
Earth Planets Space, 61, 895–903, 2009

Implementation of a non-oscillatory and conservative scheme into
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We present a magnetohydrodynamic (MHD) simulation technique with a new non-oscillatory and conservative
interpolation scheme. Several high-resolution and stable numerical schemes have recently been proposed for
solving the MHD equations. To apply the CIP scheme to the hydrodynamic equations, we need to add a certain
diffusion term to suppress numerical oscillations at discontinuities. Although the TVD schemes can automatically
avoid numerical oscillations, they are not appropriate for profiles with a local maximum or minimum, such as
waves. To deal with the above problems, we implement a new non-oscillatory and conservative interpolation
scheme in MHD simulations. Several numerical tests are carried out in order to compare our scheme with
other recent high-resolution schemes. The numerical tests suggest that the present scheme can follow long-term
evolution of both Alfvén waves and compressive shocks. The present scheme has been used for a numerical
modeling of Alfvén waves in the solar wind, in which sinusoidal Alfvén waves decay into compressive sound
waves that steepen into shocks.
Key words: MHD, numerical scheme, hyperbolic equation, conservative scheme.

1. Introduction
Magnetohydrodynamic (MHD) simulation techniques

are widely used to study various global and macroscopic
phenomena in plasmas. It is important to develop accurate,
efficient, stable, and robust numerical schemes for theMHD
simulations. In the laboratory, astrophysical, and space
plasmas often appear as high-speed flows that form shocks
and discontinuities. Standard numerical schemes, such as
the Lax-Wendroff scheme, generate spurious oscillations in
a steep profile and therefore need additional numerical dif-
fusion terms, such as artificial viscosity, to capture shocks
and discontinuities.
Several Roe-type Riemann solvers have been developed

to obtain more accurate numerical solutions of the MHD
equations (Roe, 1981; Brio and Wu, 1988; Dai and Wood-
ward, 1994; Ryu and Jones, 1995). Although those Rie-
mann solvers are much more complicated than simple finite
difference methods, they are widely used because of their
stability. Miyoshi and Kusano (2005) recently developed
the Harten-Lax-van Leer Discontinuities (HLLD) approxi-
mate Riemann solver for the MHD equations. The HLLD
Riemann solver has the advantages of positivity preserving
and accuracy in comparison with the linearized Riemann
solver while keeping the latter’s robustness.
The high-resolution upwind schemes based on the To-
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tal Variation Diminishing (TVD) scheme are also imple-
mented into the MHD equations (Tanaka, 1994; Fukuda and
Hanawa, 1999). The TVD schemes have the advantages of
being able to capture shocks and discontinuities more accu-
rately without additional numerical diffusion terms. How-
ever, the TVD schemes are especially not appropriate for
the profile with extrema, i.e., local maxima and minima,
such as waves, as they tend to make profiles flat-top and
flat-bottom to maintain monotonicity.
Another high-resolution scheme called the CIP-MOCCT

scheme (Kudoh and Shibata, 1997) for solving the MHD
equations, which is based on the Constrained Interpolation
Profile (CIP) scheme (Yabe et al., 2001) and the Method Of
Characteristics-Constrained Transport (MOCCT) scheme
(Hawley and Stone, 1995). The CIP scheme has been de-
veloped for solving hyperbolic equations. The MOCCT
scheme solves the induction equation and magnetic stress in
the MHD equation, maintaining the divergence-free condi-
tion of the magnetic field i.e., ∇ ·B = 0. However, there are
several problems associated with the CIP-MOCCT scheme.
It needs to add a certain diffusion term to suppress numeri-
cal oscillation, and it also needs a larger computer memory
than other high-resolution schemes for the MHD equations
in order to store partial derivatives or integrals of a profile.
A new interpolation scheme has recently been developed

for the Vlasov equation (Umeda, 2008). This scheme is a
non-oscillatory, positivity preserving, and conservative nu-
merical interpolation scheme for solving the linear advec-
tion equation. Recent numerical tests have demonstrated
that the non-oscillatory scheme has advantages over the CIP
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and TVD schemes in Vlasov simulations (Umeda et al.,
2006; Umeda, 2008).
We report here our attempt to implement the non-

