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The nature of Petschek-type reconnection
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It is not always appreciated that Petschek’s reconnection mechanism is a particular solution of the MHD equations
which applies only when special conditions are met. Specifically, it requires that the flow into the reconnection
region be set up spontaneously without external forcing. This condition is satisfied when reconnection in a simple
current sheet is initiated by enhancing the resistivity in a localized region. Such a process disrupts the current sheet
and launches slow-mode waves which steepen into nearly switch-off shocks of the type predicted by Petschek. As
these shocks propagate outwards, the current sheet reforms at the original point of the disturbance, and a quasi-
steady Petschek-like configuration is set up. Syrovatskii-like configurations which force reconnection by driving
a flow toward an initially current-free, orthogonal x-point are less likely to satisfy the conditions required for
Petschek-type reconnection.

1. Petschek-Type Solutions
Petschek’s (1964) solution for reconnection is a novel ex-

tension of an earlier solution by Sweet (1958) and Parker
(1957) for reconnection in a thin current sheet. Both Sweet
and Parker assumed that the length of the current sheet was
the same as the scale size, Le, of the global field. In the
Sweet-Parker solution, the Alfvén Mach number, MAe, of
the plasma flowing into the sheet is related to the magnetic
Reynolds number, Rme, by

MAe = R−1/2
me , (1)

where Rme = LeVAe/η, VAe is the Alfvén speed in the in-
flow region, and η is the magnetic diffusivity of the plasma.
In astrophysical plasmas Rme is typically 106 to 1012, so
Sweet-Parker-type reconnection is very slow (MAe ≈ 10−3

to 10−6) compared to the rates needed to explain the rapid
release of magnetic energy which occurs in phenomena such
as solar flares and magnetospheric substorms (MAe ≈ 0.1).

Petschek’s method for speeding up the Sweet-Parker pro-
cess was to encase it in an external magnetic field so that the
length, L , of the current sheet would be much smaller than
the global scale length, Le. In Petschek’s configuration the
diffusion region current sheet occupies only a small central
location, and most of the conversion of magnetic energy into
heat and bulk kinetic energy occurs at four standing slow-
mode shocks attached to the corners of the diffusion region
as shown in Fig. 1.

Petschek also assumed that the magnetic field in the in-
flow region was current free. This assumption, together with
the trapezoidal shape of the inflow region created by the
slow shocks, leads to a logarithmic decrease of the magnetic
field as the inflowing plasma approaches the Sweet-Parker
current sheet. This variation of the field leads in turn to
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Petschek’s famous formula for the maximum reconnection
rate

MAe = π/(8 lnRme), (2)

where Rme and VAe are the magnetic Reynolds number and
Alfvén speed in the region far upstream of the current sheet.
Because of its logarithmic dependence on Rme, the Petschek
reconnection rate is many orders of magnitude greater than
the Sweet-Parker rate, and for most space and laboratory
applications Petschek’s formula predicts that MAe ≈ 10−1

to 10−2.
Petschek’s model incorporates the Sweet-Parker model in

order to describe the flow of plasma and fields in the diffu-
sion region. Because the Sweet-Parker model only gives the
average properties of the diffusion region, such as its length
and thickness, no detailed matching is possible between the
flows in the diffusion region and the flows in the external
region outside. This lack of detailed matching is sometimes
misunderstood to mean that there is no matching at all, but in
fact the average properties of the diffusion region are rigor-
ously matched to the external region (see Vasyliunas, 1975).

The reconnection solution developed by Petschek in 1964
is historically important for two reasons. First, it demon-
strated the possibility that the rate of reconnection could be
quite fast even in plasmas where magnetic diffusion is nor-
mally negligible. Second, it introduced the idea that slow-
mode shocks could play a fundamental role in reconnection.
Following its introduction there was a tendency to apply
Petschek’s solution as a universal solution to any reconnec-
tion problem, but with the advent of numerical simulations
it soon became apparent that such universal application is
unwarranted. Thus the question has arisen as to what kind
of configurations are likely to produce Petschek-type recon-
nection.

