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Turbulence-induced fluctuations in ionization and application to PMSE
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The temporal evolution of a turbulent layer is calculated in detail by solving the hydrodynamic equations. The
turbulence is initiated by a Kelvin-Helmholtz instability. The field of potential-temperature fluctuations serves as
a tracer for modeling entrainment of the mixing ratios of ionized constituents hypothesized to be present in the
upper polar mesosphere. This entrainment modeling provides the input to a turbulence advection model capable
of calculating the spectra and cospectra of ions and electrons. The turbulence advection model is used as a sub-
grid-scale model and is required because, given present or foreseeable computer capabilities, numerical solutions
cannot span the enormous range of spatial scales from the depth of the shear layer to the smallest scales on
which the most massive ions diffuse. The power spectrum of electron number-density fluctuations obtained from
the turbulence advection model is compared with that measured by a rocket during the STATE (Structure and
Atmospheric Turbulence Environment) experiment; agreement is found for a case of massive ions. The radar cross
section for Bragg scattering is calculated from the electron number-density power spectrum and is used to calculate
the signal-to-noise ratio (S/N) for the Poker Flat 50 MHz radar. The resultant S/N is then compared with the radar
measurements obtained during the STATE experiment. These comparisons support the hypothesis that massive ions
can cause polar mesosphere summer echoes from turbulent layers. Large-scale morphology of the turbulent layer
obtained from rocket and radar measurements is reproduced by the hydrodynamic solution.

1. Introduction
It is desirable to solve the hydrodynamic equations for a

given mesospheric dynamical situation to obtain the fields of
velocity and of the mixing ratios of entrained mesospheric
constituents. Resultant fields can be used to predict radar
observables and realizations of measurements along rocket
trajectories. As impressive as present-day computational fa-
cilities may be, they are insufficient to include both the large-
scale atmospheric dynamics that initiate and sustain turbu-
lence and the smallest scales where dissipation smooths the
most slowly diffusing constituents. To simulate a Kelvin-
Helmholtz billow, we dimensionalize the hydrodynamics so-
lution to the size of the large-scale atmospheric dynamics.
Consequently, the Bragg wavelength of VHF radars is
smaller than or nearly equal to the grid size used in the hydro-
dynamics solution and the smallest scale of the most slowly
diffusing constituent is much smaller than the grid scale.
Therefore, a sub-grid-scale model is needed. Our basic plan
is to use numerical solutions to calculate realizations of the
hydrodynamic fields using practical grid resolution, and to
use those fields as input to a turbulence advection model that
provides sub-grid-scale statistics. From the inertial range of
the numerical solution to beyond dissipation-range scales,
the turbulence advection model calculates the power spectra
and cospectra of mesospheric ion mixing ratios. For sim-
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plicity we refer to those spectra and cospectra as ion spectra.
The ion spectra are statistics (i.e., expectation values), not re-
alizations. The power spectrum of electron number-density
fluctuations (referred to as the electron spectrum for sim-
plicity) is obtained from the ion spectra by use of charge
neutrality. Evaluation of this electron spectrum at the Bragg
wave number of a given radar allows evaluation of the radar
scattering cross section. The electron spectrum is compared
with that obtained from a rocket measurement of electron
number density.
The relevant physical attributes of the charged species are

their charge, mass, and momentum-transfer collision fre-
quency; the latter depends on charge, mass, and size. Tradi-
tional nomenclature, such as charged aerosol, charged dust,
and cluster ion, that differs for different degree of hydration
or chemical constituents distracts from the simplicity of the
physics thatwe present. For simplicitywe refer to all charged
species as ions, in the sense that an ion is a group of atoms
having a charge, no matter how large that group may be.
The turbulence advectionmodel employedhere is the same

as that developed by Hill and Bowhill (1976) and refined by
Hill (1978b). There have been many subsequent experimen-
tal and theoretical studies that have verified the accuracy of
the model and extended its capabilities; these studies are
reviewed by Hill and Mitton (1998). The turbulence ad-
vection model was first used by Hill and Bowhill (1976)
to estimate equatorial radar backscatter power on the basis
of large hydrated ions (masses less than 200 nucleons) that
cause Schmidt numbers as large as 1.4. Kelley and Ulwick
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(1988) hypothesized that verymassive ions having very large
Schmidt numbers (i.e., much larger than 1.4) cause the ob-
served high-wave-number enhancement of the electron spec-
trumand the radar backscatter power observed during PMSE.
Our present focus is on the phenomenon of PMSE caused

by turbulence; some PMSE are observed to be not directly
caused by turbulence (Lübken et al., 1993, 1998). Much
has been written about PMSE; we refer the reader to recent
review articles (Cho and Kelley, 1993; Röttger, 1993, 1994;
Cho and Röttger, 1997). Our present hydrodynamics so-
lution is that of a Kelvin-Helmholtz instability producing a
billow and subsequently, a turbulent layer. In future studies,
we intend to consider breaking gravity waves. The STATE
measurements of PMSE provide convenient data on rocket
electron number-density profiles and power spectra, data on
the dynamics (such as shear, potential-temperature gradi-
ents, energy-dissipation rates), and radar signal-to-noise ra-
tio (S/N) from the Poker Flat 50MHz radar. In Section 8, we
compare our hydrodynamics solutions and electron spectra
with the STATE data. A brief introduction to STATE data is
given in Section 8.

2. Simulation of Turbulence Caused by Kelvin-
Helmholtz Instability

The simulation of Kelvin-Helmholtz (KH) instability was
performed using a spectral code that solves the incompress-
ible Navier-Stokes equations in a stream function/vorticity
representation. Horizontal boundary conditions in the
streamwise direction (along the mean wind direction) and
spanwise direction (horizontal and perpendicular to themean
wind direction) are assumed to be periodic. A cosine expan-
sion in the vertical direction and free-slip boundaries at the
top and bottom of the computational domain are employed
to represent the horizontal velocity components; this enables
specification of a velocity profile having zero vertical veloc-
ity at the boundaries.
The initial velocity was taken to have vanishing vertical

and spanwise components and the streamwise component,
V (z), was taken to have the profile

V (z) = U0 tanh(z/h), (1)

where z is height, h is the shear depth, andU0 is themagnitude
of the streamwise component of velocity far above and below
the shear layer. Themaximum initial shear exists at z = 0 and
is U0/h. The initial buoyancy frequency, N, is independent
of height. The Richardson, Reynolds, and Prandtl numbers
are defined, respectively, by

Ri = N 2/(U0/h)2, (2)

Re = U0h/ν, (3)

and
Pr = ν/D, (4)

where ν is kinematic viscosity and D is the thermal diffusiv-
ity. If Ri , Re, and Pr are assigned values, then the numerical
solution can proceed from the two initial conditions, which
areN equals a constant and Eq. (1), and from an initial small
forcing of vorticity structure. The values assigned for the so-
lution used in our present study are Ri = 0.05, Re = 2000,

and Pr = 1. The resulting hydrodynamic solution applies
to any values of U0, h, and N that satisfy Eq. (2); for the
present solution this is N 2/(U0/h)2 = 0.05. Thus, we are
free to assign values to U0 and h to simulate the KH insta-
bility in many different flow cases. Choosing values for U0

and h determines N from Eq. (2), and ν from Eq. (3); then
Eq. (4) determines D from ν.
The KH simulation was performed in a computational do-