oscillatory scheme to develop a new MHD simulation code.
The original non-oscillatory scheme is designed for the
linear advection equation in which an advection veloc-
ity is constant (Umeda, 2008). Thus, we first extend the
non-oscillatory scheme to the general advection equation.
The extended non-oscillatory scheme is then applied to
the MHD equations in a manner quite similar to the CIP-
MOCCT scheme, whereas we use the conservative forms
of the MHD equations. To solve the induction equation
and magnetic stress, we adopt the MOCCT scheme. In
the MOCCT scheme, the van Leer interpolation (van Leer,
1974, 1977) has been generally used to interpolate the mag-
netic field and velocity to suppress numerical oscillations
at discontinuities. As an alternative to the van Leer inter-
polation, we also use the non-oscillatory interpolation and
examine their differences. We compare our schemes with
other recent numerical schemes by test simulations.
The organization of the paper is as follows. We describe

our new scheme for MHD equations in Section 2. We also
briefly introduce the non-oscillatory scheme and MOCCT
scheme in this section. In Section 3, we show results of
one-dimensional test runs. A summary and discussion of
this paper are given in Section 4.

2. Numerical Method
2.1 Basic equations
We assume a 1.5-dimensional system along a uniform

ambient magnetic field in which all quantities depend only
on x . We solve the following set of the ideal MHD equa-
tions in a conservative form

∂ρ

∂t
+ ∂

∂x
(ρvx ) = 0, (1)

∂Mx

∂t
+ ∂

∂x
(Mxvx ) = − ∂

∂x

(
p + B2

y

2μ0

)
, (2)

∂My

∂t
+ ∂

∂x

(
Myvx

) = Bx

μ0

∂By

∂x
, (3)

∂e

∂t
+ ∂

∂x

{(
e + p + B2

y

2μ0

)
vx

}
= Bx

μ0

∂

∂x

(
vy By

)
, (4)

∂By

∂t
= ∂Ez

∂x
, (5)

Ez = −vx By + vy Bx , (6)

where

e = ρ
v2
x + v2

y

2
+ p

γ − 1
+ B2

y

2μ0
, (7)

represents the total energy, and ρ, p, vx , vy , Bx , By , Ez ,
μ0, and γ represent the density, pressure, velocity compo-
nents in the x and y directions, magnetic field components
in the x and y directions, electric field component in the z
direction, magnetic permeability in vacuum, and the ratio
of specific heats, respectively. Here the momentum compo-
nents in the x and y directions are defined as Mx ≡ ρvx and
My ≡ ρvy , respectively. The magnetic field Bx is constant
in time and space due to the ∇ · B = 0 constraint. We ne-

Fig. 1. Grid assignment of the present scheme.

glected the z component of the velocity and magnetic field
in basic equations for simplicity.
We define full-integer grids at i�x (i = 1, 2, 3, · · · , N )

and half-integer grids at (i + 1/2)�x . The quantities ρ, p,
e, vy , My , and By are defined at the full-integer grids, while
vx , Mx , Bx , and Ez are defined at the half-integer grids, as
shown in Fig. 1.
To apply the non-oscillatory and MOCCT schemes, we

define the left-hand side of Eqs. (1)–(4) as “advection
phase”, and the right-hand side of Eqs. (2)–(4) as “non-
advection phase”. The advection phase is solved with the
non-oscillatory scheme, while the non-advection phase is
separately solved with other schemes.
2.2 Non-oscillatory and conservative scheme
Here we briefly review the non-oscillatory scheme and

extend it for a general advection equation. We consider the
following generalized one-dimensional advection equation

∂ f

∂t
+ ∂

∂x
(vg) = 0, (8)

where f , g, and v are functions of x and t . A solution of
Eq. (8) in the conservative form is written as

f t+�t
i = f ti +Ui− 1

2

(
νi− 1

2

)
−Ui+ 1

2

(
νi+ 1

2

)
, (9)

whereUi+ 1
2
represents a numerical flux at xi+ 1

2
. The numer-

ical flux is a function of the CFL number νi+ 1
2

= −vi+ 1
2

�t
�x ,

where �t and �x are a constant time step and a constant
grid spacing, respectively. We assume that the advection
velocity is constant in short spatial and time scales (i.e., �x
and �t) so that we can apply the scheme to Eq. (9).
The numerical flux of the third-order upwind-biased

Lagrange polynomial interpolation is easily obtained by
the following constraints, Ui+ 1

2
(0) = 0, Ui+ 1

2
(1) = fi ,

Ui+ 1
2
(2) = fi−1, and Ui+ 1

2
(−1) = − fi+1. In the non-

oscillatory scheme (Umeda, 2008), a flux limiter/slope cor-
rector is introduced into the third-order upwind-biased La-
grange polynomial in order to suppress the generation new
extrema, i.e., local maximum or minimum. Thus, the nu-
merical flux of the non-oscillatory scheme is given as

