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Soft computing methods for geoidal height transformation
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Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled
researchers to create precise models for use in many scientific and engineering applications. Applications that
can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of
mean sea level changes. Another important field of geodesy in which these computing techniques can be applied
is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive
Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and
a modified ANN approach to approximate geoid heights. These approximation models have been tested on a
number of test points. The results obtained through the transformation processes from ellipsoidal heights into
local levelling heights have also been compared.
Key words: Fuzzy inference systems, neural network, geoid undulation.

1. Introduction
Height determination is one of the important tasks of sur-

veying and geodesy. Satellite-based positioning techniques
provide ellipsoidal heights. However, most users desire
heights in a natural system rather than purely geometric el-
lipsoidal heights. The most common natural system is or-
thometric datum, which has a physical context and depends
on Earth’s gravity field and, as such, refers to the geoid. The
relation between ellipsoidal heights and orthometric heights
can be established by geoid determination.
The most common method currently employed for pre-

cise geoid determination is the gravimetric method. How-
ever, the application of this technique is mainly dependent
on the availability of high-resolution gravity data. In ad-
dition, the terrestrial gravity networks usually follow the
road network and do not cover the high mountains where
the geoid heights change significantly. In the absence of ad-
equate gravity data, the geoid can be modelled using other
geometric methods, such as the astro-geodetic method or
geoid height from GPS in conjunction with spirit levelling
(Kuhar et al., 2001). However, in most of the GPS appli-
cations, users need to transform ellipsoidal heights into or-
thometric heights in order to make them compatible with
the existing orthometric heights on the local vertical datum
(Engelis et al., 1985; Seeber, 2003).
The orthometric height is the distance of a point above

the geoid measured along the plumb line through the point.
The ellipsoidal height is calculated along the ellipsoidal
normal, from the surface of any reference ellipsoid to the
point of interest. The geoid height or geoid-ellipsoid sepa-
ration is calculated along the ellipsoidal normal, from the
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surface of any reference ellipsoid to the geoid. There-
fore, an essential requirement of any transformation of el-
lipsoidal heights to orthometric heights is that the geoid
height must refer to the same reference ellipsoid (Feather-
stone, 2001).
From the above definitions, the geoid height at each point

can be given as follows,

ξ ≈ h − H (1)

where ξ is either the geoidal undulation or the height
anomaly, h is the ellipsoidal height and H is the orthome-
tric height or the normal height. The approximate equal-
ity in the equation results from neglecting the departure of
the plumbline from the ellipsoidal normal, which is called
the deflection of the vertical. There is also torsion in the
plumbline, but the deflection of the vertical is usually the
dominant effect of the approximation in Eq. (1). The ap-
proximation error can be estimated by multiplying the or-
thometric height by the cosine of the deflection of the verti-
cal at the point of interest. However, the maximum error
of this approximation is 1–2 mm, which is considerably
smaller than the accuracy with which GPS-derived ellip-
soidal and orthometric heights can currently be determined.
Therefore, the approximation in Eq. (1) remains valid for
the transformation of heights (Akyilmaz et al., 2003).
The determination of the geoid is in fact the interpola-

tion of the known geoid heights at the control points that
are located and distributed properly on the ground. How-
ever, the accuracy of the geoid depends on the accuracy
of the input data, i.e. the accuracy and the density of the
known geoid heights, rather than the method used for inter-
polation. Different methods have been widely employed for
this purpose to date, including the least squares collocation,
multi-parameter polynomial fitting (Ayan et al., 2001) and
multi-quadratic or weighted linear interpolations (Yanalak
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Fig. 1. (a) Type 3 fuzzy reasoning. (b) Equivalent ANFIS (Type 3 ANFIS).

