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An attempt has been made to evaluate the geoid-quasigeoid separation term over Pakistan by using solutions
of terms involving first and second order terrain heights. The first term, involving the Bouguer anomaly, has a
significant value and requires being incorporated in any case for determination of the geoid from the quasigoidal
solution. The results of the study show that the second term of separation, which involves the vertical gravity
anomaly gradient, is significant only in areas with very high terrain elevations and reaches a maximum value of
2–3 cm. The integration radius of 18 km for the evaluation of the vertical gravity anomaly gradient was found to
be adequate for the near zone contribution in the case of the vertical gravity anomaly gradient. The Earth Gravity
Model EGM96 height anomaly gradient terms were evaluated to assess the magnitude of the model dependent
part of the separation term. The density of the topographic masses was estimated with the linear operator of
vertical gravity anomaly gradient using the complete Bouguer anomaly data with an initial arbitrary density of
2.67 g/cm3 to study the effect of variable Bouguer density on the geoid-quasigeoid separation. The density
estimates seem to be reasonable except in the area of very high relief in the northern parts. The effect of variable
density is significant in the value of the Bouguer anomaly-dependent geoid-quasigeoid separation and needs to be
incorporated for its true applicability in the geoid-quasigeoid separation determination. The geoid height (N ) was
estimated from the geoid-quasigeoid separation term plus global part of height anomaly and terrain-dependant
correction terms. The results were compared with the separation term computed from EGM96-derived gravity
anomalies and terrain heights to estimate its magnitude and the possible amount of commission and omission
effects.
Key words: Geoid, quasigeoid, C1 & C2 correction terms, gravity anomaly, height anomaly, vertical gravity
anomaly gradient.

1. Introduction
Most of the modern geodetic boundary value problems

provide quasigeoid as its solution. The geoid-quasigeoid
separation term is then required for the determination of
geoid in areas where height datum is based on the ortho-
metric height system. It is well known that rigorous deter-
mination of the geoid requires knowledge of the mass dis-
tribution of topography above the geoid. To avoid this prob-
lem, Molodensky et al. (1962) discarded the geoid and in-
troduced a new surface, the quasigeoid, in which the geoidal
undulation is replaced by height anomaly. The determina-
tion of height anomaly involves no assumption of its density
in the computation, unlike the geoidal undulation (N ). The
geoid-quasigeoid separation term can then be used for the
computation of the geoid from the quasigeoid.

The separation between the quasigeoid height (ζp) and
the geoid height (N ) is derived in two different ways.
Firstly, the difference between the orthometric height and
the normal height yields the separation term. Secondly,
the difference of the results of two Stokes formulae for the
quasigeoid and the geoid can be used to achieve the purpose
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(Heiskanen and Moritz, 1967; Sjöberg, 1995). The geoid
is an equipotential surface of the Earth that corresponds to
mean sea level, whereas the quasigeoid is a geometrical sur-
face referred to as a normal height system. The geoid un-
dulation N is the separation between the ellipsoid and the
geoid measured along the ellipsoidal normal. The height
anomaly (ζp) is the separation between the reference ellip-
soid and quasigeoid along the ellipsoidal normal. There is a
similar concept of orthometric heights (H o) measured along
the plumb line, whereas normal heights (HN) are measured
along the ellipsoidal normal. These reference surfaces are
shown in Fig. 1.

The geoidal heights can also be computed from global
gravity field models, as studied by Rapp (1971, 1994a,
b, 1997), who examined different procedures for geoidal
height computations using spherical harmonic coefficients
of the global Earth gravity models. The difference in height
anomaly ζp and geoidal-height N and a height anomaly
gradient correction term can be used to achieve this pur-
pose. Sjöberg (1995) has proposed this as an ‘indirect’
method; which was further investigated by Nahavandchi
(2002) using EGM96 geopotential coefficients (Lemoine et
al., 1997). This indirect method for geoid modeling has
also been investigated for the entire area of Pakistan using
observed gravity data, a global gravity model, its elevation-
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Fig. 1. The geoid undulation (N ), orthometric heights (Ho), height
anomaly (ζp), and normal heights (HN).

dependant correction terms, and digital elevation models
in addition to quantification of the difference between the
geoid and height anomaly. It is a known fact that the global
vertical datum, i.e. global mean sea level or geoid and local
mean sea leveling data, has as an offset/bias (Lisitzin, 1974;
Torge, 2001). This bias comes from the external harmonic
series when applied to the geoid within the topographic
masses as well as from the errors in the GPS and leveling
data. Additionally, it has its source from permanent ocean
dynamic topography (PODT) and mean sea level changes
(Torge, 2001). Sjöberg (1977, 1994) pointed out this bias
and Sjöberg (1994, 1995), Vanicek et al. (1995), and Naha-
vandchi and Sjöberg (1998) derived different terms to han-
dle this bias, which is called the topographic correction for
potential coefficients. Here an attempt has been made to
quantify it through the comparison with local GPS-leveling
data as the difference in the standard deviation with respect
to global vertical datum.