Ui+ 1
2

(
νi+ 1

2

)
=νi+ 1

2
gi +νi+ 1

2

(
1 − νi+ 1

2

) (
2 − νi+ 1

2

) L (+)
i

6

+νi+ 1
2

(
1 − νi+ 1

2

) (
1 + νi+ 1

2

) L(−)
i

6(
1 ≥ νi+ 1

2
≥ 0

)
if vi+ 1

2
≥ 0,

Ui+ 1
2

(
νi+ 1

2

)
=νi+ 1

2
gi+1−νi+ 1

2

(
1+νi+ 1

2

)(
2+νi+ 1

2

) L(−)

i+1

6

−νi+ 1
2

(
1 − νi+ 1

2

) (
1 + νi+ 1

2

) L(+)

i+1

6
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0 ≥ νi+ 1

2
≥ −1

)
if vi+ 1

2
< 0.

where

L(+)
i =

{
min[2(gi − gmin), (gi+1 − gi )] if gi+1 ≥ gi
max[2(gi − gmax), (gi+1 − gi )] if gi+1 < gi

L(−)
i =

{
min[2(gmax − gi ), (gi − gi−1)] if gi ≥ gi−1

max[2(gmin − gi ), (gi − gi−1)] if gi < gi−1

are a non-oscillatory flux limiter with

gmax = max[gmax1, gmax2] ,
gmin = min[gmin1, gmin2] ,

and

gmax1=max
[
max[gi−1, gi ],min[2gi−1−gi−2, 2gi −gi+1]

]
,

gmax2=max
[
max[gi+1, gi ],min[2gi+1−gi+2, 2gi −gi−1]

]
,

gmin1=min
[
min[gi−1, gi ],max[2gi−1−gi−2, 2gi −gi+1]

]
,

gmin2=min
[
min[gi+1, gi ],max[2gi+1−gi+2, 2gi −gi−1]

]
.

Note that the minimum principle switches to

gmin = max [0,min[gmin1, gmin2]] ,

if we need to preserve positivity.
The basic concept of the non-oscillatory scheme is to

capture the shape of a profile by detecting a local maximum
gmax or minimum gmin of a piecewise interpolant. When
a profile is continuous so that can be interpolated by the
third-order polynomial without the non-oscillatory scheme,
it switches to the Lagrange polynomial interpolation. When
a profile has a discontinuity, the gradient (slope) of the
interpolant is corrected so that the piecewise interpolant
does not generate inadequate extrema.
In this paper we define a conservation equation (9) as a

following non-oscillatory operator,

f t+�t
i = f ti +Ui− 1

2

(
νi− 1

2

)
−Ui+ 1

2

(
νi+ 1

2

)
≡ NO

[
f ti , g

t
i , vi+ 1

2
�t, vi− 1

2
�t
]
. (10)

Note that numerical fluxes Ui± 1
2
are computed using gi and

vi± 1
2
. When a profile is defined at a half-integer grid such as

gi+ 1
2
, we need advection velocities at a full-integer grid vi

and vi+1 to compute numerical fluxes at a full-integer grid
Ui and Ui+1 in the operator Eq. (10). Since an advection
velocity is not defined at a full-integer grid, we evaluate
Ui (νi ) according to a sign of vi± 1

2
as follows (e.g., Hirsch,

1990),

Ui (νi ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui

(
νi− 1

2

)
if vi− 1

2
vi+ 1

2
≥ 0, vi− 1

2
≥ 0

Ui

(
νi+ 1

2

)
if vi− 1

2
vi+ 1

2
≥ 0, vi− 1

2
< 0

Ui

(
νi− 1

2

)
+Ui

(
νi+ 1

2

)
if vi− 1

2
vi+ 1

2
< 0, vi− 1

2
> 0

0
if vi− 1

2
vi+ 1

2
< 0, vi− 1

2
< 0.

(11)

Figure 2 shows the above four patterns of diagrams for
computation of numerical flux Ui (νi ) with Eq. (11).

Fig. 2. Diagram of a computation of a numerical flux at a full-integer grid
Ui (νi ) (see Eq. (11)).

