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Improved theory of forced magnetic reconnection due to boundary perturbation
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Boundary layer theory of forced magnetic reconnection due to an externally applied boundary perturbation is
improved by introducing correct asymptotic matching which takes into account the effect of inertia in the inner
layer precisely. The improved theory yields an integral equation for the time evolution of the reconnected flux.
The initial evolution of the reconnection process is characterized by some significant features represented by the
reconnected flux and an inner-layer reconnected flux. The typical time scales of the reconnected flux and of the
inner-layer reconnected flux include the time scale of the boundary perturbation and exclude the Sweet-Parker time
scale. The role of stability against the tearing modes in the reconnection process is also clarified. A current sheet
induced on a resonant surface is in such a direction as to oppose the progress of the reconnection, because the
equilibrium is stable against tearing modes in the absence of the boundary perturbation.

1. Introduction
There are two kinds of magnetic reconnections: free re-

connection and forced reconnection. Free reconnection is
caused by spontaneous instabilities such as the tearing mode
(Furth et al., 1963). Even if a magnetic equilibrium is stable
for resistive modes, an externally imposed boundary
perturbation gives rise to magnetic reconnection called
forced reconnection (Hahm and Kulsrud, 1985; Wang and
Bhattacharjee, 1992; Ma et al., 1996; Ishizawa and Tokuda,
2000). The forced reconnection is of interest in laboratory
plasmas such as the island formation by resonant error fields
(Fitzpatrick and Hender, 1991; Wang and Bhattacharjee,
1997) and the seed island formation for the neo-classical
tearing mode (Hegna et al., 1999) and astrophysical plas-
mas such as the solar corona and the earth’s magnetotail
(Vekstein and Jain, 1998, 1999; Wang et al., 1998).

In order to understand the process of forced reconnec-
tion, we consider a deformation of the plasma boundary
(Fig. 1) and follow the subsequent time evolution of the
plasma. There are two equilibria which are consistent with
this deformation: equilibrium (I) and equilibrium (II)
(Hahm and Kulsrud, 1985), (Fig. 2). The equilibrium (I)
has the same topology as the original equilibrium, while it
has a current sheet on the resonant surface. The equilibrium
(II) has the different topology with magnetic islands on the
resonant surface and no current sheet. Equilibria intermedi-
ate between these two are also possible and consistent with
the boundary deformation and represent the subsequent time
evolution of the plasma. The time evolution of the interme-
diate equilibrium is determined by a time dependent coeffi-
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cient, called the reconnected flux. The time development of
the reconnected flux is calculated by use of boundary layer
theory as an initial value problem (Hahm and Kulsrud, 1985;
Wang and Bhattacharjee, 1992; Ma et al., 1996). In the pre-
vious works, the effect of the inertia in the inner layer is
neglected in the asymptotic matching. We introduce the ap-
propriate asymptotic matching and adopt the exact solution
for the inner layer equation to take into account precisely
the effect of inertia in the inner layer (Ishizawa and Tokuda,
2000).

In this paper, we will present a new method to determine
the time evolution of the reconnected flux which describes
the improved reconnection process. The correct asymptotic
matching yields the integral equation for the reconnected
flux. This integral equation exhibits the new time evolu-
tion of the reconnected flux and of the current sheet induced
on the resonant surface. Furthermore, the role of stability
against the tearing modes in the reconnection process is clar-
ified in terms of the tearing mode stability parameter.

2. Boundary Layer Theory of Forced Reconnec-
tion

We consider the response of a slab of incompressible
plasma to an applied boundary perturbation (Fig. 1). The
plasma is supposed to be bounded by two parallel perfectly
conducting walls. The magnetic field is represented by B =
BT ez+ez×∇ψ , where BT stands for a uniform toroidal field
and ψ is a magnetic potential. We assume that the xy-plane
is normal to the toroidal field, while the y-axis is parallel to
the wall and the x-axis normal to it.