main of dimensions L0, L0/3, and 2L0 in the streamwise,
spanwise, and vertical directions, respectively, where L0 is
the streamwise domain size. The spanwise extent is ade-
quate to allow vigorous and locally isotopic vortex dynam-
ics at small scales of motion. Sensitivity studies were per-
formed to ensure that the upper and lower boundaries are
sufficiently far from the shear layer so as to not influence
the shear layer dynamics. The shear depth, h, and spanwise
dimension L0 are assigned the ratio L0/h = 4π ; this is the
most numerically efficient way to activate the most rapidly
growing eigenfunction according to linear viscous theory (K.
Julien, personal communication, 1997). The simulation was
initiated at t = 0 with the most unstable two-dimensional
(2D) linear-eigenfunction vorticity structure with a maxi-
mum amplitude equal to 0.07U0/h. A three-dimensional
(3D) noise spectrum in velocity having a maximum vertical
vorticity equal to 0.014U0/h was used to seed the transition
to 3D structure; the results are insensitive to the details of
this noise spectrum. Model resolution varied throughout the
simulation as required to resolve: 1) the quasi-2D mean and
KH structures, 2) the inertial range character of turbulence
at intermediate scales, and 3) several decades of spectral am-
plitude within the viscous range. During the most vigorous
turbulence, the maximum resolution reaches 720, 240, and
1440 grid points in the streamwise, spanwise, and vertical
directions, respectively.
In Section 8 we use the values U0 = 18.5 m s−1 and

h = 270 m. We mention these values here to give quanti-
tative meaning to our variables. For example, Ri = 0.05
then requires that N = 0.0153 s−1; the buoyancy period
is Tb = 2π/N = 410 s, and the billow turn-over time is
T0 ∼ L0/U0 = 4πRi1/2/N = 2Ri1/2Tb = 0.45Tb = 183 s.
Also, L0 = 4πh = 3393 m such that the computational
domain is 3393 m by 1136 m by 6786 m in the streamwise,
spanwise, and vertical directions, respectively. At maximum
resolution the grid spacing is L0/720 = 4.71 m in all three
directions. For our case study in Section 8, at the height of
88.75 km, the kinematic viscosity of air, νair, is 1.87 m2 s−1.
Given Re = 2000, U0 = 18.5 m s−1, and h = 270 m, Eq.
(3) gives ν = 2.5 m2 s−1. It is too expensive to change Re
and run the simulation for any given choice ofU0 and h such
that ν equals νair for a given temperature and pressure. It is
also unnecessary because the numerical solution is intended
to simulate the large-scale dynamics. Thus, that ν = 2.5
m2 s−1 whereas νair = 1.87 m2 s−1 is of no concern to us,
and would remain of no concern even if the difference be-
tween ν and νair was much greater than it is. Also of no
concern are the facts that the Prandtl number of air is 0.72
whereas the Prandtl number in Eq. (4) has been assigned the
value unity and that, for our values ofU0 and h, Eq. (4) gives
D = ν = 2.5 m2 s−1, whereas for our case study in Sec-
tion 8 the thermal diffusivity of air at 88.75 km has the value
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Dair = νair/0.72 = 2.6 m2 s−1. Dimensionless time, t , is
marked on our first two figures; t is time (in seconds) mul-
tiplied by U0/h. Therefore, t = 100 corresponds to 1459
seconds for our choice of U0 = 18.5 m s−1 and h = 270 m.

The fact that for realistic values of U0 and h we have ν

nearly equal to νair, (or that we could cause ν = νair by use
of either a slightly different Re or U0 and h) is remarkable.
It means that our computer simulations replicate the KH dy-
namics from the billow scale to the viscous scale for altitudes
near the mesopause given present day computer resources.
In nondimensional terms this means that Re = 2000 is a
realistic Reynolds number for the KH instability at altitudes
near the mesopause.
Cross sections in the streamwise-vertical plane (centered

in the spanwise direction) of the vorticity magnitude and
potential-temperature perturbation (about a constant mean)
are shown at various times spanning the first half of our
KH simulation in Figs. 1 and 2. The evolution in Figs. 1
and 2 is seen to be approximately 2D during times less than
t ∼ 49 (see the top left panel in Figs. 1 and 2 which cor-
responds to times ∼2Tb ∼ 4T0). At these times there are
increasingly sharp potential-temperature and velocity gradi-
ents causedbyfluid entrainment andbaroclinic torques acting
onmass-density gradients within the entraining fluid. There-
after, streamwise-aligned, counter-rotating vortices quickly
arise within the outer billow (Klaassen and Peltier, 1985),
where the fluid is both convectively and inertially unstable
(Fritts et al., 1996; Palmer et al., 1996). The close proxim-
ity of the convectively unstable layers and adjacent sheared
stable layers leads to orthogonal vortex alignments, loop vor-
tices, and the vortex interactions and twist-wave dynamics
that have been seen in related wave-breaking dynamics to
drive the turbulence cascade towards ever smaller scales of
motion (Arendt et al., 1997; Andreassen et al., 1998; Fritts
et al., 1998). The result shown in Fig. 1 is small-scale turbu-
lence that: 1) exhibits a high degree of spatial and temporal
intermittency, 2) is confined early on (t ∼ 66 to 83) to the
outer billow, 3) achieves the smallest scales and the largest
vorticity (and hence largest energy-dissipation rates as well)
in the billow core somewhat later (t = 103 to 146), and 4)
thereafter (t > 146) spreads into a more horizontally ho-
mogeneous layer having increasing dissipation scales and
decreasing energies. The evolution in the potential tempera-
ture field in Fig. 2 reveals: 1) the initial 2D banding accom-
panying billow roll-up (see t = 49), 2) generation of sharp
potential-temperature gradients near the top and bottom of
the turbulent layer where strong entrainment occurs, 3) small
secondary billows along these interfaces constitute continued
instability, and 4) strong and intermittent entrainment events
at small scales at the interfaces. As the layer restratifies
(t >∼ 200), the potential temperature gradients lessen, but re-
main greatest at the top and bottom of the layer. Werne and
Fritts (1999) present other results from the numerical simu-
lation, including spectra of potential temperature and the 3
velocity components, and profiles and temporal evolution of
statistics.

3. Multipolar Diffusion
We use the term multipolar diffusion to refer to multicon-

stituent plasma diffusion. Multipolar is a generalization of

the nomenclature ambipolar, the latter is traditionally used
to refer to plasma diffusion for the case of electrons with one
species of ion.
Multipolar diffusion was studied by Hill and Bowhill

(1976, 1977) and Hill (1978a). Here, we present a sim-
plified derivation of multipolar diffusion theory. In particu-
lar, we do not present the complications caused by nonzero
Debye length, nor the nonlinearity of the equations, nor the
coupling to potential-temperature fluctuations caused, for in-
stance, by the temperature dependence of ion diffusion co-
efficients (those complications are considered by Hill and
Mitton, 1998). Production and loss of ionization are ne-
glected as are the effects of the geomagnetic and gravita-
tional fields. To simplify the presentation, our notation list
is as follows:

Nα is the number density of species α.
N is the number density of neutral gas.
Qα = Nα/N is the mixing ratio of species α.
P is atmospheric pressure.
T is potential temperature.
V is velocity of the neutral gas.
vα = Vα − V is the velocity of species α relative to the

neutral gas, wherein Vα is the velocity of species α.
��������α = Nαvα is the flux of species α relative to the neutral

gas.
E is the total electric field.
qα is the charge of species α.
e is the elementary unit of charge, i.e., the magnitude of

the electron’s charge.
Sα ≡ qα/e is the charge number (including the sign) of

species α.
mα is the mass of species α.
να is the momentum-transfer collision rate for species α.

μα = qα

mανα

is the mobility of species α.