The observed gravity anomalies, elevation data, and
global geopotential model were used in this study. The
model part of the gravity anomaly was computed from the
EGM96 global model, and the digital elevation model data
was extracted from GTOPO5 (5-arc min global topogra-
phy) and Shuttle Radar Topographic Mission (SRTM30)
for the whole area of Pakistan. The terrain correction was
applied to the distance of 167 km (∼1.5◦) in the area and
added to the Bouguer anomaly to quantify the effect of ter-
rain on geoid-quasigeoid separation. The EGM96 global
model is a reasonably good estimate of the global gravity
field and height anomalies (Rapp, 1997). Other combined
global models, such as the EIGEN-CG01C (Reigber et al.,
2004), EIGEN-CG03C and EIGEN-GL04C (Fösrste et al.,
2005, 2006) models derived from the CHAMP and GRACE
satellite missions, are also good enough; however, they have
comparable statistics to EGM96 in terms of observed grav-
ity and geoid in Pakistan (Sadiq and Ahmad, 2007). The
model part of the geoid-quasigeoid separation term was de-
termined using EGM96 potential coefficients (Lemoine et
al., 1997).

The height datum of Pakistan is based on the orthometric
height system. Therefore, the final solution should be in the
form of the geoid for surveying and other related applica-
tions. Pakistan has a variety of terrain distribution due to
its vast expanse of land comprising both plain lands to mid

elevation ranges and then to very high Himalayan moun-
tain ranges. The quantification of the maximum possible
value of the geoid to quasigeoid separation is essential due
to the fact that most modern geodetic boundary value prob-
lems provide the quasigeoid as their final solution, with the
exception of the pure Helmert condensation. The basis for
this is related to the ways of handling topography in a bet-
ter way in these methods, e.g., Molodensiki’s method with
RTM and combined RTM/Helmert schemes, among others
(Omang and Forsberg, 2000). The focus of this study is
mainly on the estimation of as maximum as possible com-
plete geoid-quasigeoid separation term to be used for the
determination of a geoid from a quasigeoidal solution. For
this purpose, an initial study was made to investigate the
geoid-quasigeoid separation term dependence on elevation
by Sadiq and Ahmad (2006) as a part of geoid-quasigeoid
separation (Np − ζp) modeling study in Pakistan.

Section 2 provides a brief theoretical background for the
evaluation of the geoid-quasigeoid separation term, Sec-
tion 3 analyses the test results, and Section 4 presents the
results with some recommendations.

2. Brief Theoretical Background
The geoid to quasigeoid separation term is a function of

the geoid and quasigeoid in one sense and orthomeric and
normal heights in the other sense. This term can be deter-
mined with adequate accuracy as a difference of the geoid
and quasigeoid using terms to the second power of orthome-
tric heights (Sjöberg, 1995) by the following relationship.

Np − ζp = �gB

γ̄
H + (H)2

2γ̄

∂�gF

∂H
+ higher order terms

(1)

where Np and ζp are the geoid and quasigeoid heights, �gB

and �gF are the Bouguer and free air anomalies, H is
the orthometric height, and γ̄ is the average theoretical
gravity along the ellipsoidal normal between the surface of
the geocentric reference ellipsoid and the telluroid.

Rapp (1997) pointed out that ζp is dependent on the gra-
dients of radius vector rp and height as a function of the
first order height term. The value ζ0 at the ellipsoidal sur-
face needs to be corrected to obtain ζ values at P.