Although it was originally obtained using the steady-state
MHD equations, Petschek’s solution can be understood as
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Fig. 1. Magnetic field configuration of Petschek’s solution. The small rect-
angle in the center indicates the short current sheet corresponding to the
Sweet-Parker region. The dashed lines are the four slow-mode shocks
that radiate outwards from this region. The symbols MAe and MAi stand
for the inflow Alfvén Mach numbers at the exterior and interior bound-
aries of the external region which surrounds the Sweet-Parker region.

the quasi-steady limit of an inherently time-dependent pro-
cess. The simplest illustration of this process is the disrup-
tion of an infinitely long current sheet caused by enhancing
the electrical resistivity in a localized region of the sheet.
Disruption of the sheet in this manner leads naturally to the
formation of outward propagating slow-mode shocks which
are an essential feature of Petschek-type reconnection.

Semenov et al. (1983, 1984) and Heyn and Semenov
(1996) have developed a time-dependent solution for mag-
netic reconnection which has many of the features of
Petschek’s steady-state solution. In their solution, recon-
nection is triggered by an increase in resistivity at a par-
ticular location in a current sheet as indicated in Fig. 2(a).
The onset of reconnection in this localized region launches
both fast and slow magnetoacoustic waves into the plasma
(Fig. 2(b)). In the incompressible version of the theory
(Biernat and Heyn, 1987; Rijnbeek and Semenov, 1993), the
fast-mode waves propagate outwards instantaneously and
set up an inflow towards the x-point.

As in the steady-state Petschek theory, the inflow near the
x-point is supermagnetosonic with respect to the slow-mode
wave speed, so slow-mode-shocks are formed. However,
the shocks are curved and now form the trailing boundary
of a tear-drop shaped outflow region as shown in Fig. 2(c).
The leading boundary of this region is formed by a pair of
intermediate waves, or shocks, which connect to the trailing
slow-mode shocks. In the incompressible limit, the speed at
which the outflow disturbance propagates along the current
sheet is just VAe, the ambient Alfvén speed, so the external
scale-length (Le) of the system continuously increases with
time, t , as

Le = VAet. (3)

Also, as in the steady-state Petschek solution, the inflow is
current-free to first order. However, this is no longer an arbi-

trary assumption, but a requirement which follows naturally
from the form of the initial state. At t = 0, there is no cur-
rent in the region outside the sheet, so any current which
develops there must be set up by waves propagating out-
wards from the initial reconnection site if there are no exter-
nal forces driving the reconnection. Fast-mode waves easily
propagate upstream, but slow-mode waves have a more dif-
ficult time because their wave speed is zero in the direction
perpendicular to the field. Once the inflow into the recon-
nection site becomes well developed, the region upstream
of the slow-mode shock is everywhere supermagnetosonic
with respect to the slow-mode wave speed.

The inability of slow-mode waves to travel upstream of
the slow-mode shocks constrains the current density to be
zero in the upstream region to at least first order in the ex-
pansion. We can see the reason for this by looking at the
momentum equation:

ρ[(∂u/∂t) + (u · ∇)u] = −∇ p + (j × B)/c, (4)

where ρ is the density, u is the bulk flow, p is the gas pres-
sure, j is the current density, B is the magnetic field, and
c is the speed of light. In the region where a quasi-steady
flow has been established, the inertial terms ρ(∂u/∂t) and
ρ(u · ∇u) are negligible. Therefore, to lowest order, the mo-
mentum equation is just ∇ p = (j × B)/c. Since this is the
equation describing a static equilibrium, variations in p and
B across field lines must be in the opposite sense, except for
the special case when j = 0. Variations of this sort can only
be created by slow-mode waves, but such waves can only
reach the inflow region from external sources because the
inflow is supermagnetosonic with respect to the slow-mode
speed. Consequently, in the absence of any external driving
of the flow, the only possible solution is j = 0 to lowest
order. Thus, Petschek’s solution corresponds to an undriven
form of reconnection.