2.3 The method of characteristics
The MOC provides the time-advanced transverse veloc-

ity vy,i+ 1
2
and magnetic field By,i+ 1

2
at t + �t

2 . Assuming
that the fluid is incompressible in which ρ and vx are con-
stant, Eqs. (3), (5), and (6) can be reduced to the following
Alfvén characteristic equations(

∂

∂t
+ C+ ∂

∂x

)
A− = 0, (12)(

∂

∂t
+ C− ∂

∂x

)
A+ = 0, (13)

where

A± = vy ± By√
μ0ρ

,

C± = vx ± Bx√
μ0ρ

.

These equations mean that the quantities A∓ are conserved

along the characteristics C±. Thus, v
t+ �t

2

y,i+ 1
2
and B

t+ �t
2

y,i+ 1
2
are

given by

v
t+ �t

2

y,i+ 1
2

= 1

2

(
A

+,t+ �t
2

i+ 1
2

+ A
−,t+ �t

2

i+ 1
2

)
, (14)

B
t+ �t

2

y,i+ 1
2

=
√

μ0ρ

2

(
A

+,t+ �t
2

i+ 1
2

− A
−,t+ �t

2

i+ 1
2

)
. (15)

We compute A
+,t+ �t

2

i+ 1
2

solving the advection equation (13)

with the following simple interpolation,

A
+,t+ �t

2

i+ 1
2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A+,t
i + 1

2

(
�x − C−

i+ 1
2
�t
)(�A

�x

)
i

if C−
i+ 1

2
> 0

A+,t
i+1 − 1

2

(
�x + C−

i+ 1
2
�t
)(�A

�x

)
i+1

if C−
i+ 1

2
< 0,

(16)

where

A+,t
i = vt

y,i + Bt
y,i√

μ0ρ
t
i

,
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C−
i+ 1

2
= vx,i+ 1

2
− Bx√

μ0
ρ t
i + ρ t

i+1

2

,

with the van Leer limiter (van Leer, 1974, 1977)

(
�A

�x

)
i

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

�x

(
A+,t
i+1 − A+,t

i

) (
A+,t
i − A+,t

i−1

)
(
A+,t
i+1 − A+,t

i

)+ (
A+,t
i − A+,t

i−1

)
if
(
A+,t
i+1 − A+,t

i

) (
A+,t
i − A+,t

i−1

)
> 0

0
if
(
A+,t
i+1 − A+,t

i

) (
A+,t
i − A+,t

i−1

)
< 0.

(17)

We also compute A
−,t+ �t

2

i+ 1
2

by solving Eq. (12) for the char-

acteristic C+ in the same way.
The van Leer interpolation described above has been used

for the MOCCT (Hawley and Stone, 1995; Kudoh and Shi-
bata, 1997). We can alternatively use the non-oscillatory

interpolation to compute A
+,t+ �t

2

i+ 1
2

, such as

A
+,t+ �t

2

i+ 1
2

= NO

[
A

+,t+ �t
2

i+1 , A
+,t+ �t

2
i+1 ,

1

2

(
�x − C−

i+ 1
2
�t
)

,

1

2

(
�x − C−

i+ 1
2
�t
) ]

. (18)

The difference between the van Leer interpolation Eq. (16)
and the non-oscillatory interpolation Eq. (18) will be exam-
ined by numerical tests in Section 3.
In this paper we define the following MOC operator for

simplicity(
v
t+ �t

2

y,i+ 1
2
, B

t+ �t
2

y,i+ 1
2

)
= MOC

[
vt
y,i , v

t
y,i+1, B

t
y,i , B

t
y,i+1,

ρ t
i , ρ

t
i+1, vx,i+ 1

2

]
. (19)

2.4 Time step chart
The physical quantities in Eqs. (1)–(5) are advanced in

time based on the sequences shown in Fig. 3. The time step
chart of the present scheme is similar to that of the CIP-
MOCCT scheme (Kudoh and Shibata, 1997).

1) We solve the non-advection phase in Eqs. (3) and (4),
i.e., the terms associated with the magnetic stress. We
compute the time-advanced transverse velocity ṽy,i+ 1

2

and magnetic field B̃y,i+ 1
2
with the MOC.