ζp = ζ0(ϕ, λ, rE) + ∂ζ

∂r
h + ∂ζ

∂γ

∂γ

∂h
h (2)

where h is the ellipsoidal height of point P and rE is the
ellipsoidal radius. We can write the final form for geoid-
quasigeoid separation as (Rapp, 1997; Nahavandchi, 2002)

N (ϕ, λ) = ζ0(ϕ, λ, rE) + C1(ϕ, λ) + C2(ϕ, λ) (3)

where ζ0 is the height anomaly at the ellipsoidal surface,
and ϕ and λ are the geodetic latitude and longitude, respec-
tively

C1(ϕ, λ) = ∂ζ

∂r
H + ∂ζ

∂γ

∂γ

∂h
H. (4)

Here, orthometric height can be used instead of ellipsoidal
height without any loss of accuracy (Rapp, 1997)

C2(ϕ, λ) = �gB

γ̄
H + (H)2

2γ̄

∂�g

∂H
. (5)
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The following convention may be adopted for naming the
terms of Eqs. (4) and (5),

C1(ϕ, λ) = C11(ϕ, λ) + C12(ϕ, λ) (6)

and

C2(ϕ, λ) = C21(ϕ, λ) + C22(ϕ, λ). (7)

The solution of Eq. (4) can be determined using the rela-
tionship for the height anomaly (Rapp, 1997) with spherical
harmonic expansion to degree and order 360 as below

ζ0(ϕ, λ, rE) = GM

γ rE

M∑
n=2

(a
r

)n 360∑
m=0

(
C̄nm cosmλ

+ S̄nm sinmλ
)
P̄nm(sin ϕ) (8)

where γ is the normal gravity at the ellipsoid and a is its
semi-major axis, C̄nm S̄nm are fully normalized potential co-
efficients of degree n and order m, and P̄nm is fully normal-
ized Legendre function. The first and second term of Eq. (4)
can be determined using Eq. (8) as follows.

∂ζ

∂r
H = −GM

γ r2
H

M∑
n=2

(n + 1) ×
(a
r

)n

·
360∑
m=0

(
C̄nm cosmλ + S̄nm sinmλ

)
P̄nm(sin ϕ)

(9)

∂ζ

∂γ

∂γ

∂h
H = 0.3086 ∗ Ho

GM

γ 2r
×

M∑
n=2

(a
r

)n

·
360∑
m=0

(
C̄nm cosmλ + S̄nm sinmλ

)
P̄nm(sin ϕ)

(10)

The two parts of the C1 term (C11 and C12) were
determined by Eqs. (9) and (10) using height data and
gravity-mass constant GM with the definition of Wo

(Bursa, 1995) in a non-tidal system. Here, we have used
3.986004418E+1014 m3 s−2 for GM in order to make con-
sistent calculations with respect to the tidal system used.

The first term of Eq. (5) is simple to compute. The sec-
ond term, the height gradient of free air anomaly, requires
special solution techniques and is given by Heiskanen and
Moritz (1967) as(

∂�gF

∂H

)
p

= R2

2π

∫∫
σ

�gF − �gF
p

l3
o

dσ − 2

R
�gF

p (11)

where lo is the spatial distance between the computation
point P and the running point, R is the average earth radius,
and σ is the unit sphere. The planar solution of Eq. (2), as
given by Heiskanen and Moritz (1967), can be written as

∂�gF

∂H
= s0

4

(
gxx + gyy

)
(12)

where s0 is the constant linear distance (here it is the grid
interval of the gridded data), and gxx and gyy are the second
order horizontal derivatives of the free air gravity anomaly.

The horizontal second order derivatives were calculated
from the gridded free air anomaly data at 5′ arc minute grid
intervals.

The approximation of the vertical gravity anomaly gra-
dient with Eq. (12) is not very accurate, but it can be im-
proved with numerical integration for greater integration
radii. For this purpose, the solution of Eq. (11) was de-
termined numerically using Newton-Cotes formulae after
solving the singular integral in the planar approximation.
The planar/flat Earth approximation of the vertical gravity
anomaly gradient is expressed as (Heiskanen and Moritz,
1967; Bian and Dong, 1991; Bian, 1997).

∂�g

∂H
= 1

2π

∫∫
�g(x, y) − �g0

r3
dxdy (13)

where �g0 is the free air gravity anomaly at the compu-
tation point and r =

√
x2 + y2, where x and y are tangent

planar coordinates of the moving point. The solution for the
inner most area, −2a < x < 2a, −2a < y < 2a, was im-
plemented on the gridded data with a planar approximation
with a grid interval ‘a’. The final solution for the vertical
gravity anomaly gradient comes out to be

∂�g

∂H
= 1

135aπ

{
36 ln

(
1 +

√
2
)

+ 128
}

· (�g(−a, 0)+�g(a, 0)+�g(0, −a)+�g(0, a)

−4�g(0, 0))