and Baykal, 2001) by different auto-covariance functions.
All of these methods have been evaluated only from the
mathematical point of view and have often neglected the
physical aspects of the geoid. The main advantage of the
soft computing techniques is that the physical characteris-
tics of the geoid are also taken into consideration to some
extent—either explicitly or implicitly.
The study reported here focussed on the geoidal height

transformation applications of two soft computing meth-
ods, namely the Adaptive Network-based Fuzzy (or in
some publications, Adaptive Neuro-Fuzzy) Inference Sys-
tem (ANFIS) and Artificial Neural Networks (ANN).
Akyilmaz et al. (2003) and Akyilmaz and Kutterer (2004)

provide an end-to-end description of the ANFIS approach,
and the ANNmethodology applied in this study is described
by Akyilmaz et al. (2004). We have modelled the geoid in
Izmir (Turkey) by applying these methodologies. Another
mathematical method employed for geoid determination is
the fifth-order multi-parameter polynomial approximation
(Akyilmaz et al., 2003). In addition to employing the soft
computing methods and the polynomial approximation, we
also applied a least-squares collocation procedure in order
to recover the remaining fine structure of the local geoid.
In the following sections of this article, we report on the
techniques and computing methodology used in our study
and compare the soft computing methodologies.

2. Adaptive Network-based Fuzzy Inference Sys-
tem

The ANFIS has emerged as an extension of fuzzy logic
and fuzzy set theory introduced by Zadeh (1965). The bene-
fit of ANFIS is that the parameters of the fuzzy sets defined
in the inference model are optimised using proper math-
ematical algorithms when there is input-output data pairs
available on the problem in question. The basic principle of
ANFIS can be described as follows: a fuzzy inference sys-

Fig. 2. Meanings of the parameters in the generalised bell membership
function.

tem is typically designed by defining linguistic input and
output variables as well as an inference rule base. However,
the resulting system is just an initial guess for an adequate
model. Hence, its premise and consequent parameters have
to be tuned based on the given data in order to optimise
system performance. In ANFIS, this step is based on a su-
pervised learning algorithm (Akyilmaz et al., 2003).
An example of an ANFIS with two fuzzy rules are in the

following form.

Rule 1: If x ∈ A1 and y ∈ B1; then f1 = p1x + q1y + r1.

Rule 2: If x ∈ A2 and y ∈ B2; then f2 = p2x + q2y + r2.

The associated fuzzy reasoning is illustrated in Fig. 1(a),
and the corresponding equivalent ANFIS architecture is
shown in Fig. 1(b).
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The parameters of the input fuzzy sets (also named as
membership functions) Ai , Bj (i = 1, 2 j = 1, 2) are
called the premise parameters, whereas the parameters of
output functions fi (i = 1, 2), i.e. pi , qi and ri , are called
consequent parameters (Takagi and Sugeno, 1985). The
input membership function μAi (x) is usually chosen to be
bell-shaped (Eq. (2)), with the maximum value equal to 1
and the minimum value equal to 0 (such as the generalised
bell function; Fig. 2),

μAi (x) = 1

1 +
[(

x − ci
ai

)2
]bi

(2)

or the Gaussian function

μAi (x) = exp

[
−

(
x − ci
ai

)2
]

(3)

where {ai , bi , ci } (or {ai , ci } in the case of the Gaussian
function) is the parameter set. As the values of these param-
eters change, the bell-shaped functions vary accordingly.
The interested reader desiring more information on the

set up of ANFIS and the tuning up of the parameters are
referred to Jang et al. (1997) and Akyilmaz and Kutterer
(2004).
The procedure for the application of ANFIS to geoidal

height transformation can be summarized step-by-step as
follows:

1) Calculation of the observed geoid heights using
Eq. (1). Beforehand, the outliers have to be removed
from the data set by statiscal testing of the both GPS
and levelling of the derived heights. This is performed
during the adjustment of the observations.

2) Separation of the entire data into two independent
groups as training and test data sets, respectively.
Training data are the reference points which will
be used to estimate the ANFIS model parameters,
whereas the test data set will be used to validate the es-
timated model parameters. The test data set should be
distributed as homogenously as possible because the
extrapolation is usually problematic. In practice, usu-
ally at least 20% of all data points can be selected as
the test data.

3) Selection of the input variables. The input variables
may be selected as the geographic coordinates of the
points or the geographic coordinates and the ellip-
soidal heights of the points, as adopted in this study.