The solution of Semenov et al. (1983, 1984) is set up in
much the same manner as Petschek’s. In the inflow region
one expands the equations in terms of the smallness param-
eter ε defined as

ε(t) = cE(t)/(VAe Be), (5)

where E(t) is the electric field at the x-point and Be is the
ambient field outside the sheet. The parameter ε plays the
same role as the Alfvén Mach number (MAe) of the steady-
state theory, and the expansion assumes ε � 1. Another
restriction on E is that it must change slowly with respect
to time, so that the evolution of the diffusion region at the
x-point is quasi-steady. This restriction, combined with the
fact that ε � 1, makes the outflow region a thin layer and
permits solutions of the MHD equations by using boundary
layer theory.

The coupling between the diffusion region and the ideal-
MHD dynamics of the external region is done in the same
manner as for the steady-state Petschek solution, namely by
matching the external solution to the Sweet-Parker relations.
A time-dependent external solution is first obtained by treat-
ing the diffusion region as a point for which the electric field
(i.e. the time-dependent reconnection rate) is an arbitrary
function of time. After the external solution is obtained, a
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Fig. 2. Evolution of the magnetic field configuration in the time-dependent solution of Semenov et al. (1984). Reconnection is initiated by enhancing the
resistivity in a localized region of a simple current sheet, and the outflow from the x-point creates two regions which propagate outwards along the sheet
in opposite directions. The leading edges of these flow regions are bounded by intermediate waves, or shocks, and the trailing edges are bounded by
slow mode shocks. The reformation of the current sheet at the initial point of disturbance leads to a quasi-steady Petschek-like configuration.

Petschek-like analysis is done in the vicinity of the diffusion
region to relate the variaton of the electric field to the vari-
ation of the resistivity with time, but the procedure is only
valid if the variations are sufficiently slow in time to be con-
sidered quasi-steady. Such a procedure leads to the result
that the normalized electric field varies as

ε(t) ≈ π/[4 lnRme(t)] (6)

where Rme(t) = VAe Le(t)/η = V 2
Aet/η, and η is the value of

the diffusivity after its initial increase. Except for a factor of
2, this is the same as Petschek’s result but with the magnetic
Reynolds number, Rme, now a function of time. A more
formal matching between the external and diffusion regions
has been published recently by Erkaev et al. (2000).

It may seem paradoxical that Petschek’s steady-state for-
mula should still apply to a highly time-dependent configu-
ration involving waves propagating at the Alfvén speed, but
the evolution of the field and flow in the vicinity of the dif-
fusion region is quite slow. This slowness is evident from
the formula for the length, L , of the diffusion region current
sheet

L = Le R−1
me ε

−2 = [η/VAe][4π−1ln(V 2
Aet/η)]2 (7)

which depends only logarithmically on time. Thus, the evo-
lution of the flow and field in the diffusion region can be
considered quasi-steady as Petschek originally assumed.

There are several numerical simulations which exhibit the
behavior predicted by the time-dependent Petschek theory
(e.g. Ugai and Tsuda, 1977; Ugai, 1984, 1988, 1995;
Scholer, 1989; Schumacher and Kliem, 1996). These simu-
lations trigger reconnection in a simple current sheet by en-
hancing the diffusivity at a particular location, and they use
open boundary conditions which allow wave disturbances to
exit the boundaries of the numerical domain without reflec-
tion.

2. Syrovatskii-Type Solutions
A different way to approach the reconnection process in

two dimensions is to ask what happens if flows are driven to-

wards an initially current-free x-point as illustrated in Fig. 3.
In an ideal, low β plasma an infinitely thin current sheet
forms, whose length grows with time. The mathematical
description of such a nonreconnecting sheet was first ob-
tained by Green (1965) and later generalized by Syrovatskii
(1971) and Somov (1992). Syrovatskii (1971) pointed out
that the ideal solution provides an approximate description
of the nonideal reconnection process, so long as the rate of
reconnection is slow (i.e. MA � 1). However, the actual
formula for the reconnection rate was first determined nu-
merically by Biskamp (1986) and later analytically by Stra-
chan and Priest (1994).