Dα = TB
mανα

is the diffusion coefficient of the number

density of species α, wherein TB is absolute temperature
multiplied by Boltzmann’s constant.
J =

∑
α

qα��������α is the current density relative to the flow of

neutral gas.
Our equations are (Hill and Mitton, 1998):

mανα��������α = NαqαE − P∇∇∇∇∇∇∇∇Qα, (5)
∂Qα

∂t
+ V · ∇∇∇∇∇∇∇∇Qα = − 1

N
∇∇∇∇∇∇∇∇ · ��������α, (6)

∇∇∇∇∇∇∇∇ · E = 4π
∑

β

qβNβ. (7)

Equation (5) expresses the balance of collisional drag on
the left-hand side and the electric force and diffusion on the
right-hand side. Equation (6) is the continuity equation for
the mixing ratios. It is important to obtain equations for the
mixing ratios because the numerical simulation can treatmix-
ing ratios as conserved quantities. The electric field caused
bymultipolar diffusion is given in terms of the net multipolar
charge density by Eq. (7).
To specialize the equations to diffusion phenomena, we

multiply Eq. (5) by μα and sum over α, which results in
an equation for the total current relative to the flow of neu-
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Fig. 1. Cross sections in a streamwise vertical plane displaying the 3D evolution of vorticity magnitude. The 8 nondimensional times span the dynamical
evolution, including early quasi-2D billow roll-up (t = 49), transition to 3D structure consisting of streamwise-aligned convective rolls (t = 66 and 83),
creation of a turbulent layer (t ∼ 83 to 164), and eventual restratification and stabilization of the flow (t > 200).

tral gas:

J =
∑

α

(μαNαqαE − μαP∇∇∇∇∇∇∇∇Qα). (8a)

In plasma diffusion, the electric field retards the diffusion of
some species and enhances the motion of other species such
that little charge develops and little current flows. Neglect-
ing J relative to the charge flow of individual species (i.e.,
relative to at least some terms in the sum in Eq. (8a)) yields
an equation for the electric field produced by the multipolar

diffusion, namely

0 =
(∑

α

μαNαqα

)
E −

(∑
α

μαP∇∇∇∇∇∇∇∇Qα

)
. (8b)

This equation is valid even if the plasma is devoid of elec-
trons. However, if electrons are sufficiently plentiful to affect
charge neutrality, then the electron’s term dominates in both
sums in Eq. (8b) because the electron mobility, μe, is or-
ders of magnitude greater than ion mobilities. That is, Eq.
(8b) becomes 0 = (μeNeqe)E− (μeP∇∇∇∇∇∇∇∇Qe); solving for the
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Fig. 2. The evolution of the potential-temperature field shown in the same cross section and at the same times as in Fig. 1.

electric field gives

E = P

−eNe
∇∇∇∇∇∇∇∇Qe. (8c)

This is essentially Hill’s (1978a) equation (22). One can
recognize Eq. (8c) as being Eq. (5) applied to the electrons
with the electron’s collisional drag term (left-hand side of
Eq. (5)) neglected. That is, the electrons diffuse so as to
enforce approximate charge neutrality. This fact is verified
by the yet more general treatment of plasma modes by Hill
and Bowhill (1977).
Electron bite-outs have been observed during some PMSE

(Pedersen et al., 1970; Ulwick et al., 1988; Inhester et al.,

1990; Klostermeyer, 1996; Lübken et al., 1998). Perhaps the
approximation leading to Eq. (8c) does not apply to bite-outs.
Now, Qe is obtained from approximate charge neutrality,

that is, setting the left-hand side ofEq. (7) to zero anddividing
by the number density of the neutral gas, i.e.,

Qe =
∑
β �=e

SβQβ. (9)

The more complete treatment of substituting Eq. (8c) into
Eq. (7) results in the Debye shielding formula which differs
from Eq. (9) at scales less than or on the order of the Debye
length (Hill, 1978a). We substitute Eq. (9) into Eq. (8c) and
Eq. (8c) into Eq. (5) to obtain a formula for ion flux, �α , in
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terms of the ionmixing ratios, Qα . The divergence of this�α

is substituted into Eq. (6) to obtain the continuity equation for
the ion mixing ratios. However, the electric force term in Eq.
(5) is nonlinear because Eq. (7) contains number densities.
Linearizing the resulting continuity equation and denoting
fluctuations by primes, the ion continuity equation is

∂Q′
α

∂t
+V·∇∇∇∇∇∇∇∇Q′

α = Dα∇2Q′
α+Dα

Nα

Ne
Sα

∑
β �=e

Sβ∇2Q′
β. (10)

This continuity equation is used in the next section to de-
rive equations for ion spectra. Because of the linearization,
Eq. (10) and the following theory applies only for Q′

α much
smaller than 〈Qα〉 for each α.

4. Turbulence Advection Model for Ionization
Here, we use the continuity equation for the ion mixing

ratio, Eq. (10), to derive the coupled equations for spectra
and cospectra of ion mixing ratios and apply the turbulence
advection model. Let {Q′

α} denote the spatial Fourier trans-
form of Q′

α . The Fourier transform of Eq. (10) gives the
equation for {Q′

α}. Multiplying the resultant equation by
{Q′

γ }∗, where the superscript ∗ indicates the complex conju-
gate, and γ denotes another ion species, one can obtain the
equation for the quantity

�αγ = RE[{Q′
γ }∗{Q′

α}],
where RE indicates the real part. The statistical cospectrum
of ion mixing ratios �αγ (k) is the average of �αγ over a
locally-isotropic ensemble integrated over spherical shells in
wave-vector space, i.e.,

�αγ (k) = 4πk2〈�αγ 〉,
where the angle brackets denote the aforementioned average,
and k is the spatial wave number. Averaging the equation for
�αγ one obtains (Hill and Mitton, 1998) the equation for
�αγ (k):

∂�αγ (k)

∂t
− Tαγ (k)

= −k2(Dα + Dγ )�αγ (k)

−k2
∑
β �=e

[cαβ�γβ(k) + cγβ�αβ(k)], (11a)

where

cαβ ≡ SαSβDα

Nα

Ne
, (11b)

andTαγ (k) is the spectral transfer function that arises from the
term in Eq. (10) that contains the velocity. The relationship
between mixing-ratio covariance and �αγ (k) is

�αγ (k) =
∫∫

k2d	k

∫∫∫
d3r

(2π)3
〈Qα(x)Qγ (x + r)〉

× exp(−ik · r), (12)

where d	k is the differential solid angle in k-space. Thus,
�αγ (k) is normalized such that

〈Qα(x)Qγ (x)〉 =
∫ ∞

0
�αγ (k)dk. (13)

Of course, if γ denotes the same ion species as α, i.e., γ = α,
then �αα(k) is the power spectrum and the left-hand side of
Eq. (13) is the variance of the ion mixing ratio. The term in
Eq. (11a) that contains (Dα + Dγ ) is the free-diffusion term,
and the term that contains cαβ and cγβ is the coupling term
caused by the multipolar electric field.
The presence of two unknown functions, Tαγ (k) and

�αγ (k), in Eq. (11a) constitutes the turbulence closure prob-
lem and necessitates the use of the turbulence advection
model to express Tαγ (k) in terms of �αγ (k). The turbu-
lence advection model by Hill and Bowhill (1976) is used;
namely

−Tαγ (k) = d[s(k)�αγ (k)]

dk
, (14)

s(k) ≡ β−1ε1/3k5/3[(k/k∗)2a + 1]−1/(3a),

where ε is energy-dissipation rate per unit mass of fluid. The
parameters of this model are determined by comparison with
experiments by Hill (1978b), and have been subsequently
further confirmed (Hill and Mitton, 1998); the parameters
are: β = 0.72 (the Obukhov-Corrsin constant), a = 1.4,
and k∗η = 0.074, wherein,

η = (ν3
air/ε)

1/4

is the Kolmogorov microscale. For locally stationary tur-
bulence, we neglect the time-derivative term in Eq. (11a).
Substituting Eq. (14) into Eq. (11a) gives

d[s(k)�αγ (k)]

dk
= −k2(Dα + Dγ )�αγ (k)

−k2
∑
β �=e

[cαβ�γβ(k) + cγβ�αβ(k)]. (15)

If there are n species of ions, then Eq. (15) yields n(n+1)/2
coupled, homogeneous, linear differential equations. They
are readily solved by using a predictor-corrector algorithm.
The boundary conditions in k for solution of Eq. (15) are the
inertial-convective-range formulas

�αγ (k) = βε−1/3χαγ k
−5/3, (16)

where χαγ is the rate of dissipation of the covariance in Eq.
(13). Of course, if γ denotes the same ion species as α,
i.e., γ = α, then χαα is the rate of dissipation of the vari-
ance of mixing-ratio fluctuations of ion species α. Values
of dissipation rates ε and χαγ are to be obtained from the
KH simulation. A value of k within the inertial-convective
range is selected; the �αγ (k) are assigned the values accord-
ing to Eq. (16), and the coupledEq. (15) are integrated toward
higher wave numbers.
In Section 7 we need two other types of spectra. One

is the power spectrum of potential-temperature fluctuations
denoted by �TT(k), and the other is the cospectrum of ion
mixing ratio and potential temperature, �αT(k). The equa-
tions to calculate �TT(k) and �αT(k) using the turbulence
advection model are analogous to Eq. (15); they are obtained
from the ion mixing-ratio continuity equation, Eq. (10), and
the continuity equation for potential temperature by the same
methods used to obtain Eqs. (11a) and (15). Details of that
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derivation are given by Hill and Mitton (1998). The bound-
ary conditions in k for calculating �TT(k) and �αT(k) are
the same as Eq. (16), with χαγ , replaced by χTT and χαT,
respectively, where χTT is the dissipation rate of potential-
temperature variance, and χαT is that of the covariance of
ion mixing ratio and potential temperature. The predictor-
corrector algorithm must now solve n(n + 1)/2 + n + 1
equations if there are n species of ions.