We adopt the reduced MHD equations,

ρ

(
∂

∂t
+ v · ∇

)
∇2ϕ = B · ∇ jz, (1)

∂ψ

∂t
+ v · ∇ψ = η

4π
∇2ψ, (2)
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Fig. 1. Coordinate system for the slab of incompressible plasma.

where jz = ∇2ψ/4π and v = ez × ∇ϕ indicate the z-
component of the current density and the velocity of the
plasma respectively, and ϕ is a stream function. The con-
stants η and ρ denote the magnetic diffusivity and the den-
sity of the plasma.
2.1 Outer region

We assume that the outer region is quasi-static and is gov-
erned by the ideal MHD equation. Thus, the right-hand side
of Eq. (2) can be zero as

B · ∇ jz = 0. (3)

Let us impose a boundary perturbation on the original
static equilibrium, ψ = ψ0(x), subjected to the boundary
conditions ψ0(±a) = const . This original equilibrium is
assumed to have the resonant surface at the center of the
plasma, ψ ′

0(0) = 0, and is supposed to be stable for the
usual tearing mode. The boundary perturbation is described
in terms of a deformed plasma boundary as

ψ(x = ±(a − δ cos ky)) = const.,

where k and δ are the wave number and the amplitude of
the boundary deformation, respectively. The boundary per-
turbation is assumed to be weak, δ � a, such as the er-
ror fields in a tokamak. In this work, we consider a time
varying boundary perturbation, δ = δ(t/τe). The time scale
of the deformation τe is assumed to be much slower than
the Alfvén time scale but much faster than the resistive time
scale, τA � τe � τR ; τA and τR are defined later.

The magnetic potential perturbed by the boundary defor-
mation is written as

ψ(x, t) = ψ0(x) + ψ1(x, t) cos ky, (4)

where ψ1(x, t) denotes the perturbed part due to the bound-
ary perturbation. Since the perturbation is imposed on a time
scale much slower than the Alfvén time scale, the plasma is
quasi-static and obeys the ideal MHD equilibrium equation
except in the vicinity of the resonant surface, where x = 0.
The ideal MHD equilibrium equation, Eq. (3), for the per-

turbation ψ1(x, t) is reduced to

ψ ′
0(x)

{
∂2ψ1(x, t)

∂2x
− k2ψ1(x, t)

}
− ψ ′′′

0 (x)ψ1(x, t) = 0, (5)

with the boundary condition ψ1(±a, t) = δ(t/τe)ψ
′
0(a) ≡

ψe(t/τe). We consider a time dependent boundary perturba-
tion as ψe(t/τe) = ψ ′′

e (0)t2/(2!τ 2
e ) + · · · .

The solution to Eq. (5) is written as

ψ1(x, t) = ψ1(0, t) f (x) + ψe(t/τe)g(x), (6)

where f (x) and g(x) satisfy Eq. (5), and are subject to the
boundary conditions f (0) = 1, f (±a) = 0 and g(0) = 0,
g(±a) = 1. The first term is related to the tearing mode.
Equilibrium (I) is described by ψ1(0, t) = 0 and ψe(t) �= 0.
The current sheet vanishes when ψ1(0, t) f ′(0) +
ψe(t)g′(0) = 0, and thus it corresponds to equilibrium (II)
(Fig. 3).

The quasi-static equilibrium, Eq. (6), is determined only
by the reconnected flux ψ1(0, t), because ψe(t/τe) is as-
sumed to be a given function.

We consider the time evolution of the quasi-static equi-
librium as an initial-value problem, by applying the Laplace
transform f̃ (x, s) = ∫ ∞

0 f (x, t)e−st dt , to the outer-solu-
tion, Eq. (6). Then we derive the expansion to the outer
solution as

ψ̃1(x, s) = ψ̃1(0, s) + ψ̃1(0, s)

′

out

2
x + · · · ,

x → +0, (7)

where


′
out (s) ≡ 1

ψ̃1(0, s)

[
dψ̃1(x, s)

dx

]+0

−0

= 
′
0 + 
′

s
ψ̃e(s)

ψ̃1(0, s)
, (8)

and where 
′
0 = [d f (x)/dx]+0

−0, 
′
s = [dg(x)/dx]+0

−0. The
first term, 
′

0, is the tearing mode stability parameter in the
absence of the boundary perturbation. Since the original
static equilibrium is supposed to be stable, 
′

0 is negative.
2.2 Inner layer

In order to obtain the reconnected flux we should investi-
gate the dynamics in the vicinity of the resonant surface, i.e.
the inner layer. In the analysis of the inner layer, it is impor-
tant to include not only the resistivity but also the inertia of
the plasma correctly.