+ 49

8100aπ
√

2
· (�g(−2a, 2a) + �g(2a, −2a) + �g(2a, 2a)

+ �g(−2a, −2a) − 4�g(0, 0))

+ 84

8100aπ
·(�g(−2a, 0) + �g(2a, 0) + �g(0, 2a)

+ �g(0, −2a) − 4�g(0, 0))

+ 448

10125aπ
√

5
·(�g(−2a, a) + �g(2a, −a) + �g(a, −2a)

+ �g(−a, 2a) + �g(−2a, −a) + �g(2a, a)

+ �g(−a, −2a) + �g(a, 2a) − 8�g(0, 0))

+ 56

6075a3π
√

2
·(�g(−a, a) + �g(a, −a) + �g(−a, −a)

+ �g(a, a) − 8�g(0, 0))

(14)

The average integration radius corresponding to the
Newton-Cotes formula for n = 4 with a grid interval of
5 arc min was used in this study. Additionally, the even
orders of the Newton-Cotes integration yield exact results.
This is due to the reason that the fourth order was found
to be enough for estimating of the vertical gravity anomaly
gradient through Eq. (14) in the innermost zone for medium
elevation ranges (Sadiq et al., 2008). In addition to this, it
is also known that the vertical gravity anomaly dependent
C22, i.e., second term of Eq. (1) is of much less magnitude
(only ∼2–3%) in comparison with the C21 correction term.
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Table 1. Statistics of the input parameters for the computation of the
geoid-quasigeoid separation term.

Parameter Min Max Mean Std. dev.

Altitude (m) −3836.2 6143.8 374.45 1767.74

Bouguer Anomaly (mgal) −559.85 132.2 −91.69 114.03

Free air Anomaly (mgal) −290.97 256.25 −39.09 76.512

Terrain correction (mgal) −64.264 229.13 16.92 27.04

3. Data Processing Strategy and Analysis of Re-
sults

The gravity data for the numerical investigation was
taken from the GETECH database (GETECH, 1995) for
Bouguer gravity anomalies over Pakistan with a 5′ grid
interval. The digital elevation model of GTOPO5 and
SRTM30 were also available for the computation terrain-
related gravity field parameters. The topographic heights
vary from 3836.2 to 6143.8 m within the study area. Since
GTOPO5 elevation data were used for the evaluation of
Bouguer anomaly, the free air anomaly was computed by
the back transformation of the procedure implemented for
the determination of the Bouguer anomaly. The Bouguer
gravity anomaly varies from −559.85 mgal to 132.2 mgal
with a constant topographic density of 2.67 g/cm3. The
free air anomaly ranges from −290.97 to 256.25 mgal. The
terrain-corrected Bouguer anomaly is preferred for the es-
timation of the C21 correction term. To this end, the ter-
rain correction was estimated via prism integration using
the GRAVSOFT (2005) program and was computed by us-
ing a 30-arc second resolution SRTM30 grid along with in-
termediate (5-arc min grid) and reference grid (30-arc min
grid). It varies from −64.264 to 229.133 mgal in the study
area. The theoretical normal gravity (i.e., γ ) at the ellip-
soidal surface was computed using Somigliana’s formula.
The statistics of input gravity field parameters is shown in
Table 1.

For better management and data manipulation require-
ments, the whole area of Pakistan was divided into two
parts, namely PKGRD1 and PKGRD2, for the estimation
of the C22 term using free air gravity anomalies. The
data around the Pakistan were filled with EGM96 free air
anomaly data to make the above two grids as regular and
rectangular as possible and therefore useful for computating
first and second order horizontal derivatives. These deriva-
tives were used in Eq. (14) to compute the vertical grav-
ity anomaly gradient, which was further used in Eq. (5) to
compute the C22 part of the geoid-quasigeoid separation C2

term.
The global geopotential model-dependent C1 term

(Eqs. (9) and (10)) was computed by employing the global
gravity model and digital elevation data (GTOPO5 and
SRTM30). To this end, the EGM96 model with its geopo-
tential coefficients was used for the maximum degree of ex-
pansion, i.e., degree and order of 360. The ground gravity
data-dependent C2 term was computed while using the digi-
tal elevation model and ground gravity free air and Bouguer
gravity anomalies. The computation of C21 and C22 was
performed using actual data of the GETECH grid avail-
able within the GETECH database along with terrain cor-

rections.
3.1 Development of topographic density model

The C21 part of the separation term, which is dependent
on the Bouguer anomaly, has a built-in supposition of con-
stant density of 2.67 g/cm3. The use of constant density
introduces errors into the reduced gravity anomalies (e.g.,
simple Bouguer anomaly and its terrain-corrected version)
and, consequently, in the geoid-quasigeoid separation and
geoid itself.