5. Schmidt Numbers
Before Eq. (15) for �αγ (k) is solved numerically, it is

rendered dimensionless by division by χαγ and by use of ε

and νair. As in Section 2, we make the distinction between
the kinematic viscosity of air, νair, at the temperature and
air density of interest and the parameter ν in Eq. (3). Sim-
ilarly, the corresponding equations for �TT(k) and �αT(k)
are rendered dimensionless. Examining Eqs. (15) and (11b)
we see that the ratio Dα/νair must appear in the dimension-
less equations. Thus, the Schmidt numbers Scα = νair/Dα

naturally appear in our equations. There is one Schmidt num-
ber in our coupled equations for each species of ion. There
is no Schmidt number for the electrons in our formulation,
nor is there an effective electron diffusivity. The electrons
distribute themselves as required by approximate charge neu-
trality because they are by far the most mobile species. An
effective electron diffusivity can apply only if all ion species
have the same diffusion coefficient; that restrictive case does
not apply here. (Themost general case for which an effective
electron diffusivity applies, including the effect of nonzero
Debye length and negative ions, is given in equation (9.5) by
Hill and Bowhill, 1976.)
The ion diffusion coefficients are calculated from the

momentum-transfer collision frequency of ions colliding
with neutral air molecules. The collisions are modeled as
the polarization interaction with a rigid-sphere repulsion.
The polarization interaction is attractive and of long range,
whereas the rigid-sphere repulsion acts at short ranges when
the ion and neutral molecule are in contact. This collision
model was derived in detail by Langevin (1905) (a modern-
ized translation from the French text is in an appendix by
McDaniel, 1964). Langevin’s model is implemented for an
ion consisting of an ice sphere surrounding a central core and
having an arbitrary charge; the ion collides with O2, N2, and
Ar. Following Klostermeyer (1996), the mass density of ice
is 0.93 g cm−3. Although Langevin’s (1905) momentum-
transfer collision model is not perfect for mesospheric ions,
it is the best model available for use without undue labor.
If the ion’s radius is small enough or its charge is large

enough, then the polarization interaction dominates over the
rigid-sphere repulsion, and vice versa. Ion diffusion coeffi-
cients vary from being dominated by the polarization inter-
action to being dominated by the rigid-sphere repulsion as
the number of attached water molecules increases, i.e., as the
radius of the ion increases. For the case of a very large ion,
the formula for the kinematic viscosity of air divided by the
asymptotic formula for the rigid-sphere repulsion gives the
following simple formula for the Schmidt number:

Scα = 6.0 nm−2[2τ/(τ + 1)]r2α,

where rα is the radius of the ion α, and τ is absolute temper-

ature divided by 110.4 K. Whereas this asymptotic formula
is useful for estimation purposes, we use Langevin’s (1905)
model to calculate Scα .

6. Coupling the Turbulence Advection Model to
the Hydrodynamic Solution

The dissipation rates ε, χαγ , χαT, and χTT are determined
from the numerical solution of the hydrodynamic equations;
a wave number k in the inertial-convective range is selected;
at that point, all values in Eq. (16) are known such that Eq.
(16) determines the boundary values for the solution toward
higherwave numbers of Eq. (15) and the corresponding equa-
tions for �TT(k) and �αT(k).
The dissipation rates are the result of large-scale produc-

tion of energy and mixing-ratio variance. However, if the
Reynolds number is large enough for an inertial range to exist,
then the dissipation rates can be calculated by means of the
balance of production and dissipation, that is, by employing
the direct-dissipation formulas. The numerical simulation
described in Section 2 does have an inertial range (Werne
and Fritts, 1999). The energy-dissipation rate is therefore
calculated from the velocity field of the numerical simula-
tion by means of the direct-dissipation formula:

ε = ν

(
∂Vi

∂x j

∂Vi

∂x j
+ ∂Vi

∂x j

∂Vj

∂xi

)
, (17)

where the over bar denotes an average over some chosen
volume and repeated indices are summed. The dissipation
rate of the variance of potential-temperature, χTT, is obtained
from the direct-dissipation formula:

χTT ≡ 2D(∇∇∇∇∇∇∇∇T ′) · (∇∇∇∇∇∇∇∇T ′), (18)

where T ′ is the fluctuation of potential temperature calcu-
lated from the numerical simulation. Formulas analogous
to Eq. (18) are used for calculating χαγ and χαT (Hill and
Mitton, 1998). In Eqs. (17) and (18) the values of kinematic
viscosity, ν, and thermal diffusivity, D, are the values used
in the numerical simulation as described in Section 2. As
mentioned in Section 2, the values νair and Dair that corre-
spond to the case study in Section 8 differ somewhat from
the values of ν and D. Nevertheless, Eqs. (17) and (18)
yield correct values of dissipation rates for the geophysical
dynamics being simulated because altering the values of ν

and D results in altered values of the simulation’s gradients
such that dissipation rates obtained from Eqs. (17) and (18)
are unchanged. This property follows from the balance of
production and dissipation, which, in turn, follows from the
fact that the dissipation rates are caused by large-scale flow
properties and that the Reynolds number of the simulation is
large enough so that an inertial range exists.

7. Electron Number-Density Spectrum andRadar
Cross Section

One objective is to calculate the electron number-density
power spectrum (electron spectrum), �(k), which is denoted
by no subscripts to distinguish it from the power spectrum
of electron mixing-ratio fluctuations, �ee(k). At this point
we have the cospectra and power spectra of the ion mixing



506 R. J. HILL et al.: TURBULENCE AND PMSE

ratios. By Fourier transformation of charge-neutrality, Eq.
(9), we can immediately obtain

�ee(k) =
∑
α �=e

∑
γ �=e

SαSγ �αγ (k). (19a)

Using Eq. (9) we can also obtain the cospectrum of the elec-
tron mixing ratio and potential temperature, �eT(k),

�eT(k) =
∑
α �=e

Sα�αT(k). (19b)

From the definition of mixing ratio, electron mixing-ratio
fluctuations can be caused by electron number-density fluc-
tuations and by fluctuations of neutral air number density.
Because the Mach number of the KH-initiated turbulence
is very small, pressure fluctuations have a negligible effect
on air density (Lumley and Panofsky, 1964). Therefore, the
ideal gas law requires that the air density fluctuations are in-
versely proportional to fluctuations of either temperature or
potential temperature. To first order in fluctuations we have

N ′
e � NQ′

e − Ne

T
T ′, (20)

where N , Ne, and T are ambient values of number density of
air, electron number density, and potential temperature, and
the prime denotes the fluctuations of the quantity. Obtaining
the spectrum from Eq. (20) yields

�(k) = N 2�ee(k) − 2
NNe

T
�eT(k) +

(
Ne

T

)2

�TT(k). (21)

Now, Eq. (21) gives the desired electron spectrum by use of
Eqs. (19a,b) and �TT(k).