4) Assignment of the input membership functions to each
input variable. Different types and numbers of mem-
bership functions are possible. However, for geode-
tic applications, membership functions of the Gaus-
sian type are the most appropriate ones. The optimum
number of membership functions for each input vari-
able is usually determined by trials regarding the per-
formances of the relevant ANFIS models. The output
membership functions are the first order polynomials
of the input variables. The number of the output mem-
bership functions depend on the number of fuzzy rules.

which is the number of all combinations of the input
membership functions.

5) Training of the network. After the ANFIS structure
(i.e. the number and the type of the input membership
functions were determined) has been fixed, the param-
eters of both the input membership functions and the
output membership functions have to be adjusted iter-
atively. There are several mathematical methods that
can be used for the training. The hybrid training algo-
rithm proposed by Jang (1993) is preferred because of
its rapid convergence to the global optimum solution.

6) Validation of the estimated ANFIS parameters. Once
the parameters of the ANFIS are estimated after the
training step, they are used to compute the geoid
heights at the test data points. The RMS error of the
computed geoid heights for the training data and the
test data, respectively, should be compatible—in other
words, they should be close to each other. If not, the
composed set up of the ANFIS is not adequate, and the
number of membership functions should be changed
(i.e., go to step 3). The trials should be repeated until
a compromise between the RMS errors of the training
and test data points are achieved.

7) End.

3. Multilayer Feed-forward Networks
Commonly used artificial neural networks (ANN) are

multilayer feed-forward (MLFF) networks. Neural net-
works typically consist of many simple neurons located on
different layers that operate in cooperation with the neurons
on the other layers in order to achieve a good mapping of
input-to-output signals. The expression feed-forward em-
phasises that the flow of the computation is from input to-
wards the output. There are three different types of layers in
the concept of neural networks: the input layer (the one to
which external stimuli are applied to), the output layer (the
layer that results in output) and hidden layers (intermediate
computational layers between input and output). Theoreti-
cally, there is no limitation given for the number of hidden
layers in a network configuration. The absence of such lim-
itations, however, has a great effect in the computation time
as well as on the number of neurons in hidden layers. There-
fore, a compromise has to be found in order to achieve an
optimal network configuration with an acceptable conver-
gence time and quantitative precision.
Figure 3 provides a sample configuration of a MLFF

network with one input, one output and one hidden layer.
Note that the network consists of five inputs and one output.
When a network configuration is fixed, the parameters of

the network, i.e. the weights which link the neurons in con-
secutive layers, have to be calculated so that a chosen func-
tion of the difference between the actual (desired) output
and the output performed by the network is at a minimum.
This function is usually called the cost function or perfor-
mance index. The most commonly used cost function is the
sum of the squares of the residuals:

E =
∑ (

yi (k) − y′
i (k)

)2
(4)

where yi (k), y′
i (k) and E are the actual output, network

output and the corresponding cost function, respectively.



828 O. AKYILMAZ et al.: SOFT COMPUTING OF GEOIDAL HEIGHTS

Fig. 3. A schematic representation of a multilayer feed-forward (MLFF) neural network with one hidden layer.

There is a wide spectrum of different mathematical opti-
misation tools which are based on the iterative least-squares
estimation of the network parameters, such as the steep-
est gradient descent, the Levenberg-Marquardt method, the
Gauss-Newton method, among others. These are not dis-
cussed in detail here but full information can be found in
standard textbooks, such as those of Bishop (1995) and
Haykin (1994). The procedure for the optimisation of the
network parameters is usually called learning or training in
neural computing literature.
Hu et al. (2004) applied a two-step approach consisting

of the combination of surface function fitting followed by
the ANN approximation. In our study we have applied both
the conventional ANN approach and the aforementioned
hybrid ANN approach introduced by Hu et al. (2004) to
the same data to convert the ellipsoidal heights obtained
through GPS positioning into the orthometric heights.
The procedure we followed for the application of ANN

to geoidal height transformation can be summarized step-
by-step as follows:

1) Calculation of the observed geoid heights using
Eq. (1). Beforehand, the outliers have to be removed
from the data set by statiscal testing of the both GPS
and levelling derived heights.

2) Separation of the entire data into two independent
groups as training and test data sets, similar to the case
in the ANFIS method.

3) Selection of the input variables. The input variables
might be selected as the geographic coordinates of
the points or as the geographic coordinates and the
ellipsoidal heights of the points, as adopted in this
study.

