on August 31, 2007 at 15:35:39 UT.

pends on the phase coherency between the two frequencies
that is strictly maintained over the USRP main board and
the daughter board.

Estimated TEC from the digital and analog receivers
are shown by black and red lines in Fig. 4, respectively.
Both are the relative slant TEC, as described in Section 2.
Data are then plotted by shifting each minimum to zero.
The ordinate is in the TEC unit defined as 1 TECU=10"°
electrons/m?.

The TEC from the digital receiver is averaged over 0.128
s and plotted at the same interval. The result from the ana-
log receiver is plotted at each second. The digital receiver
could estimate TEC in the time range of 70-890 s, corre-
sponding to the satellite elevation >5°. This is much better
than the CIDR because of careful off-line data analysis in
the digital receiver. The discrepancy between both TEC is
typically 0.2 TECU or less and did not exceed 0.5 TECU
throughout the experiment. Both slant TEC records show
parabolic variation owing to the time-varying elevation of
the satellite. Small-scale perturbations are similarly seen
in both datasets, and the amplitude and phase well match
each other. It is possible that these variations are due to the
medium-scale traveling ionospheric disturbance (MSTID)
that is frequently seen in summer nighttime over Japan
(Saito et al., 1998). Simultaneous GPS-TEC data from
GEONET show weak patterns of MSTID near the observa-
tion region with an amplitude of about +0.2 TECU. Several
sudden jumps of TEC are also seen at 155, 185, 570 s and
650-675 s, which correspond to drop-offs of signal inten-
sity. Some of these are also seen in the CIDR data. These
glitches, however, can be removed in subsequent data anal-
ysis. There is a tendency that TEC from the digital receiver
is smoother than those from the CIDR. A detailed compar-
ison of the accuracies will be discussed in a future paper.
These results clearly show that TEC measurement by the
digital receiver was successful and that agreement to the
CIDR observation was excellent.

6. Summary and Concluding Remarks

GNU Radio and USRP, an open-source software toolkit
and open-source hardware for SDR, respectively, were uti-
lized for the development of a digital beacon receiver.
Based on the first results, shown in the previous section,
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it can be concluded that this simple system worked well
and that it is useful for real observations. We name it as
“GNU Radio Beacon Receiver (GRBR)”. Most of the hard-
ware used for developing the GRBR are off-the-shelf uni-
versal units and parts. The antenna was also made with
quite inexpensive materials. The total cost of the system
may be about 1/10 that of the commercial analog beacon
receiver. The success of the TEC estimation is largely de-
pendent on the phase coherent design of both USRP and
GNU Radio, which has been beautifully achieved. Recent
continuous, unattended operation for more than 1 month
shows that the system is also very stable. Detailed de-
sign information and the software codes of the system
are open, and available at the URL http://www.rish.kyoto-
u.ac.jp/digitalbeacon/. More development by other users
would be greatly appreciated. Our next step is network-
ing the receivers and studying various aspects of the iono-
spheric variability.
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