We digress to illustrate Eq. (21) in Fig. 3 using one of the
cases from Section 8 (the other cases would appear qualita-
tively alike if shown in Fig. 3). For the case considered, Fig. 3
shows the 3 terms in Eq. (21), their sum, �(k), as well as the
Bragg wave number of the Poker Flat radar, Kolmogorov’s
dissipation wave number

kK = η−1 = (ε/ν3
air)

1/4,

and the 3 Batchelor’s dissipation wave numbers

kB = (ε/νairD
2
α)1/4 = η−1Sc1/2α

corresponding to the 3 ionSchmidt numbers. Batchelor’s dis-
sipation wave number for the temperature fluctuations (i.e.,
kB = η−1Pr1/2, where Pr = 0.72) is not shown because it is
nearly the same as kK. All of the spectra have the k−5/3 power
law at the left side of Fig. 3. The dotted curve in Fig. 3 has a
power law slightly steeper than k−1 in what would otherwise
be a viscous-convective range because of the coupling to the
multipolar electric field in the last term in Eq. (15). Slightly
to the left of the right-most triangle one sees a bulge toward
high wave number in the solid curve; this bulge is caused
by the heaviest ion in the case considered. In Fig. 3 we see
that neither the third nor second terms on the right-hand side
of Eq. (21) are significant. Even if they were significant at
low wave numbers (which requires much reduced ion dis-
sipation rates relative to those in Section 8), they would be

Fig. 3. From right to left in Eq. (21) the 3 terms are the long-dashed,
short-dashed, and dotted curves, respectively, and the solid curve is their
sum,�(k). The dotted curve lies above the solid curve because themiddle
term inEq. (21) is negative. The diamond at the bottomof the graphmarks
the Bragg wave number, and from left to right the triangles mark kK, and
the 3 values of kB for Scα = 3.24, 126, and 565, respectively. The case
considered is that in Section 8 having a light positive ion and dissipation
rates averaged over the height range 87.75–89.33 km at the edge of the
KH billow.

negligible at the Bragg wave number indicated on Fig. 3 be-
cause�eT(k) and�TT(k) decrease rapidly in their dissipation
ranges relative to�ee(k) if at least one ion Schmidt number is
very large. Thus, if large ions are present, then only the first
term in Eq. (21) contributes significantly to �(k) for k ≥ kK.
In the literature on PMSE, one often finds the level of �(k)
caused by very large Schmidt numbers compared with what
�(k) would be if neutral-air fluctuations produced the elec-
tron number-density fluctuations, presumably with Qe held
constant. The right-most term in Eq. (21) is the level of �(k)
caused exclusively by neutral-air fluctuations for constant
Qe.
To compare our result with rocket data we have another

calculation to perform. Within a limited height range, rocket
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data is essentially data along a straight line. The power spec-
trum of such data is called the 1D spectrum ψ(k1), where
k1 is the wave-vector component along the line. For locally
isotropic turbulence, the relationship ofψ(k1) to the 3D spec-
trum �(k) is (Tennekes and Lumley, 1972)

ψ(k1) =
∫ ∞

k1
k−1�(k)dk. (22)

Another objective is to calculate the radar cross section.
Let σ denote the backscatter cross section per unit volume
and per unit solid angle for Bragg scattering from isotropic
fluctuations. This cross section is given by:

σ = r2e 2π
2K−2�(K ), (23)

where re is the classical electron radius, and K is the Bragg
wave number, which is related to the radar’s frequency f
in MHz by K = (4π/c) f × 106, wherein c is the speed of
light. The cross section in Eq. (23) is the same as was defined
by Villars and Weisskopf (1955) and Ottersten (1969). The
cross section defined by Royrvick and Smith (1984) is Eq.
(23) multiplied by 4π . Note that reflectivity is 4πσ .

8. Comparison with STATE Data
The STATE experiment included measurements by the 50

MHz Poker Flat radar, and rocket measurements of electron
number density, temperature, andwinds (Ulwick et al., 1988;
Fritts et al., 1988). The first rocket of the STATE campaign
was launched on June 15, 1983 at 0230 UT and was referred
to byUlwick et al. (1988) as STATE1; it yielded high-quality
electron number-density data, but no winds or temperatures.
The second (STATE 2) rocket salvowas 3 hrs 20min after the
STATE 1 rocket; STATE 2 yielded winds and temperatures
but no useable electron number-density data. The STATE 2
datawas used by Fritts et al. (1988) to describe the dynamical
state of the mesosphere and lower thermosphere. The earlier
dynamical situation during the STATE 1 rocket salvo might
have been different. The mesopause temperature minimum
of 130 K was located near 88 to 90 km, where a maximum
in wind shear exceeding 55 m s−1km−1 was observed (Fritts
et al., 1988). Particles as large as those in noctilucent clouds
have been observed below the mesopause during such cold
mesopause temperatures (Lübken et al., 1996). As the first
application of our model, we consider the turbulent layer
observed in the altitude range 88 to 89.5 km by the STATE
1 rocket. Kelley and Ulwick (1988) discuss the evidence
that this layer is turbulent; we accept their judgement that it
was a turbulent layer. Certainly some PMSE are not directly
caused by turbulence (Lübken et al., 1993, 1998). In the
altitude range 88 to 89.5 km, the STATE 1 rocket trajectory
was about 9 km north-north-east of the center of the radar
beam (Fig. 1, Ulwick et al., 1988). This turbulent layer
produced very large radar backscattered power (Kelley and
Ulwick, 1988; Ulwick et al., 1988).
Using STATE data, Watkins et al. (1988) obtained the

energy-dissipation rate, ε, from the radar’s spectral width
using the radar’s 15-degree off-zenith beam direction. The
spectralwidthmethod is fraughtwith uncertainties (Hocking,
1983, 1996). None of their ε values pertain to the specific
turbulent layer that we study here. Nevertheless, we mention

their ε values here for qualitative comparison with the simu-
lation’s ε values. Their 4- to 12-hour averaged ε values were
typically less than 0.1 W kg−1. However, they also observed
bursts of ε in layers a few kilometers thick having duration
no longer than a fewminutes; these bursts included values of
ε as large as 1 W kg−1. A value of ε in such a burst is more
relevant to our investigation of the observed turbulent layer
than are averages over many hours.
We selected a single time, t = 146, in the KH simula-

tion to compare with the STATE data. The vorticity and
potential-temperature fluctuations for t = 146 are shown in
Figs. 1 and 2. Based on typical KH observations, we di-
mensionalized the KH simulation using U0 = 18.5 m s−1

and h = 270 m. We will retain those values despite the
fact that slightly different values would give a better fit to
the STATE data because this helps illustrate the uncertain-
ties that we face when comparing with data. One can now
compare the greatest initial shear (at the middle height) of
the simulation, i.e.,U0/h = 68.5 m s−1km−1, with the shear
of about 60 m s−1km−1 observed by the STATE 2 rocket
salvo. We can now determine the buoyancy frequency from
Eq. (2) and Ri = 0.05; we obtain N = 0.0153 s−1. Using
the relationship of N to the potential-temperature gradient,
GT, and using the temperature of 130 K and the gravitational
acceleration appropriate to 88 km, we obtain the initial value
GT = 3.2 K km−1. The initial gradient of absolute tempera-
ture is then−6.3 K km−1. In the height range of the turbulent
layer, Fritts et al. (1988) show absolute-temperature gradi-
ents from 40 K km−1 to−20 K km−1, although the relevance
of the greatly varying temperature gradientsmeasured during
the STATE 2 rocket to the gradients that might have existed
3 hrs 20 min earlier during the STATE 1 salvo is unknown.
To examine the vertical morphology of the simulation’s

potential-temperature field, we obtain a vertical profile of
potential temperature from the center of the simulation. To
make it relevant to STATE we use a temperature of 130 K at
the simulation’s middle height, equate temperature and po-
tential temperature at the middle height (i.e., the reference
pressure in the definition of potential temperature is taken to
be equal to the pressure at the middle of the turbulent layer),
use the aforementioned gradient of 3.2 K km−1 to scale the
simulation’s potential-temperature gradient, and place the
simulation’s dimensioned turbulent layer at the height of
the layer observed by the STATE 1 rocket. The result is
the simulation’s dimensioned potential-temperature profile
shown in Fig. 4. We compare with the electron number-
density profile observed by the STATE 1 rocket by tracing
that profile from figure 12 of Ulwick et al. (1988) onto our
Fig. 4. The potential-temperature profile and the electron
number-density profile have similar characteristics. Both
have steep gradients at the top and bottom of the turbulent
layer. Muschinski and Wode (1998) observe similar steep
gradients in temperature and specific humidity at the top and
bottom of a turbulent layer in the troposphere.
The similarity of profiles in Fig. 4 does not prove that the