Several studies have been conducted using laterally vary-
ing topographic density models in gravimetric geoid com-
putations (e.g., Martinec et al., 1995; Kuhtreiber, 1998; Pa-
giatakis and Armenakis, 1999; Tziavos and Featherstone,
2000; Huang et al., 2001; Hunegnaw, 2001). Different
approaches can be used for the development of a density
model in a particular area. The first, but rather difficult, ap-
proach is the direct measurement and collection of samples.
This method has limitations due to inaccessibility and may
not be representative. The other well-known geophysical
method is the use of the density profile approach (Nettleton,
1971). An extension of this method is density estimation
using a linear least squares regression for the distributed
over an area (Helmut, 1965). One important geophysical
technique is the well-logs investigation method. From a
practical point of view, it is very expensive and is usually
used only for special exploration projects (e.g., oil explo-
ration, etc.). The information derived from geological maps
can be utilized for establishing topographic density models.
Various researchers around the world (see Martinec, 1993;
Pagiatakis and Armenakis, 1999; Kuhn, 2000a, b; Tziavos
and Featherstone, 2000; Huang et al., 2001; Kiamehr, 2006)
have successfully used geological maps to generate density
models. A 3-D digital density model is usually needed to
give a better description of the topographic masses, but the
development of such a model can be very difficult or almost
impossible. Nevertheless, an approximate density model
would improve the gravity reduction in a precise geoid de-
termination rather than assuming an unrealistic constant
density model (Kiamehr, 2006). In addition to this, true
seismic velocities of the crustal layer can be very well em-
ployed for estimating crustal rock density (Nafe and Drake,
1963). Another workable approach may be Fractal dimen-
sion estimation from Bouguer anomaly data for density de-
termination (Thorarinsson and Magnusson, 1990).

In the present study, an attempt was also made to evalu-
ate and estimate the effect of the true average density on
geoid-quasigeoid separation in the maximum part of the
study area. To this end, the generalized procedure of linear
regression (Helmut, 1965) was implemented for the evalu-
ation of Bouguer density using the Bouguer anomaly and
terrain correction-dependant term (Eq. (16)) in the follow-
ing form.

d = do −

[
∂2Bo

∂Z2

∂E

∂Z
E

]
[
∂2E

∂Z2

∂E

∂Z
E

] (15)

where Bo is the arbitrary Bouguer anomaly using density
‘do’ of 2.67 g/cm3 and ‘Z ’ is the vertical height for the
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Table 2. The topographic densities determined using the generalized
Nettleton Procedure.

Grid description Density (g/cm3)

Grid-1 22.0◦–25.7◦N 60.0◦–64.0◦E 2.643

Grid-2 22.0◦–25.7◦N 64.0833◦–69◦E 2.728

Grid-3 24.0◦–27.667◦N 69.0833◦–71.2◦E 2.632

Grid-4 25.8◦–30.25◦N 61.0◦–65.667◦E 2.661

Grid-5 27.75◦–30.25◦N 65.75◦–71.25◦E 2.634

Grid-6 30.0◦–32.0◦N 66.0◦–69.0◦E 2.654

Grid-7 30.333◦–32.25◦N 69.0◦–71.0◦E 2.807

Grid-8 27.833◦–34.2◦N 71.33◦–75.5◦E 2.625

Grid-9 32.333◦–34.5◦N 69.0◦–75.5◦E 2.848

Grid-10 34.3◦–37.0◦N 70.5◦–77.0◦E 2.929

computation of the vertical gradient of the different terms
mentioned in Eq. (15). The term ‘E’ is defined by

E = T − 0.04193 ∗ H o (16)

where ‘T ’ is terrain correction and ‘H o’ is orthometric
height. For estimation of the true average density ‘d’, linear
operators of first and second vertical derivative of the grav-
ity anomaly were applied on the gridded data. The second
term of Eq. (15) was determined for true average density
‘d’ for each grid, as mentioned in Table 2.