4) Setting up the ANN architecture. This step includes
the determination of the number of hidden layers and
the number of neurons at each hidden layer. The num-
ber of input and output layers is known prior to this
step as they are equal to the number of input and output

variables, respectively. As a rule, one tries to achieve a
reasonable network architecture with as few as possi-
ble hidden layers and neurons. This is usually related
to the complexity of the process in question. However,
for geoidal height transformation, one or two hidden
layers are sufficient.

5) Initialization of the training parameters. Before the
training has started, some initial parameters have to
be defined. These are the initial values of the weights
between the neurons in successive layers (see Fig. 3),
the “learning rate” and the expected performance of
the ANN (also called the “goal” of the ANN) in terms
of average RMS error.
The initial values for the weights are usually as-

signed by a random number generator. Most of the
ANN softwares use random number generators to de-
termine the initial weights. However, one can assign
the value of 1 to all the weights as the initial values.
The learning rate is in fact the parameter related to

the step-size of the iterative adjustment of the weights
between the neurons. It is usually selected to be a
constant value between 0.01 and 0.10. A high value
of the learning rate may yield overtraining, whereas a
low value may yield a slow convergence. Therefore, a
compromise has to be found for the learning rate. For
the numerical example in this study, the value of 0.08
is used.
The goal of the ANN can be defined most simply

as the average RMS error of the ellipsoidal heights,
which are readily available from the GPS network
adjustment. The contribution of the spirit levelling
heights to the RMS error of the geoidal undulations
can be neglected as they are much more accurate that
to the accuracy of the ellipsoidal heights.

6) Training of the ANN. Once the ANN architecture and
the training parameters are fixed, the parameters of
the ANN, i.e. the weights between the neurons in suc-
cessive layers (see Fig. 3), have to be adjusted itera-
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tively. There are numerious methods for updating this
parameter in ANN applications. The most commonly
used one is the so-called “error back-propagation” al-
gorithm, which is also known as the “steepest gradi-
ent descent” algorithm in numerical analysis. In the
case of ANNs with a single output (e.g. this study),
the Levenberg-Marquardt algorithm can be adopted
as it converges more rapidly than the error back-
propagation algorithm. Note that all of these training
algorithms are gradient-based methods with slight dif-
ferences from each other. The training is terminated
when the predefined goal (i.e. the average RMS error)
is achieved.

7) Validation of the ANN parameters. After the training
is terminated, the final estimate of the ANN parame-
ters, i.e. the weights, are obtained. These weights are
then applied to the test data. The RMS for the test data
and that for the training data have to be compatible
with each other. If not, the ANN architecture, i.e. the
number of the neurons in the hidden layer, has to be al-
tered (go to step 4), and the process should be repeated
until a compromise between the training and test RMS
errors are achieved.

8) End.

4. Numerical Applications
The data used in this study were collected within the

Izmir Geodetic Reference System—2001 project (Ayan et
al., 2001). Using these data, we have applied the ANFIS,
ANN and fifth-order polynomial approximation methods
for geoid determination.
As shown in Fig. 4, the region of Izmir covers an area

of approximately dϕ = 0.30◦ and dλ = 0.56◦. The geoid
heights in the area of interest vary from 37.6 to 38.7 m.
Although the point density is high in the region, the aver-
age accuracy, i.e. the average RMS error, of the ellipsoidal
heights after the adjustment of the network was found to
be ±3.5 cm. The accuracy of the ellipsoidal heights varies
from ±2.8 cm to ±5.0 cm. The region fortunately does
not contain very high mountains, and the levelling mea-
surements could therefore also be carried out to the points
on relatively high hills. Since the soft computing meth-
ods cannot handle blunders, adjusted GPS baseline vec-
tors were statistically tested and blundered observations re-
moved from the data set by an iterative procedure (Baarda,
1968). Hence, the data set do not include any outliers. Ad-
ditionally, in terms of Fig. 4, the point distribution is not
very optimal. The number of the points with known geoid
heights is 310. Of these, 75 uniformly distributed points
(approximately 25% of the data set), marked with squares
in Fig. 4, were randomly selected to form a test set. The
remaining 235 points, marked with filled circles in Fig. 4,
were used for training ANFIS and ANN networks.
The first step in our study was to apply ANFIS to trans-

form the geoidal height. For these computations, we used
the geographic coordinates ϕ, λ, and h as input variables
and the geoid height (ξ ) as the output of the system. The
computations were repeated by using different number of
input membership functions of Gaussian type. The differ-
ent ANFIS configurations that resulted from these compu-

Fig. 4. Local geoid model in Izmir region.