STATE 1 turbulent layer was initiated by a KH instability,
because a breaking gravity wave would cause a similar mor-
phology after the turbulence had become fully developed.
The early stages of instability are when the signature of KH
dynamics is most distinct from breaking gravity-wave dy-
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Fig. 4. The dimensionalized potential temperature along the vertical line
at the center of the computational domain (solid curve) and the electron
number density (dashed curve) transcribed from figure 12 by Ulwick et
al. (1988).

namics. In Fig. 4 the depth of the layer is about 15%greater in
potential temperature than in electron number density, which
suggests that we should reduce h by about 15% to better fit
(at t = 146) the electron number-density profile. At the top
and bottom of Fig. 4, the potential-temperature profile retains
the initial potential-temperature gradient of 3.2 K km−1. The
potential-temperature profile in Fig. 4 is relatively flat at the
middle heights of 88.1–89.2 km; in comparison, the electron
number-density profile has more variability. Reference to
the panel for t = 146 in Fig. 2 shows that, depending on
the horizontal position at which one obtains the potential-
temperature profile, one could encounter more variability
near the top and bottom of the layer than is seen in the po-
tential temperature in Fig. 4.
We have averaged the simulation’s energy-dissipation rate

and the potential-temperature dissipation rate in rectangular
parallelepipeds having depth of 100 m and horizontal extent
of 1.13 by 1.13 km. This horizontal extent approximately
corresponds to the Poker Flat radar’s full two-way beam
width multiplied by the range to the layer center of 88.75 km,
whereas the 100-m depth is about 1/3 of the radar’s range res-
olution. In Figs. 5 and 6 we show profiles of these averaged
dissipation rates. The profile called “center” has the par-
allelepipeds centered on the vertical line at the streamwise
and spanwise middle of the computation domain, whereas
the profile called “edge” has this vertical line at the stream-
wise edge and spanwise middle of the domain (because the
horizontal boundary conditions are periodic, a volume at a
streamwise edge would be depicted in Figs. 1 and 2 as having
half of the volume on the right-hand side of a panel and half
on the left-hand side of a panel). The potential-temperature
dissipation rates in Fig. 5 have two pronounced maxima at
the top and bottom of the turbulent layer. These maxima are
caused by entrainment at the strong potential-temperature
gradient at the top and bottom of the layer shown in Fig. 4.
At the center of the computational domain at t = 146, the
potential-temperature dissipation rate is greater at the top of
the turbulent layer than at the bottom, whereas at the edge

Fig. 5. Profiles of the dimensionalized dissipation rate of potential temper-
ature from the KH simulation. The dissipation has been averaged over
volumes that are 1.13 by 1.13 km in the horizontal and 100 m in the ver-
tical directions. Open and filled circles correspond to averaging volumes
positioned at the center and edge of the KH billow, respectively.

Fig. 6. Profiles of the dimensionalized energy-dissipation rate from the
simulation. The dissipation has been averaged over volumes that are
1.13 by 1.13 km in the horizontal and 100 m in the vertical directions.
Open and filled circles correspond to averaging volumes positioned at the
center and edge of the KH billow, respectively.

of the domain it is greater at the bottom of the layer. The
energy-dissipation rate profiles in Fig. 6 have their maxima
in mid layer and much smaller values at the top and bottom
of the layer. The ε values are greater at the center of the
computation domain than at the at the edge. The maximum
ε values of 0.12 and 0.4 W kg−1 are within the range of the
values observed by Watkins et al. (1988).
For our comparison with STATE data, we use the potential

temperature as a tracer for the ion mixing ratios. Since the
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Table 1. Parameters of the ionization for comparison of the turbulence advection model with STATE data. qα/e is the ratio of the ion’s charge to the
magnitude of the electron’s charge. Nα/Ne(= Qα/Qe) is the ratio of ion to electron number densities. The scale heights, Hα , are related to the gradients,
Gα(z0), by Hα = −Qα(z0)[Gα(z0)]−1, where z0 = 88.75 km. The number of water molecules attached is given as #H2O from which follows the
radius, rα (in nm), on the basis of the density of ice, and the Schmidt number, Scα , follows from Langevin’s (1905) collision model.

α qα/e Nα/Ne Hα (km) #H2O rα (nm) Scα

model with a heavy positive ion:

1 −1 1.5 1.0 30000 6.2 257

2 +1 2.5 1.96 15000 4.9 164

model with a light positive ion:

1 −1 1.5 1.0 10000 4.3 126

2 −1 0.5 1.0 100000 9.2 565

3 +1 3.0 1.69 15 0.49 3.24

potential-temperature profile is initially linear with height,
we let the ion mixing-ratios be initially linear with height
across the vertical extent of the turbulent layer. Any con-
served scalar quantities that have proportional initial pro-
files will have proportional dissipation rates. Thus, the ion
mixing-ratio dissipation rates χαγ are proportional to that
of potential temperature; the coefficient of proportionality
is GαGγ /(GT)

2, where Gα is the initial mixing-ratio gradi-
ent of ion α. That is, χαγ = χTTGαGγ /(GT)

2, similarly,
χαT = χTTGα/GT. For this simple case we need not solve
themixing-ratio continuity equations during the simulation’s
computation. On the basis of the data byUlwick et al. (1988),
at 88.75 km the electron number density and its scale height
were taken to be 8×103 cm−3 and 4.5 km, respectively; these
values are used to require that the electron and ion profiles
collectively satisfy charge neutrality.
We tried ion models having both “light” and “heavy” pos-

itive ion species. By trial and error we found ion models that
produce agreement with the STATE electron power spec-
trum obtained for the height interval 88–89 km. Two ion
models are given in Table 1, wherein the scale heights Hα

and the Nα/Ne satisfy charge neutrality. The gradients are
expressed in terms of scales heights which are defined by
Hα = −Qα(z0)[Gα(z0)]−1, where z0 = 88.75 km is the
middle height of the layer (this definition does not imply an
exponential profile). The ions’ radii in Table 1 are based on
the mass density of ice being 0.93 gr cm−3 (Klostermeyer,
1996). Ions larger than those in Table 1, apparently of both
positive and negative charge, have been observed in the sum-
mer polarmesosphere (Havnes et al., 1996a,b). Amotivation
for hydration number 15 for the light positive ion case is the
measurement of positive-ion hydration number up to 20 by
Björn et al. (1985). However, an even lighter positive ion
would not change the results from the light positive-ion case.
We now have all that is needed to use the turbulence ad-

vection model to calculate ψ(k1) from Eq. (22). In Fig. 7
we show 4 calculations of ψ(k1) obtained using the center
and edge of the computational domain and using the heavy-
and light-ion models. The dissipation rates were averaged