The magnetic field for the Syrovatskii-type solution found
by Strachan and Priest (1994) has the form

By + i Bx = Bo[(z/L)2 − 1]1/2 − iαBo(y/Le), (8)

where z = x + iy, Bo is a constant, L is the length of the
current sheet, and Le is the global scale length of a rectan-
gular domain as shown in Fig. 4. The parameter α gives
the strength of the uniform current density in the inflow re-
gion, and it is determined from the normal component of the
magnetic field imposed at the inflow boundary.

To obtain the reconnection rate, Strachan and Priest
(1994) matched the external field region prescribed by the
above equation to the Sweet-Parker solution in much the
same way as Petschek did for his solution. However, the dif-
ferent form of the external field causes the resulting solution
to behave very differently from the one found by Petschek.
Whereas Petschek found that the maximum rate occurs
when the central diffusion region current sheet is as short
as possible, Strachan and Priest (1994) found that the max-
imum rate occurs when the current sheet is as long as pos-
sible. The maximum length occurs when L = Le, and the
corresponding maximum rate (for a square domain) is

MAe = [2/(51/2 − 1)]3/4 R−1/2
me = 1.43R−1/2

me (9)

which is the same as the Sweet-Parker rate, except for the
factor of 1.43 (Priest and Forbes, 1992).
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(a) (b)

Fig. 3. (a) Syrovatskii-like reconnection solutions are based on a current-free x-point configuration which is created by external field sources that are not
present in the Petschek configuration. (b) A current sheet is formed at the initially current-free x-point by externally driving flows towards it.

L
Le

Fig. 4. Magnetic field lines (solid) and streamlines (dashed) for the solution
of Strachan and Priest (1994) which is based on a Syrovatskii-type con-
figuration. The rectangle of length L is the Sweet-Parker region which
is matched to the external region of length, Le , in the same way as in
Petschek’s solution. The principal difference between this solution and
Petschek’s is the presence of the nonuniform background field created
by external sources.

From the Strachan and Priest (1994) analysis it is evident
that Syrovatskii-type solutions scale differently with mag-
netic Reynolds number than Petschek’s solution do because
of the orthogonal background field (cf. Fig. 3(a)). This field
is generated by external current sources which exist inde-
pendently of the field produced by the current sheet. Such
external sources do not exist in Petschek’s solution because
the only sources of the field in it are the central current sheet
and the slow mode shocks. The presence of the background
field alters the coupling between the inflow magnetic field
and flow, so that the current sheet increases in length with
increasing MAe.

The Sweet-Parker type scaling in the Syrovatskii-type
configurations is a natural consequence of the reversal in the
relation between the length of the current sheet and MAe.
The reversal causes the maximum rate to occur when the
length, L , of current sheet is the same as the global scale,
Le, and this is one of the principal assumptions of the Sweet-
Parker analysis. Consequently, once L is set equal to Le,
Sweet-Parker scaling is to be expected.

Several numerical simulations (Sato, 1983; Biskamp,
1986; Lee and Fu, 1986; Scholer, 1989; Yan et al., 1992; Jin

and Ip, 1991) have been carried out in an attempt to verify
the steady-state solution found by Petschek (1964), but none
of these simulations have been able to replicate the scaling
results predicted by Petschek’s solution as long as the resis-
tivity is kept uniform and constant. For example, Biskamp
(1986) found that both the length and the thickness of the
diffusion region increase as MAe or Rme increases, as shown
in Fig. 5. This behavior completely contradicts Petschek’s
prediction. Thus, Biskamp realized that his numerical ex-
periments, as well as those of other researchers, had not
found the scaling predicted by Petschek’s model.

As Fig. 6 shows, the scaling for the maximum reconnec-
tion rate found by Biskamp is essentially the same as pre-
dicted by the Strachan-Priest solution. When adjusted for
the non-square box of Biskamp’s simulations, the Strachan-
Priest theory gives MAe = 3.42R−1/2

me , and, as Fig. 6 shows,
this is approximately the same result found by Biskamp
(1986).