The study area was therefore divided into different grids
with suitable dimensions (total of ten sub-grids for the Pak-
istan area) for data handling in the planar approximation
and more representative density calculations. The com-
puted average density appears to fall towards the higher side
for grids 7, 9, and 10, which occurs due to the high relief
and steep slopes in the northern parts. This originates from
the inherent characteristics of the method resulting from the
distribution of terrain and gradient of gravity anomalies.
3.2 Analysis of results

The procedure of computation of geoid to quasigeoid
separation term has been implemented and quantified for
the maximum possible area of Pakistan based on observed
gravity and model datasets. The work done by Rapp (1997)
and Nahavandchi (2002), with minor modifications, has
been adopted in a study area which has a very high and
rugged terrain. In addition to this, estimation of Bouguer
density was made within Pakistan to better evaluate its ef-
fect on density-dependant geoid-quasigeoid separation, i.e.,
C21.

3.2.1 The estimation of the C2 term (C21 plus C22)
The planar approximation was applied for the solution of
the singular integral of the vertical gravity anomaly gradi-
ent for the estimation of the C22 term. The complete geoid
to quasigeoid separation term as the sum of C1 and C2 in
Eq. (3) was computed from Eqs. (4) and (5) after the indi-
vidual terms had been determined using Eqs. (8), (9), (10),
and (14). The global part of correction C1 was computed
from the EGM96 global gravity model.

The terrain-corrected Bouguer anomaly and topographic
height were used for the calculation of the C21 term. The
variation of this term is −3.2637 to 0.0096 m with a stan-
dard deviation of 0.4929 m while using a constant density
of 2.67 g/cm3. This C21 term is found to be maximum con-
tributor towards the total effect of the geoid-quasigeoid sep-

Table 3. The statistics of different parts of the complete geoid-quasigeoid
separation term (C21 with constant density of 2.67 g/cm3).

Statistical
Min. Max. Mean

Standard

parameter deviation

C21 (m) −3.2637 0.0096 −0.206 0.4929

C22 (m) −0.0237 0.0279 0.000 0.0019

C21 + C22 (m) −3.2605 0.0096 −0.204 0.4898

C11 (m) −0.976 0.3480 −0.021 0.0837

C12 (m) −0.0690 0.0000 −0.007 0.0106

C11 + C12 (m) −1.0150 0.2930 −0.029 0.0900

C1 + C2 (m) −4.0245 0.0450 −0.234 0.5501

Table 4. The statistics of different parts of the complete geoid to quasi-
geoid separation term (C21 computed with variable density from Ta-
ble 2).

Statistical
Min. Max. Mean

Standard

parameter deviation

C21 (m) −3.580 0.0096 −0.220 0.5375

C22 (m) −0.0237 0.0279 0.000 0.0019

C21 + C22 (m) −3.577 0.0096 −0.220 0.5374

C11 (m) −0.976 0.3480 −0.021 0.0837

C12 (m) −0.0690 0.0000 −0.0076 0.0106

C11 + C12 (m) −1.0150 0.2930 −0.0291 0.0900

C1 + C2 (m) −4.329 0.0391 −0.2495 0.597

aration term due to the Bouguer plate effect, as shown in
Fig. 2.

The variable density for different grids suitably selected
was also used for grids 1–10 (Table 2). The estimates of
densities for grids 7, 9, and 10 seem to be relatively higher.
The density values for the remaining seven grids are as ex-
pected and seem to be realistic estimates. The estimation
of the C21 term from the Bouguer anomaly was made with
constant as well as variable density data. The effect of vari-
able densities appears to be considerable (Tables 3 and 4)
and needs to be incorporated for better modeling of this
term. The mean and standard deviation differences of the
C21 term for the two cases are 13.9 and 44.6 mm. This, how-
ever, requires that the density modeling be verified by some
other independent method, such as computed from Fractal
dimension estimation of Bouguer densities (Thorarinsson
and Magnusson, 1990) and/or seismic velocities of topo-
graphic masses (Nafe and Drake, 1963), among others. The
results of variable and constant density are shown in Ta-
bles 3 and 4. The second part of the C2 term, i.e., C22, was
computed using free air gravity anomaly data on the grid of
5′ × 5′. The whole study area was divided into two parts,
keeping in mind the distribution of data and extensions. The
computed first and second horizontal derivatives were used
in Eq. (14) to compute the vertical gravity anomaly gradi-
ent, which was then used in Eq. (5) to compute this second
part of C2 term.

During the computation of the vertical gravity anomaly
gradient, it was observed that Newton-Cotes formula for
n = 4 seems to be adequate for practical purposes for the
evaluation of the C22 term. The variation in the C22 term
over the whole study area ranges from −23.7 to 27.9 mm
and is only approximately 1.5% of the Bouguer anomaly-
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Table 5. The statistics of different parts of complete geoid to quasigeoid separation term and EGM96 height anomaly (C21 determined using the EGM96
correction coefficients set).