(
ṽy,i+ 1

2
, B̃y,i+ 1

2

)
= MOC

[
vt
y,i , v

t
y,i+1, B

t
y,i , B

t
y,i+1,

ρ t
i , ρ

t
i+1, 0

]
. (20)

It should be noted that vx is set to be 0 in the MOC
operator, which means that the characteristic velocity
does not include the advection velocity. This is be-
cause the advection phase of the momentum equation
is separately solved with the non-oscillatory scheme.
The time-advanced values of the transverse momen-
tum M∗

y,i and the total energy e∗
i associated with the

non-advection phase are then given by

M∗
y,i = Mt

y,i + �t

�x

Bx

μ0

(
B̃y,i+ 1

2
− B̃y,i− 1

2

)
, (21)

Fig. 3. Time step chart of the present scheme. Note that ρ̄ and v̄x are
assigned at half-integer and full-integer grids, respectively, in contrast
to Fig. 1.

e∗
i = eti + �t

�x

Bx

μ0

(
B̃y,i+ 1

2
ṽy,i+ 1

2
− B̃y,i− 1

2
ṽy,i− 1

2

)
.

(22)
Note that My and e are advanced in a conservative
form.

2) The non-advection phase of Eq. (2), i.e., the gas
and magnetic pressure term, is solved with the non-
oscillatory interpolation. We estimate the gas and
magnetic pressure term at half-integer grids. The pres-
sure gradient at the half-integer grids is then com-
puted by directly differentiating them with the non-
oscillatory operator as follows:

{
∂

∂x

(
p + B2

y

2μ0

)}
i+ 1

2

= ∂

∂x
NO

[(
p + B2

y

2μ0

)
i+1

,

(
p + B2

y

2μ0

)
i+1

,
�x

2
,
�x

2

]
. (23)

The time-advanced value of the longitudinal momen-
tum M∗

x,i+ 1
2
associated with the non-advection phase is

given by

M∗
x,i+ 1

2
= Mt

x,i+ 1
2
−�t

{
∂

∂x

(
p + B2

y

2μ0

)}
i+ 1

2

. (24)

Here we applied the Euler time-integration scheme in
which Mx is advanced in a conservative form.
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3) We solve the advection phase of Eqs. (1), (2), and (3)
with the non-oscillatory scheme.

ρ t+�t
i = NO

[
ρ t
i , ρ

t
i , v

t
x,i+ 1

2
�t, vt

x,i− 1
2
�t
]
, (25)

Mt+�t
x,i+ 1

2
= NO

[
M∗

x,i+ 1
2
, M∗

x,i+ 1
2
, vt

x,i+1�t, vt
x,i�t

]
,

(26)

Mt+�t
y,i = NO

[
M∗

y,i , M
∗
y,i , v

t
x,i+ 1

2
�t, vt

x,i− 1
2
�t
]
.

(27)
Note that since vx at full-integer grids in Eq. (26)
are unknown, numerical fluxes at full-integer grids are
given by Eq. (11).

4) We update the velocity component vt+�t
x with ρ t+�t

and Mt+�t
x . Since ρ is defined at full-integer grids,

ρ̄ t+�t
i+ 1

2
is computed with the non-oscillatory interpola-

tion, i.e.,

ρ̄ t+�t
i+ 1

2
= NO

[
ρ t+�t
i+1 , ρ t+�t

i+1 ,
�x

2
,
�x

2

]
. (28)

We then obtain vx at t + �t as

vt+�t
x,i+ 1

2
=

Mt+�t
x,i+ 1

2

ρ̄ t+�t
i+ 1

2

. (29)

5) We solve the advection phase of Eq. (4) with the non-
oscillatory scheme to obtain et+�t .

et+�t
i = NO

[
e∗
i , e

∗
i + pti +

(
Bt
y,i+ 1

2

)2
2μ0

,

vt+�t
x,i+ 1

2
�t, vt+�t

x,i− 1
2
�t

]
. (30)

Note that we use values of vx at t+�t as the advection
velocity. This is to obtain a more desirable result of the
MHD shock tube problem shown in Section 3.

6) We solve the induction equation (5) with the MOCCT
scheme. First, we compute the time-advanced trans-
verse velocity v̄y,i+ 1

2
and magnetic field B̄y,i+ 1

2
with

the MOC,(
v̄y,i+ 1

2
, B̄y,i+ 1

2

)
= MOC

[
vt
y,i , v

t
y,i+1, B

t
y,i , B

t
y,i+1,

ρ t
i , ρ

t
i+1, v

t+�t
x,i+ 1

2

]
. (31)

We next compute electro-motive force ε̄i+ 1
2
, which

is necessary for the CT scheme (Hawley and Stone,
1995).