Fig. 7. 1-D electron number-density power spectra from the turbulence
advection model for 4 cases: edge and light positive ion (long-dashed
curve); edge and heavy positive ion (dotted curve); center and light posi-
tive ion (short-dashed curve); center and heavy positive ion (solid curve).
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over the height range 87.75–89.33 km as well as over the
1.13 by 1.13 km horizontal area. The model spectra in Fig. 7
approach the k−5/3 inertial-convective range power law at
the lowest wave numbers and are, because of the multipolar
electricfield, slightly steeper than the k−1 viscous-convective
range power law at intermediate wave numbers. In Fig. 8 we
show the STATE 1 electron number-density 1-D spectrum
transcribed from figure 6a by Ulwick et al. (1988); their
spectrum is from the height interval 88–89 km. Figure 8
also contains the advection model’s ψ(k1) from the light-
positive-ion model and the edge of the domain; that is, the
long-dashed curves in Figs. 7 and 8 are the same ψ(k1). To
avoid too many curves on Fig. 8, only that one curve from
Fig. 7 appears in Fig. 8. Our model ψ(k1) lies about a factor
of 2 below the STATE 1 spectrum at all wave numbers in
Fig. 8. In making this comparison we note that arithmetic
averages of the STATE 1 spectral level shown on the loga-
rithmic ordinate in Fig. 8 would appear near the top of the
STATE 1 spectral data. The factor of 2 is a consequence of
our choice of U0 = 18.5 m s−1 and h = 270 m and the time
t = 146 during the simulation. Had we chosen h = 230 m,
which is about 15% less than 270 m as previously mentioned
for a better fit in Fig. 4, and chosen U0 = 19.8 m s−1, then
our model ψ(k1) would be a factor of 2 greater in Fig. 8.
However, one could also use an earlier time in the simula-
tion when the dissipation rates are greater than the values in
Figs. 5 and 6. The rocket trajectory is a single line through
the turbulence thatmight have pierced a region having high or
low dissipation rates or some intermediate values. Averaging
dissipation rates along vertical lines through the simulation
could produce many ψ(k1), some of which might have the
same spectral level as the STATE 1 spectral data. The above
discussion illustrates uncertainties that we have when com-
paring with the data.
In their figure 12, Ulwick et al. (1988) show the electron

number-density 1-D spectral level evaluated at the Bragg
wave number of the Poker Flat radar, namely, ψ(K ) in our
notation (see Eqs. (22) and (23)). They obtained their ψ(K )

by spectral analysis of the STATE 1 rocket-measured elec-
tron number-density in many height intervals. In their figure
12, theψ(K ) values are consistent with their subsequent cal-
culation of S/N and with their spectrum in our Fig. 8 only if
the (unstated) units of those ψ(K ) are (m/rad)(cm−3)2. We
change those units to cm−5 and copy their ψ(K ) from their
figure 12 onto our Figs. 9(a) and 9(b)wherewe also showpro-
files of our model’sψ(K ), as calculated from the dissipation
rates in Figs. 5 and 6. Theirψ(K ) have maxima closer to the
center of the turbulent layer than do our ψ(K ). Perhaps this
is a consequence of the particular line along which the rocket
pierced the turbulent layer. Ourψ(K )havemaxima at almost
the same location as does the potential-temperature dissipa-
tion rate in Fig. 5, which is also where our χαβ have their
maxima. In Figs. 9(a) and 9(b) we also show �(K ), which is
proportional to radar cross section, Eq. (23). By differentiat-
ing Eq. (22) we have �(K ) = −nψ(K ), where the so-called
spectral index is −n = d(logψ(k1))/d(log k1) evaluated at
k1 = K . The distances between corresponding curves for
�(K ) and ψ(K ) in Figs. 9(a) and 9(b) show the spectral
index because log10(−n) = log10(�(K )) − log10(ψ(K )).
Our spectral index is nearly constant between the maxima in

Fig. 8. The electron number-density 1-D spectrum from the turbulence
advection model (same as the long-dashed curve in Fig. 7) compared
with that from the rocket measurements in the altitude range 88–89 km.
The model spectrum is the long-dashed curve that becomes white dashes
where it overlays the rocket data. The vertical dashed line indicates the
Bragg wave number of the Poker Flat radar.

Figs. 9(a) and 9(b), whereas it increases above and below the
maxima. Our spectral index varies mostly with changes in
ε, which is shown in Fig. 6.
Royrvik and Smith (1984) express reflectivity in terms of

−nψ(K ) such that ψ(k1) from rocket data can be used to
calculate reflectivity. Ulwick et al. (1988) used that formula
to determine S/N of the Poker Flat radar for STATE; they use
the rocket data for ψ(k1) to calculate reflectivity and hence
S/N, and compare it with the radar measurements of S/N.
The portion of their figure 13a showing S/N in the turbulent
layer in question is transcribed onto Fig. 10. Considering
that their spectral level evaluated at the Bragg wave number
has two maxima (see Fig. 9(a) or 9(b)), it is not known why
only the lower maximum is seen in Fig. 10.
We performed a weighted running average of our dissi-

pation rates to match the radar-range resolution used during
STATE. That range resolutionwas approximately aGaussian
range profile having 300 m between full-width half-power
points. We truncate the Gaussian at −250 m and +250 m
from the center of a range-resolution volume; only 5% of



R. J. HILL et al.: TURBULENCE AND PMSE 511

(a)

(b)

Fig. 9. (a) For the heavy-positive-ion model, profiles of electron number-density 1-D spectra, ψ(K ) (diamonds), and 3-D spectra, �(K ) (circles), evaluated
at the Bragg wave number K . Filled symbols, center of computational domain; open symbols, edge of domain. Dashed curve, STATE 1 data for ψ(K ).
(b) Same as (a), except the light-positive-ion model is used.

the area under the Gaussian curve is beyond these trunca-
tion points. As for Figs. 5 and 6, the dissipation rates are
also averaged over horizontal dimensions 1.13 by 1.13 km
corresponding to the width of the radar beam at 88.75 km.
We use the resultant dissipation rates in our turbulence ad-
vection model to calculate �(K ) at 100-m height intervals;
next we calculate the cross section σ from Eq. (23), obtain
reflectivity, 4πσ , and use the relation by Ulwick et al. (1988)
to calculate S/N for the Poker Flat radar. Our result is pre-
sented in Fig. 10 for comparison with the radar data and
rocket-based calculation. Both upper and lower maxima of
the simulation’s curves in Figs. 9(a) and 9(b) are also evi-
dent in Fig. 10. In Fig. 10, the narrower height range within
which the rocket-based S/N is large as compared to the simu-

lation’s S/N reflects this same feature in the spectral levels in
Figs. 9(a) and 9(b). Agreement of rocket-based S/N with the
simulation’s S/N in Fig. 10 is a result of the fact that the ion
models were purposefully chosen to fit the rocket-measured
spectrum in Fig. 8. The lower edge of the layer in the radar’s
S/N appears about 400 m higher in height compared with the
simulation’s S/N layer, although both layers have compara-
ble depth. Perhaps the shift in height is caused by the fact
that the rocket trajectory was, for the height interval shown,
about 9 km NNE of the center of the radar beam combined
with the fact that we chose the simulation’s height based on
the rocket’s profile in Fig. 4. The radar’s wind data presented
by Fritts et al. (1988) shows, at the height of the layer and
the time of the rocket launch, a wind vector of 25 m s−1 to-
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Fig. 10. A portion of figure 13a by Ulwick et al. (1988) showing S/N from the radar data (long-dashed curve), and from their calculation of S/N based
on the rocket-measured electron number-density spectrum (short-dashed curve). S/N from the simulation for 4 cases: edge and light positive ion (open
diamonds); edge and heavy positive ion (open circles); center and light positive ion (filled diamonds); center and heavy positive ion (filled circles).

ward the NNE. Thus, the separation of the rocket trajectory
and radar beam is about 2.5 billow lengths in the streamwise
direction. We expect streamwise coherence of KH billows
over at least 3 billow lengths, so it is possible that the rocket
pierced the turbulent layer about 1/2 billow length out of spa-
tial phase from the center of the radar beam. On the other
hand, at the wind speed of 25 m s−1, 1/2 billow length is
advected in the streamwise direction in slightly more than a
minute, and, for the radar’s S/N shown in Fig. 10, the time at
which that data was obtained and that data’s averaging dura-
tion is not given byUlwick et al. (1988) or Kelley andUlwick
(1988). The radar data does not show the two maxima that
correspond to the top and bottom of the turbulent layer; the
simulation’s maxima would be reduced if a later simulation
time was chosen. Clearly, we have uncertainties with regard
to comparison of our simulation with the radar data that are
in addition to the uncertainties mentioned previously with
regard to comparison with the rocket data.