3. Generalization of Petschek’s Solution
Although Petschek assumed that the current density, j , in

the inflow region was zero to first order, it is not actually
necessary to make such an assumption in order to obtain a
solution. More generally, j , can be nonzero to first order
in the expansion of the inflow equations, so that the inflow
magnetic field is no longer determined by solving Laplace’s
equation (∇2 A = 0) for the vector potential, A, but by solv-
ing Poisson’s equation (∇2 A = −4π j/c) instead. The re-
laxation of the assumption that j is zero introduces an ad-
ditional degree of freedom so that there is now a family of
solutions (Priest and Forbes, 1986).

These solutions can be summarized in terms of the rela-
tion between the internal Alfvén Mach number, MAi , at the
entrance to the diffusion region as indicated in Fig. 1, and
MAe, the Alfvén Mach number at the exterior inflow bound-
ary. The relation is

M1/2
Ae M−1/2

Ai = 1 − 4MAeπ
−1(1 − b)[0.834

−ln tan(π R−1
me M−1/2

Ae M−3/2
Ai /4)] (10)

where b is a constant that is determined by the choice of
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Fig. 5. Streamlines (top) and magnetic field lines (bottom) in the numerical simulation of Biskamp (1986) for MAe = 0.042 and (a) Rme = 1, 746, (b)
Rme = 3, 492, and (c) Rme = 6, 984. Only the upper left quadrant is shown, and the x-point is located at the lower-right corner. As Rme is increased,
the current grows longer. Such behavior is opposite to that predicted by Petschek’s solution.
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Fig. 6. The variation of the maximum reconnection rate with magnetic
Reynolds number predicted by the analytical theory of Strachan-Priest
(dark solid line). The scaling results from Biskamp’s (1986) numerical
simulation are indicated by the dots with error bars. The agreement be-
tween the two seems especially impressive when it is realized that there
are no free parameters in the analytical theory once it is matched to the
boundary conditions used in the simulation. Also shown by the dashed
curves are the solutions of Sweet (1958) and Parker (1957), Petschek
(1964), and Sonnerup (1970).

the inflow boundary conditions. The relation is plotted in
Fig. 7 for Rme = 500 for various values of b. When b = 0,
Petschek’s solution is obtained as shown in Fig. 1, and when
b = 1, a solution equivalent to that of Sonnerup (1970) is
obtained.

As b increases beyond 1, a flux-pile-up regime occurs
where the magnetic field increases as the diffusion region
current sheet is approached. For very strong flux-pile-up
with b � 1, the flow approaches the MHD stagnation-point
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Fig. 7. The external Alfvén Mach number, MAe , versus the internal Alfvén
Mach number, MAi , (see Fig. 1) for various steady-state theories. The
solutions labeled “flux pile-up”, “Sonnerup”, “Petschek”, and “flux de-
crease” are obtained from the generalized solution of Priest and Forbes
(1986) by setting the boundary parameter b in their solution equal to 10,
1, 0, and −10, respectively. As b decreases from positive to negative
values, the character of the inflow changes from that of a slow-mode
expansion, where the gas pressure decreases but the magnetic flux in-
creases (i.e. piles-up), to that of a slow-mode compression, where the
gas pressure increases but the magnetic flux decreases. Note that the Sy-
rovatskii-like solution of Strachan and Priest (dashed line) behaves sim-
ilarly to the flux decrease solution for b = −10 (after Priest and Forbes,
2000).

flow solution found by Parker (1973). The flux pile-up so-
lutions appear to be very fast since formally, MAe can be as
large as one. However, Litvinenko and Craig (1999) have
shown that MAe is actually limited to rather small values
unless the plasma β is very much greater than unity. For
a low β plasma the fastest rate occurs for b = 0, which
is Petschek’s solution. For b < 0 the magnetic field de-
creases as the sheet is approached, and this is qualitatively
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the same behavior, as occurs in the Syrovatskii-type solu-
tions of Biskamp (1986) and Strachan and Priest (1994).