ε̄i+ 1
2

= vt+�t
x,i+ 1

2
B̄y,i+ 1

2
− v̄y,i+ 1

2
Bx . (32)

By is then advanced by discretizing Eq. (5) as follows

Bt+�t
y,i+ 1

2
= Bt

y,i+ 1
2
− �t

�x

(
ε̄i+ 1

2
− ε̄i− 1

2

)
. (33)

7) Finally, we compute vt+�t
y and pt+�t as follows:

vt+�t
y,i = Mt+�t

y,i

ρ t+�t
i

, (34)

pt+�t
i

γ − 1
= et+�t

i − ρ t+�t
i

(
v̄t+�t
x,i

)2 +
(
vt+�t
y,i

)2
2

−
(
Bt+�t
y,i

)2
2μ0

. (35)

Here we use Eq. (7) to convert energy to pressure.
Note that v̄t+�t

x,i is computed with the non-oscillatory
operator, i.e.,

v̄t+�t
x,i = NO

[
vt+�t
x,i+ 1

2
, vt+�t

x,i+ 1
2
,
�x

2
,
�x

2

]
. (36)

3. Numerical Tests
3.1 Linear Alfvén waves
We present here the results of the propagation of a si-

nusoidal linear Alfvén wave as an example. We use 400
grid points, and the grid size �x is taken to be 1. Peri-
odic boundary conditions are used. As an initial condition,
we set ρ = 1, p = 0.15, vx = 0, γ = 5/3, Bx = 1,
By = δB cos(kx), and vy = −By/

√
ρ, with k = 2πm/L

where L , m, and δB represent the system length, mode
number, and magnetic field amplitude of Alfvén waves, re-
spectively. We set m = 2 and δB = 0.001Bx . The time
step interval �t is decided so that a CFL number is equal to
0.2.
Figure 4 shows the profile of By at t = 10T where T

represents a traveling time over a system length at an Alfvén
speed. We show results of the present scheme with both
van Leer interpolation and non-oscillatory interpolation for
the MOC, referring to the van Leer interpolation and the
non-oscillatory interpolation as “Scheme A” and “Scheme
B”, respectively. For comparison, we also show results
of the CIP-MOCCT scheme (Kudoh and Shibata, 1997),
the second-order Roe-type MUSCL (Monotone Upstream-
centered Scheme for Conservation Laws) scheme (Tanaka,
1994; Fukuda and Hanawa, 1999), and the second-order
HLLD-MUSCL scheme (Miyoshi and Kusano, 2005).
The results of Scheme A and the CIP-MOCCT scheme

show that the profiles tend to be flat-top and flat-bottom
as a wave propagates. This shape is not observed with the
non-oscillatory scheme nor the CIP scheme in the advection
phase but by the van Leer interpolation which maintains
monotonicity of a profile when applying the MOC (see
Eq. (17)). Scheme B shows no distortion in the profile in
comparison with Scheme A. The reason for this is that
the non-oscillatory interpolation in the MOC is reduced to
a simple third-order Lagrangian interpolation for a smooth
profile, such as sinusoidal waves, and extrema of the profile
are adequately captured.
On the other hand, the results with the Roe-MUSCL and

the HLLD-MUSCL schemes show a considerable distortion
of the profile, especially near extrema, because the minmod
limiter (e.g., Hirsch, 1990) used in the MUSCL scheme
makes a profile rectangular.
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Fig. 4. The propagation of a sinusoidal linear Alfvén wave solved with
Scheme A, Scheme B, CIP-MOCCT scheme, second-order Roe-type
MUSCL scheme and second-order HLLD-MUSCL scheme. The y
component of magnetic field By is shown. The dotted line and solid
line denote a numerical result and an exact solution, respectively.

3.2 MHD shock tube
The results of MHD shock tube problems are presented

(Brio and Wu, 1988). We use 400 grid points, and the grid
size �x is taken to be 1. The ratio of specific heats γ is set
to be 5/3. As an initial condition, we set ρ = 1.0, p = 1.0,
By = 1, Bx = 0.75 for x < 0, and ρ = 0.125, p = 0.1,
By = −1, Bx = 0.75 for x > 0. The time step interval �t
is chosen so that a CFL number is equal to 0.2. The profiles
of ρ, vx , vy , and By at t = 40 are shown in Fig. 5. The
results of several schemes are shown which are the same as

those for tests of sinusoidal Alfvén waves.
We found that the fast rarefaction waves (FR), slow com-

pound wave (SM), contact discontinuity (CD), and slow
shock (SS) are well resolved with Scheme A. This re-
sult shows good quantitative agreement with those of other
schemes (Brio and Wu, 1988; Dai and Woodward, 1994).
The result with Scheme A is generally similar to that ob-