9. Discussion
Numerical solutions of the hydrodynamic equations are

useful for investigation of turbulence processes in the up-
per atmosphere. Indeed, at altitudes near the mesopause,
present computational resources suffice to realistically sim-
ulate KH dynamics throughout the full range of spatial scales
from billow scale to viscous scale. We use these solutions to
predict the morphology of turbulent layers and to calculate
dissipation rates. The theory of multipolar diffusion is used
to obtain the continuity equation of the ion mixing ratios.
This equation is linearized and used to derive equations for
spatial spectra and cospectra of ion mixing ratios by use of
an average over a locally isotropic ensemble. A turbulence
closure that agrees with data is applied to these equations.
The dissipation rates from the hydrodynamic solution give
the inertial-range spectral and cospectral levels that initial-
ize the solution of the turbulence advection model toward
high wave numbers. The electron mixing-ratio spectrum is
then calculated from charge neutrality and the 3D electron

number-density spectrum is calculated, fromwhich the radar
cross section is obtained.
The morphology of the STATE electron number-density

fluctuations in Fig. 4 is similar to that of the potential tem-
perature from the hydrodynamic solution despite the fact
that electron number density is not a conserved quantity.
The 1D electron spectrum is calculated and compared to
STATE rocket measurements. Radar signal-to-noise ratio is
calculated and compared to the radar measurements during
STATE. Our results support the hypothesis that very mas-
sive ions mixed by turbulence is a reasonable mechanism for
PMSE when turbulence is present.
Our present efforts are to further improve comparisons

with data. We will calculate realistic radar scattering vol-
umes from antenna theory, calculate reflectivity as a func-
tion of position within the scattering volume, and use that
reflectivity field to calculate the first three Doppler spectral
moments (power, velocity, width) by means of reflectivity
weighted velocities. We will include gravity-wave breaking
simulations, and consider initial ionmixing-ratio profiles that
are more general than the linear profile, including variable
ion composition in the vertical. Our future comparisons with
data will include other experiments. Our calculations using
the turbulence advection model will include effects of tur-
bulence nonstationarity as well as the effects of coupling
to potential-temperature fluctuations that arise, for instance,
from the temperature dependence of the ion diffusivities.
It seems necessary to place our present theory in the con-

text of the earlier work on turbulence advection applied to
PMSE by Cho et al. (1992, 1996). We use the momentum,
continuity, and Maxwell’s equations (Eqs. (5)–(7)) for each
species of ion to derive our results. In contrast, Cho et al.
(1992, 1996) assume that an effective electron diffusivity
applies. In Section 5, we noted that an effective electron dif-
fusivity does not apply. In fact (Hill, 1978a), the ionization
has as many diffusion modes as there are distinct species of
ions, and the behavior of the electron number density can
differ greatly from that supposed on the basis of an effective
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electron diffusivity. Cho (1993) used computations of multi-
polar diffusion theory to assign values to an effective electron
diffusivity for cases for which such a diffusivity is not valid;
in fact, Cho (1993) observed more than one diffusion mode
in his computations. One misunderstanding by Cho et al.
(1992, 1996), which is caused by those assigned values, is
that the Schmidt number can not be large unless the heavy-ion
charge number density is a significant fraction of the electron
number density. Actually, Schmidt numbers are determined
from the momentum-transfer collision frequency; as such,
Schmidt numbers are independent of charge number densi-
ties. Both we and Cho et al. (1992, 1996) use the turbulent
advection model originated by Hill and Bowhill (1976) and
subsequently refined.
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Cho, J. Y. N. and J. Röttger, An updated review of polar mesosphere summer
echoes: observation, theory, and their relationship to noctilucent clouds
and subvisible aerosols, J. Geophys. Res., 102, 2001–2020, 1997.

Cho, J. Y. N., T.M.Hall, andM. C. Kelley, On the role of charged aerosols in
polar mesosphere summer echoes, J. Geophys. Res., 97, 875–886, 1992.

Cho, J. Y. N., C. M. Alcala, M. C. Kelley, and W. E. Swartz, Further effects
of charged aerosols on summer mesosphere radar scatter, J. Atmos. Terr.
Phys., 58, 661–672, 1996.

Fritts, D. C., S. A. Smith, B. B. Balsley, and C. R. Philbrick, Evidence of
gravity wave saturation and local turbulence production in the summer
mesosphere and lower thermosphere during the STATE experiment, J.
Geophys. Res., 93, 7015–7025, 1988.

Fritts, D. C., T. L. Palmer, Ø. Andreassen, and I. Lie, Evolution and break-
down of Kelvin-Helmholtz billows in stratified compressible flows, I:
Comparison of two- and three-dimensional flows, J. Atmos. Sci., 53,
3173–3191, 1996.

Fritts, D. C., S. Arendt, andØ. Andreassen, Vorticity dynamics in a breaking
internal gravity wave, 2. Vortex interactions and transition to turbulence,
J. Fluid Mech., 367, 47–65, 1998.

Havnes, O., J. Trøim, T. Blix, W. Mortensen, L. I. Naesheim, E. Thrane,
and T. Tonnesen, First detection of charged dust particles in the Earth’s
mesosphere, J. Geophys. Res., 101, 10839–10847, 1996a.

Havnes, O., L. I. Naesheim, T. W. Hartquist, G. E. Morfill, F. Melandso, B.
Schleicher, J. Troim, T. Blix, and E. Thrane, Meter-scale variations of the
charge carried by mesospheric dust, Planet. Space Sci., 44, 1191–1194,
1996b.

Hill, R. J., Nonneutral and quasi-neutral diffusion of weakly ionized multi-
constituent plasma, J. Geophys. Res., 83, 989–998, 1978a.

Hill, R. J., Models of the scalar spectrum for turbulent advection, J. Fluid
Mech., 88, 541–562, 1978b.

Hill R. J. and S. A. Bowhill, Small-scale fluctuations in D-region ionization
due to hydrodynamic turbulence, Aeronomy Report No. 75, University
of Illinois, Urbana, Illinois, Nov. 1976.

Hill R. J. and S. A. Bowhill, Transient compressional response of D-region

ionization, J. Atmos. Terr. Phys., 39, 333–346, 1977.
Hill, R. J. and K. A. Mitton, Turbulence-induced ionization fluctuations

in the lower ionosphere, NOAA Technical Report ERL 454-ETL 68,
November 1998 (available from the author or the National Technical
Information Service, 5285 Port Royal Road, Springfield, VA, USA).

Hocking, W. K., On the extraction of atmospheric turbulence parameters
from radar backscatter Doppler spectra-I. Theory, J. Atmos. Terr. Phys.,
45, 89–102, 1983.

Hocking, W. K., An assessment of the capabilities and limitations of radars
in measurements of upper atmosphere turbulence, Adv. Space Res., 17,
(11)37–(11)47, 1996.

Inhester, B., J. C. Ulwick, J. Cho,M.C.Kelley, andG. Schmidt, Consistency
of rocket and radar electron density observations: Implication about the
anisotropy ofmesospheric turbulence, J. Atmos. Terr. Phys., 52, 855–873,
1990.

Kelley, M. C. and J. C. Ulwick, Large- and small-scale organization of
electrons in the high-latitude mesosphere: implications of the STATE
data, J. Geophys. Res., 93, 7001–7008, 1988.

Klaassen, G. P. andW. R. Peltier, The onset of turbulence in finite-amplitude
Kelvin-Helmholtz billows, J. Fluid Mech., 227, 1–35, 1985.

Klostermeyer, J., On the formation of electron depletions at the summer
polar mesosphere, Geophys. Res. Lett., 23, 335–338, 1996.

Langevin, M. P., Une formule fondamentale de theorie cinetique, Annales
de Chimie et de Physique, series 8, 5, 245–288, 1905.
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