Fig. 5. Geoid heights obtained from the ANFIS-only method.

tations were then validated using the test data. After fewer
than ten trials, the optimal ANFIS configuration was de-
termined to be five, three and one fuzzy sets for the repre-
sentation of the input variables, respectively. Figures 5 and
6 show the estimated geoid heights and the distribution of
the corresponding errors in the study area, respectively, that
were obtained by applying the ANFIS method.
The second step was the application of ANN analogy. In

this application, after hundreds of trials were conducted by
changing either the learning rate, training algorithm, num-
ber of layers, number of neurons in the layers, and the net-
work type, we found that the optimal ANN configuration
was the feed-forward network with two hidden layers, each
of which contains 13 neurons. The training accuracy of the
study set was also determined by trials, and the final accu-
racies presented here are the best ones obtained after these
trials. Moreover, these final accuracies are consistent with
the accuracies of the adjusted ellipsoidal heights, which are
dominant for the accuracy of the geoidal undulations com-
pared to levelling heights. This was an expected result.
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Fig. 6. Differences (residuals) between observed geoid heights and geoid
heights computed from the ANFIS-only method.

Fig. 7. Geoid heights obtained from the ANN-only method.

In the above-mentioned applications, the input compo-
nents were taken as the ellipsoidal geographic coordinates
ϕ, λ, h; and the output was the geoid height (ξ ) (Akyilmaz
et al., 2003). In comparison with the ANFIS approxima-
tion, it takes a relatively long time to carry out the pro-
cedure in the ANN analogy. On the other hand, since the
initial weights are randomly drawn values, one can achieve
different results for the same ANN configuration after im-
plementing different training procedures. Figures 7 and 8
illustrate the estimated geoid heights and the correspond-
ing errors in the study area, respectively obtained from the
ANN method.
The same data have also been used for the fifth-order

polynomial approximation. Table 1 summarises the perfor-
mances of the ANFIS and ANN methodologies as well as
that of the fifth-order polynomial model. Note that the fifth-
order polynomial approximation using least squares adjust-
ment has been performed twice; first, using all 310 points
to determine the coefficients of the polynomial, and sec-

Fig. 8. Differences (residuals) between observed geoid heights and geoid
heights computed from the ANN-only method.

ond, using 235 points only to determine the coefficients.
The coefficients of the polynomial approximation were also
tested for significance; and non-significant ones were then
removed from the functional model, and the adjustment was
repeated until all the coefficients were statistically signif-
icant. Polynomial approximations for higher degrees were
also computed; however, there were no reasonable improve-
ments in the solutions and to maintain the degree of free-
dom, the fifth order polynomial was adopted for this study.
The computations were carried out in twofold. In the

first phase, only the proposed methods were directly ap-
plied; in the second phase, the computed geoidal undula-
tions were assumed to be the deterministic part (trend sur-
face) of a least squares collocation (LSC) problem. The
unmodelled fine structure of the local geoid surface is then
further estimated by the LSC. Several auto-covariance func-
tions were applied for this computation, with Hirvonen’s
auto-covariance function with a correlation distance of 1 km
found to be the most appropriate one of all those tested
(Ayan, 1976; Moritz, 1978; Jasecki, 1983).
As seen from Table 1, the quality measures obtained for

training points by the ANN methodology are slightly better
than those obtained by ANFIS approach and the fifth-order
polynomial model. The latter gives the worst results com-
pared with the other methodologies. A comparison of the
quality measures for the test points leads to the conclusion
that the ANFIS approximation yields better results than the
others. A review of the results after the application of LSC
shows that there is no improvement for the case of ANN and
ANFIS. In contrast, there is a significant improvement in
the results of the polynomial approximation. This improve-
ment is due to the fact that the soft computing methods, such
as ANN and ANFIS, tend to describe the surface by piece-
wise (either linear or non-linear) functions, and the entire
study area is covered by these locally best fitting piecewise
functions. Therefore, a further LSC is not essential while
the user has found the optimal configuration as well as the
tuning parameters for the soft computing methods. How-
ever, in the case of the polynomial approximation, finer de-