served with the CIP-MOCCT scheme in the following as-
pects. We observed a small distortion in the velocity and
magnetic field profile at the forward propagating fast rar-
efaction wave. At the contact discontinuity, the density pro-
file also has overshoot and undershoot. These aspects imply
that the overshoot and undershoot are due to the third-order
interpolant used in the non-oscillatory and the CIP schemes.
Scheme A requires a few more grid points than the CIP-
MOCCT scheme to capture the contact discontinuity. It is
noted that the present scheme does not use any additional
numerical diffusion term in basic equations, unlike the CIP-
MOCCT scheme.
On the other hand, Scheme B shows overshoot at the

slow shock and considerable oscillations between the slow
shock and the fast rarefaction waves. We found that these
oscillations were generated at the slow shock and that they
propagated to the right. Scheme B needs more improvement
to solve discontinuities although this scheme can produce
accurate solutions for continuous Alfvén waves, as shown
in the previous section.
In contrast, the Roe-MUSCL and the HLLD-MUSCL

schemes give better results without overshoot and under-
shoot although the contact discontinuity somewhat diffuses,
primarily because the TVD schemes are well-designed for
capturing shocks and discontinuities by enforcing mono-
tonicity. It should be noted that the numerical procedure
of the HLLD-MUSCL scheme is much simpler than that of
the Roe-MUSCL scheme (Miyoshi and Kusano, 2005).

4. Summary and Discussion
We have presented a new numerical scheme for solving

MHD equations by applying a non-oscillatory and conser-
vative scheme (Umeda, 2008) to the advection terms and
pressure gradient terms. To solve the magnetic stress and
induction aspects, we used the MOCCT scheme (Hawley
and Stone, 1995). In the MOC, we adopted the van Leer
interpolation and the non-oscillatory interpolation. We per-
formed test simulations of sinusoidal Alfvén waves and
the MHD shock tube to compare our schemes with recent
high-resolution schemes, such as the CIP-MOCCT, Roe-
MUSCL, and HLLD-MUSCL.
The combination of the non-oscillatory scheme for the

advection phase and the van Leer interpolation for the non-
advection phase gives small undershoot and overshoot at the
slow shock and fast rarefaction waves in the MHD shock
tube test. We observed small flattening at the extrema of
profiles in the results of sinusoidal Alfvén waves that is
caused by the van Leer limiter in the MOC. The results
of the CIP-MOCCT scheme are generally similar to those
of the present scheme.
The numerical procedures of these two schemes are sim-

ilar in which the advection phase and non-advection phase
are separately solved with the MOCCT scheme. However,
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Fig. 5. Numerical solutions to the MHD shock tube problem solved with Scheme A, Scheme B, the CIP-MOCCT scheme, second-order Roe-type
MUSCL scheme, and second-order HLLD-MUSCL scheme. The density ρ, x component of velocity vx , y component of velocity vy , and y
component of magnetic field By are shown.

in comparison with the CIP-MOCCT scheme, the present
scheme has a number of advantages in that it (1) suppresses
numerical oscillations without an additional diffusion term;
(2) solves the MHD equations in the conservative form; (3)
preserves positivity for the density; (4) does not need ad-
ditional computer memory to store partial derivatives or in-
tegrals of the profile. Note that the CIP-type scheme can
suppress numerical oscillations by using a rational inter-
polant instead of a cubic polynomial interpolant (rational-
CIP) (Xiao et al., 1996). However, the rational-CIP scheme
is not conservative nor necessarily non-oscillatory in two-
and three-dimensional systems. Although there are also
conservative CIP schemes (Yabe et al., 2001), these require
much more computer memory than our scheme, especially
in two and three dimensions.
The TVD schemes (Roe-MUSCL and HLLD-MUSCL

schemes) can suppress numerical oscillations by automat-
ically controlling a numerical diffusion. However, the re-
sults of the sinusoidal wave propagation shows that the
TVD scheme tends to make considerable distortions near
extrema of the profile due to the MUSCL scheme, while the
present scheme and CIP-MOCCT scheme give only small
distortions, as shown in Fig. 4. For profiles with extrema,
such as sinusoidal waves, the TVD schemes need many
more grid points than the present scheme and CIP-MOCCT