Vasyliunas (1975) was the first to point out that the differ-
ence between the behavior predicted by Petschek’s solution
and other reconnection solutions is related to the behavior of
the gas and magnetic pressures in the inflow region. The in-
flow can be characterized as undergoing a compression or an
expansion depending on whether the gas pressure increases
or decreases as the plasma flows in towards the x-point.
These compressions or expansions can further be character-
ized as being of the fast-mode type or the slow-mode type,
depending on whether the magnetic pressure changes in the
same sense as the gas pressure (fast-mode type) or in the
opposite sense (slow-mode type). This way of characteriz-
ing the inflow is still valid even if one assumes, as Petschek
did, that the plasma behaves incompressibly. (By the way, a
compressible version of Petschek’s theory may be found in
Soward and Priest (1982) for those who are interested in the
effects of compressibility.)

Here we illustrate Vasyliunas’s classification scheme us-
ing the generalized Petschek solution, but the scheme can
be applied to any reconnection solution obtained from the
MHD equations. For b = 0 (i.e. Petschek’s solution) the
gas pressure is uniform to second order in the expansion in
MAe, so that to this order, the plasma is neither compressed
nor rarefied as it flows towards the x-point. However, for
all the solutions with b < 0, the plasma undergoes a slow-
mode compression, while for all the solutions with b > 0
it undergoes a slow-mode expansion. Thus, as b increases
from negative to positive values, the inflow turns from being
converging (producing a slow-mode compression) to being
diverging (producing a slow-mode expansion). The special
significance of Petschek’s solution is that it is the only one
which is not forced by external driving of the flow, and there-
fore, the only one without any change in the gas pressure to
first order.

4. Conclusions
There has been a strong tendency in the development of

reconnection theory for particular solutions to be champi-
oned at the expense of other solutions. For example, when
Petschek’s solution was introduced in 1964, it was thought
by many that it could be universally applied. Later when
alternate solutions, such as those of Sonnerup (1970) and
Biskamp (1986) were discovered, it was often assumed that
only one of these solutions could be right and that the others
must, therefore, be wrong. However, the idea that a single
universal solution exists which can be applied in any situa-
tion is a mathematical impossibility. Solutions of the system
of differential equations which governs plasmas necessarily
depend on the choice of initial and boundary conditions, and
the process of magnetic reconnection does not in of itself
impose any specific choice for these conditions.

The important feature of Petschek-type reconnection is
that it is not driven by any external forcing. Except for the
spontaneous tearing mode, all the other types of known re-
connection solutions require an external flow, or force, to
drive the reconnection. The realization that Petschek’s solu-
tion is undriven may explain why it has been so difficult to
achieve steady-state Petschek-type reconnection in numer-

ical simulations. Simulations which drive the flow at the
boundaries, or start with a current free x-point, controvert
the basic assumptions of Petschek-type reconnection. On
the other hand, simulations which use the onset of enhanced
resistivity in a current sheet to produce a Petschek-like con-
figuration can never achieve a truly steady state, although
they may achieve a quasi-steady state in the vicinity of the
x-point. From this point of view, the boundaries enclos-
ing Petschek’s solution are not true physical boundaries, but
rather mathematical ones. The conditions at these mathe-
matical boundaries must precisely correspond to the quasi-
steady conditions set up after the passage of the waves pro-
duced by the initial disturbance.

So far, the only way, to set up an exact steady-state
Petschek configuration has been to assume a nonuniform re-
sistivity in a region whose length is tailored to match that
required by Petschek’s solution (Yan et al., 1992). It may
be that an exact steady-state solution with uniform resistiv-
ity is inherently unstable, but even if this is true, the fun-
damental predictions of Petschek’s solution remain valid.
The first is that the reconnection process can produce slow-
mode shocks which can be more important for the conver-
sion of magnetic energy than the Sweet-Parker diffusion re-
gion. The second is that the reconnection rate can, at least
in principle, be quite fast (MAe > 0.01) even when the mag-
netic Reynolds is very large (Rme > 1010).
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