Statistical parameter Min. Max. Mean Std. dev.

EGM96 height anomaly (m) −54.08 −17.19 −39.263 7.92

C21 (EGM96 Corr. Coeff.) (m) −3.42 0.05 −0.220 0.557

C22 (m) −0.024 0.0279 0.0000 0.0019

C21 + C22 (m) −3.419 0.0499 −0.220 0.5568

C11 (m) −0.976 0.3480 −0.021 0.0837

C12 (m) −0.069 0.0000 −0.0076 0.0106

C11 + C12 (m) −1.0150 0.2930 −0.0291 0.0900

C1 + C2 (m) −4.0647 0.167 −0.249 0.6189

 

Fig. 2. The image plot of the C21 part of the geoid-quasigeoid separation.

 

Fig. 3. The image plot of the C22 part of geoid-quasigeoid separation.

dependant term C21. This shows that the C22 part is insignif-
icant in the complete C2 term and that the overall statistics
of the C2 term does not change very much because it has
been statistically hidden by the major part of C21, as has
been shown in Fig. 3.

3.2.2 Estimation of the C1 term (C11 plus C12) The
C1 term was computed from the global geopotential coeffi-
cients of EGM96 from the expansion up to order and 360◦

with height anomaly gradient terms using Eqs. (9) and (10)
and implemented with some modifications in the software
F477S.FOR (Rapp, 1982). After this implementation, the
program calculates these C11 and C12 terms at the surface
of earth. The gradient term C1 for the geoid-quasigeoid
separation requires the data of topographic height and the
potential coefficient of the recent earth gravity model.

The total C1 term (sum of C11 and C12) varies from
−1.032 to 0.293 m in the whole study area. The overall
effect on the total geoid-quasigeoid separation term is found
to be additive in general, as it is evident from the statistics
given in Tables 4 and 5 and maps shown in Figs. 4, 5, and 6.
The contour pattern of the C1 term shows a similar trend of
increase in magnitude from low land areas towards the high
mountains, as it is observable in the C21 and C22 terms.

The model part of the geoid-quasigeoid separation term
(Fig. 7) was computed to assess its magnitude in compar-
ison with one computed in the scheme above. This sepa-
ration term was computed using EGM96 model (Lemoine
et al., 1997) with the geopotential coefficients and geoid-
quasigeoid correction coefficients determined by Rapp
(1997) from the values of the C1 and C2 terms using global
30′ × 30′ gravity anomaly data; for details, see the paper
from Rapp (1997). The harmonic expansion for the correc-
tion term was made to 360◦ so that the corresponding cell
size is 30′ × 30′ to match the resolution with EGM96. With
this information now available, the C1 and C2 terms can
be evaluated on a global grid. This correction term refers
to the WGS84 ellipsoid. The computation of C1 and C2

was made using program F477.FOR (Rapp, 1982). These
data however, are missing the C12 and C22 terms. It is ob-
servable from our results that it does not differ much from
the total C2 term obtained from observed gravity data ex-
cept the height anomaly gradient term C12 and C22 obtained
from the free air vertical gravity anomaly gradient. This re-
sult shows that the EGM96 earth gravity model-based C21

term corresponds nearly to GTECH data in Pakistan area
computed with variable densities. The comparison of Ta-
bles 3 and 5 clearly shows that EGM96-dependant geoid-
quasigeoid separation is closer to variable density based re-
sults from observed data rather than for constant density.
Statistics for the geoid to quasigeoid separation term and
model height anomaly is given in Table 5 for comparison.

The method described above can be used for the deter-
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Fig. 4. The image plot of the C2 part of the geoid-quasigeoid separation.

 

Fig. 5. The image plot of the C1 part of the geoid-quasigeoid separation.

mination of geodal height (N ) from the height anomaly ζp

and additional C1 and C2 terms dependent on H and H 2

as mentioned in Eqs. (1), (2), and (3) in Section 2. This
scheme has been proposed to be indirect geoid determina-
tion method based on gravimetric data (Sjöberg, 1995; Na-
havandchi, 2002; section 3). For comparison purposes, we
computed the geoid using this method and compared it with
GPS-leveling geoid data at 35 selected points. The height
anomaly was computed using Eq. (8) at the ellipsoidal sur-
face by employing the EGM96 potential coefficients up to
order and degree 360 at the locations of the GPS-leveling
data points. The C1 and C2 terms were computed at the
same locations using the results of Eqs. (4) and (5), respec-
tively.