O. AKYILMAZ et al.: SOFT COMPUTING OF GEOIDAL HEIGHTS 831

Table 1. Comparison between ANFIS, ANN and the fifth-order approximations (with and without LSC applied).

Approximation type Minimum [m] Maximum [m] Mean [m]
Mean absolute Standard Correlation

deviation [m] deviation [m] coefficient

235 points ANFIS −0.111 0.098 0.000 0.021 0.030 0.98335

235 points ANN −0.093 0.106 0.001 0.022 0.030 0.98403

235 points fifth order −0.135 0.126 0.000 0.033 0.043 0.97362

310 points fifth order −0.156 0.122 0.000 0.033 0.044 0.96527

75 points ANFIS −0.090 0.141 0.000 0.027 0.037 0.97222

75 points ANFIS + LSC −0.090 0.143 0.000 0.027 0.038 0.97366

75 points ANN −0.158 0.132 0.002 0.029 0.040 0.97981

75 points ANN + LSC −0.152 0.136 0.001 0.028 0.041 0.97311

75 points fifth order −0.122 0.105 0.000 0.035 0.045 0.96462

75 points fifth order + LSC −0.131 0.084 0.000 0.028 0.039 0.96990

Table 2. Comparison between the hybrid ANFIS and ANN results (with and without LSC applied).

Approximation type Minimum [m] Maximum [m] Mean [m]
Mean absolute Standard Correlation

deviation [m] deviation [m] coefficient

235 points ANFIS −0.095 0.113 0.000 0.027 0.036 0.97657

235 points ANN −0.106 0.128 0.002 0.025 0.034 0.97841

75 points ANFIS −0.110 0.143 0.002 0.030 0.040 0.96743

75 points ANFIS + LSC −0.106 0.140 0.002 0.028 0.039 0.97427

75 points ANN −0.107 0.126 0.002 0.033 0.043 0.96561

75 points ANN + LSC −0.105 0.134 0.000 0.031 0.042 0.96772

Fig. 9. Geoid heights obtained from the hybrid ANFIS method.

tails of the geoid can be extracted by applying a LSC. This
is one of the important findings of the present study.
In the second phase of the computations, the ANFIS and

ANN approximations, modified with respect to the method-
ology proposed by Hu et al. (2004), were applied. First,
the 235 points were used as the training group and the fifth-
order polynomial coefficients were estimated by the least-
squares estimation. Then, using these coefficients, we com-
puted approximate geoid height values (ξ0). Deviations
from observed (the values computed by taking the differ-
ence between the adjusted ellipsoidal heights and levelling
heights) geoid height values (�ξ ) were then calculated and
used as the output where ϕ, λ and the ξ0 were used as the

Fig. 10. Differences (residuals) between observed geoid heights and geoid
heights computed from the hybrid ANFIS method.

input to feed both ANFIS and ANN (Hu et al., 2004). After
fewer than ten trials, the optimal ANFIS configuration was
found to be two fuzzy sets for each input variable, yield-
ing eight fuzzy if-then rules. After hundreds of trials, the
ideal ANN configuration was again found to be a two-layer-
feed-forward network containing 13 neurons in each hid-
den layer. For both methods, 75 test points were used to
check the performance of the models. Table 2 summarises
the results of the mentioned methodologies. Figures 9 and
10 show the geoid heights estimated using the hybrid AN-
FIS method and the distribution of the corresponding errors
in the study area, respectively. Similarly, Figs. 11 and 12
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Fig. 11. Geoid heights obtained from the hybrid ANN method.