scheme.
We also attempted to apply the non-oscillatory interpola-

tion to the MOC as an alternative to the van Leer interpola-
tion (Scheme B). The non-oscillatory interpolation gives an
accurate solution for sinusoidal Alfvén waves. However,
significant oscillations are observed at the slow shock in
the MHD shock tube test. To follow discontinuous trans-
verse waves, further improvement is needed to implement
the non-oscillatory interpolation into the MOCCT scheme.
The numerical results suggest that numerical oscillations

arise from the non-advection phase. Although the non-
oscillatory scheme can suppress the generation of spuri-
ous extrema in space, the simple Euler time-integration
method used in Eqs. (21), (22), and (24) occasionally over-
estimates the temporal variation of physical quantities per
unit time step. The TVD schemes (Roe-MUSCL and
HLLD-MUSCL schemes) commonly use a higher-order
Runge-Kutta time-integration method. To check the ef-
fect of higher-order time-integration methods, the second-
order (two-step) Runge-Kutta time-integration method and
the third-order (three-step) Runge-Kutta time-integration
method are implemented into Scheme B. The results are
shown in the middle and bottom panels of Fig. 6. The result
with the first-order time-integration (Euler) method is also
shown in the top panel of Fig. 6 as a reference. We con-
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Fig. 6. Numerical solutions to the MHD shock tube problem solved
with a combination of Scheme B and first-order time-integration (Euler)
method, second-order (two-step) Runge-Kutta time-integration method,
or third-order (three-step) Runge-Kutta time-integration method. The x
component of velocity vx is shown.

firmed that the use of higher-order time-integration meth-
ods can suppress the generation of spurious oscillations
arising from the non-advection phase. It should be noted,
however, that profiles become rather diffusive with higher-
order time-integration methods and that higher-order time-
integration methods require more CPU time. Another rea-
son explaining the presence of numerical oscillations might
be the electro-motive force in the CT scheme. In the present
method, we do not apply the non-oscillatory interpolation to
the induction electric field used in Eq. (33). The centered
difference of the induction electric field used in Eq. (33)
would be another cause of numerical oscillations.
In summary, we implemented a new non-oscillatory, pos-

itivity preserving, and conservative scheme into the MHD
equations. We adopted the MOCCT scheme to solve the in-
duction equation and magnetic stress. The implementation
of the non-oscillatory scheme and MOCCT scheme enables
us to follow the long-term evolution of both Alfvén waves
and compressive shocks. To avoid numerical oscillations in
the discontinuous Alfvén waves, van Leer’s limiter is essen-

tial for the MOC.
The scheme presented here has been used for a numerical

modeling of Alfvén waves in the solar wind (Tanaka et
al., 2007). Monochromatic and circularly polarized Alfvén
waves injected from the lower corona are subject to the
parametric decay. The sinusoidal Alfvén waves propagating
in radially expanding plasmas excite compressive sound
waves that steepen into shocks. An accurate solution for
the propagation of sinusoidal linear Alfvén waves is needed
to obtain the exact growth rate of the parametric decay.
The compressive fluctuation also leads to a negative density
due to a numerical effect. Thus, it is important to treat
both Alfvén waves and shocks. In the present scheme, the
MOC follows the evolution of Alfvén waves, while the non-
oscillatory scheme suppresses numerical oscillations and
preserves density positivity.
Extension of the present scheme to multi-dimensions is

left as a future research objective. The non-oscillatory
scheme can be applied to advection phases and pressure
gradient terms. This approach, which has a simple di-
rectional splitting scheme, enables us to obtain reasonable
results for numerical tests of multi-dimensional hydrody-
namic equations. For the MHD equations, the MOCCT
scheme has been extended to multi-dimensions in several
schemes (Hawley and Stone, 1995; Kudoh et al., 1998,
1999; Ogata and Yabe, 2004; Ogata et al., 2004). Note
that these schemes solve a pressure equation that does not
need the MOCCT scheme. In contrast, we solve the en-
ergy equation, which does need the MOCCT scheme. Un-
like the pressure equation, the energy equation needs time-
advanced velocity and magnetic field, both of which are
computed with the MOCCT scheme, as shown in Eq. (22).
Thus, we need to develop a technique to solve the energy
equation for multi-dimensions.
Distortions of profiles due to the van Leer limiter also

need to be resolved. Since the van Leer limiter is essen-
tial to solve discontinuous Alfvén waves in the MOC, an
alternative method to the MOC may be needed. The non-
oscillatory scheme would be implemented into the Riemann
solvers, such as the HLLD scheme, as an alternative scheme
to TVD schemes.
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