The GPS-leveling geoidal heights (N ) were computed
using the difference between ellipsoidal heights (h), mea-
sured with the differential global positioning system
(DGPS), and orthometric heights (H ), obtained from pre-

 

Fig. 6. The image plot of the sum of C1 and C2 of geoid-quasigeoid
separation.

 

Fig. 7. The image plot of geoid-quasigeoid C term separation using
EGM96 data.

cise leveling data with simple relation

N = h − H. (17)

The GPS ellipsoidal height data were collected and pro-
cessed by the Survey of Pakistan and was connected to the
high precision first order leveling network already estab-
lished (Noor et al., 1997). The GPS bench marks were
comprised ten GPS control points, and the other 25 points
belonged to the Pakistani first order geodetic network. The
processed DGPS 3-D coordinate data have a maximum er-
ror of 10 cm in the ITRF94 reference frame (Noor et al.,
1997). The high precision leveling data has a maximum
error of 2 cm as absolute. The statistics of differences be-
tween the computed gravimetric and GPS-Leveling geoidal
heights at 35 stations are shown in Table 6.

An important result evident from Table 6 is that the
standard deviation of the difference between the global
gravimetric datum and local GPS-leveling datum is about
0.7 m—a bias value of the local vertical datum with global
datum (Andersen et al., 2005) in the Karachi area of the
Indian Ocean (personal communication with Ole B. An-
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Table 6. Statistics of differences between gravimetric and GPS-leveling derived geoid heights for 35 GPS-leveling stations.

Model type Min. Max. Mean Std. dev.

Difference b/w GPS Leveling & gravimetric geoids (m) −1.741 1.477 −0.318 0.773

Difference b/w GPS Leveling & EGM96 geoids with EGM96 correction term added (m) −1.235 2.002 0.206 0.775

derson, Neil’s Bohr Institute). However, this height bias
value can not be representative of the total datum height
offset due to insufficient GPS-leveling data (only 35 num-
bers) and not well-distributed data in the Pakistan area in
addition to the other inherent errors of geodetic measure-
ments. Since both gravimetric as well as EGM96-derived
results are representative of the global datum, the difference
is almost the same in terms of local GPS-leveling data. A
maximum difference of −1.741 m has been computed with
respect to the gravimetric and GPS-leveling geoid. The rea-
son behind this difference might be associated with errors
in the GPS-leveling data, heights derived from GTOPO5,
observed gravity data, and errors in the modeling of den-
sity in the determination of the geoid-quasigeoid separation
term, in addition to the constant height offset between local
and global vertical datums in the Pakistan area. In addition
to this, the geoidal height determined through the height
anomaly has shown good agreement with the GPS-leveling
data, though some high-frequency information, i.e., terrain
effects etc, is not present in this approach (Nahavandchi,
2002). This method can give better results by increasing
the accuracy of potential coefficient models through the ad-
dition of high-frequency information from land gravity and
terrain data and increasing the maximum degree of expan-
sion in future global geopotential models.

4. Conclusion and Recommendations
This study focuses on the computation and assessment

of the complete geoid to quasigeoid separation term for the
selection of the onward geoid determination method. Pak-
istan has an orthometric height system, therefore this cor-
rection term will facilitate the determination of the geoid
in Pakistan more precisely, if the height anomaly is cal-
culated from observed gravity data using the solution of
the geodetic boundary value problem based on Moloden-
siky’s approach. The geoidal heights determined through
height anomaly and terrain-dependant correction terms has
demonstrated relatively good agreement to GPS-leveling
data in comparison to those computed from the EGM96
model and its geoid-quasigeoid correction coefficients set.
The results of our comparison confirm the difference of
global vertical datum and local GPS-leveling datum to be
of the order of 0.7 m in the sense of height bias; how-
ever, this comparison is not complete in the sense that GPS-
leveling data were not sufficient and well distributed. This
comparison requires more GPS-leveling data in the whole
area of Pakistan for better confidence on the derived re-
sults. The results might also be improved by calculating
the height anomaly component from observed gravity data.
Additional bench mark data are required to obtain the bet-
ter comparison results. Some additional work is required
for the calculation of this separation term using more re-
dundant and reliable density estimates by some other work-

able independent method, such as the Fractal dimension of
the Bouguer anomaly or from seismic velocities data to es-
timate the Bouguer density evaluation.
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