Fig. 12. Differences (residuals) between observed geoid heights and geoid
heights computed from the hybrid ANN method.

present the results obtained from the hybrid ANN approach.
A comparison of the results given in Table 1 shows that the
hybrid method yields the worse results, which are due to
the computed input observation ξ0 contributing to the error
budget of the ANN and ANFIS models. The best accuracies
obtained for the ANFIS and ANN training sets were found
to be 0.036 m and 0.034 m, respectively, in terms of stan-
dard deviations. Changing the accuracy of the training sets
to values equal or lower than 0.030 m yields worse accura-
cies for the test set.
From the results given in Table 2, it can be concluded that

the quality measures obtained for the training points by the
ANFIS methodology is slightly better than those obtained
by the ANN approach. As seen, both the minimum and the
maximum error values obtained by ANFIS are lower than
those produced with the ANN analogy. When the quality
measures for the test points are considered, the minimum
and maximum values obtained by ANN are better. How-
ever, the standard deviation and correlation coefficient ob-

tained by ANFIS are slightly better. We conclude that both
methodologies yield identical results. Looking at the re-
sults after LSC, again there is no significant improvement
both for ANN and ANFIS methods. This is due to the ex-
planation mentioned above for the results given in Table 1.

5. Conclusions
This study deals with the application of Adaptive Net-

work based Fuzzy Inference System (ANFIS) and Artificial
Neural Networks (ANN) methods to geoidal height trans-
formation. We also applied a conventional fifth-order poly-
nomial approximation model to determine geoidal height
transformation. The outputs obtained by these different ap-
proximation methodologies were then compared. A least-
squares collocation (LSC) procedure was also applied to the
residuals obtained from the all methods.
When the results in Table 1 and Table 2 are compared, it

is obvious that it is futile to conduct a pre-process by util-
ising a deterministic function which yields reduced values
for the observed geoid heights established as the output for
the patterns in both ANFIS and ANN methodologies. The
results given by Hu et al. (2004) are quite precise, possibly
because the study field covered a small and considerably
smooth area and the height differences between the geode-
tic points were at a low level.
We found that ANFIS approximation yields better results

than the classical ANN approximation and the conventional
fifth-order polynomial model. However, the modified ANN
analogy introduced by Hu et al. (2004) produces identical
results with the ANFIS approximation.
A number of aspects of ANFIS have to be strictly con-

trolled when using this application. One of these is that the
number of parameters, including both premise and conse-
quent, has to be less than the number of training data pairs.
This avoids the overfitting phenomenon, which does not al-
low generalisation of the established fuzzy inference sys-
tem.
Regardless of which method is used, the efficiency of the

approximation is limited at least by the accuracy of the el-
lipsoidal heights obtained from the adjustment of the net-
work as it has the dominant effect on the geoidal undula-
tions or the height anomaly. This means that it is not pos-
sible to achieve an approximation of the accuracy that is
better than the accuracy of the ellipsoidal heights. Given
this limitation, the RMS error obtained by ANFIS is very
close to the accuracy of adjusted ellipsoidal heights. Point
distribution is also an important factor for the approxima-
tion quality. It should also be stated that the convergence of
ANFIS is considerably faster than that of ANN. Moreover,
the ANFIS approximation requires fewer parameters than
ANN. For example, ANFIS modelling without polynomial
fitting (Table 1) contains 78 parameters to be updated by
the training runs. In the case of ANFIS combined with the
pre-process (in Table 2), this is 44. However, in the case
of ANN, the number of parameters is 507 for both ANN
approaches given in Tables 1 and 2.
One important finding of our study is that the application

of LSC to the results of ANN and ANFIS does not improve
the results, which is not the case for the polynomial approxi-
mation. This lack of improvement is due to the fact that soft
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computing methods, such as ANN and ANFIS, tend to de-
scribe the surface in piecewise (either linear or non-linear)
functions, and the entire study area is covered by these lo-
cally best fitting piecewise functions.
A study of Figs. 5–12 reveals that the ANFIS-only

method provides a smoother view of the geoid heights as
well as the corresponding errors in the study area. This re-
sult is due to the characteristics of the ANFIS method. In
contrast, the hybrid-ANFIS results (Figs. 9 and 10), i.e. the
application of LSC to the ANFIS residuals, has a corrupting
effect on the smoothness and the distribution of the geoid
height errors.
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