We apply the Laplace transform to the linearized reduced
MHD equations. The initial conditions for the perturbations
are ψ1(x, 0) = ϕ1(x, 0) = 0, because there is no deforma-
tion of the boundary at t = 0, ψe(0) = 0. By stretching the
variables in the vicinity of the resonant surface according to
x̂ = x /(εa), ŝ = τcs, ε = (τA/τRka)1/3, τc = τA/(εka),
the equations in the inner layer become

ŝ
d2ϕ̃in

d x̂2
= −x̂

d2ψ̃in

d x̂2
, (9)

ŝψ̃in − x̂ ϕ̃in = d2ψ̃in

d x̂2
, (10)
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Fig. 2. Equi-contours of the magnetic potential a) Equilibrium (I) and b) Equilibrium (II).
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Fig. 3. Perturbed part of the magnetic potential a) Equilibrium (I) and b) Equilibrium (II).

where ψ̃in(x̂, ŝ) = ψ̃1(x, s)/ψ ′′
0 (0)a2, ϕ̃in(x̂, ŝ) =

ϕ̃1(x, s)/vAa, ϕ = ϕ1(x, t) sin ky is the stream function,
τA = a/vA, τR = 4πa2/η and vA = ψ ′′

0 (0)a/
√

4πρ.
The inner-layer solution can be expanded asymptotically

(Ara et al., 1978) as

ψ̃in(x̂) ≈ ψ∞

{
1 + 
′

in

2
x + · · ·

}
x̂ → +∞, (11)

where


′
in(s) ≡ 1

εaψ∞

[
dψ̃in

d x̂

]∞

−∞

= −π ŝ5/4

8εa

�(ŝ3/2/4 − 1/4)

�(ŝ3/2/4 + 5/4)
, (12)

ψ∞ = −ψ̃in(0, ŝ)
ŝ3/2

ŝ3/2−1 F(1, −1/2, ŝ3/2/4 + 3/4, 1/2) − 1
, (13)

where F is Gauss’s Hypergeometric function.

3. Exact Asymptotic Matching
Demanding that the solution to the inner-layer equation

matches asymptotically with the solution in the outer region
yields the exact matching condition (Ishizawa and Tokuda,
2000). On the other hand, in the previous analysis,
[dψ̃in/dx̂]+∞

−∞ is divided by ψ̃in(0, ŝ) instead of ψ∞ in
Eq. (12). That is valid only in the constant-ψ approxima-
tion realized by neglecting the effect of plasma inertia in the

inner layer, because the effect of inertia makes ψ̃in(0, ŝ) de-
viate from ψ∞. Therefore the matching condition derived
by the expansion, Eq. (11), reflects the effect of inertia in
the inner layer correctly.

Asymptotic matching of Eqs. (7) and (11) yields the
matching conditions as

ψ̃1(0, s) = ψ ′′
0 (0)a2ψ∞, (14)


′
out (s) = 
′

in(s). (15)

Combining Eq. (8) and the matching condition, Eq. (15), we
have the new Laplace-transformed reconnected flux

ψ̃1(0, s) = 
′
sψ̃e(s)


′
in(s) − 
′

0

. (16)

There are two reconnected fluxes to be precise. One is, as
introduced above, the reconnected flux at x = 0, Eq. (16),
and represents the temporal change of the quasi-static equi-
librium, Eq. (6). The other is a reconnected flux at the ori-
gin of the stretched coordinate x̂ = 0, ψ̃in(0, ŝ), and repre-
sents the reconnected flux in the inner layer; it is called the
inner-layer reconnected flux in this paper. The inertia of the
plasma affects the inner-layer reconnected flux, ψ̃in(0, ŝ),
which is then different from the reconnected flux, ψ̃1(0, s).
This difference between the inner-layer reconnected flux and
the reconnected flux is given by the matching condition,
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Eq. (14), and Eq. (13) as

ψ̃in(0, ŝ) = 1

ψ ′′
0 (0)a2

·
{

1 − ŝ3/2

ŝ3/2 − 1

· F(1, −1/2, ŝ3/2/4 + 3/4, 1/2)

}
ψ̃1(0, s).

(17)

The exact matching gives the Laplace-transformed recon-
nected fluxes, Eqs. (16) and (17). The inversion of the
Laplace transform of Eq. (16) for |s| → ∞ yields the ini-
tial evolution of the reconnected flux (Ishizawa and Tokuda,
2000).

4. Evolution Equation for Reconnected Flux
In this section we propose a new method to determine the

time evolution of the reconnected flux. Equation (16) can be
written as

ψ̃1(0, s) − 
′
in(s)


′
0

ψ̃1(0, s) = −
′
s


′
0

ψ̃e(s).

The inversion of the Laplace transform of this equation gives
the following inhomogeneous second kind Volterra equa-
tion:

ψ1(0, t) +
∫ t

0
ψ1(0, τ )G(t − τ)dτ = −
′

s


′
0

ψe(t), (18)

where the kernel G(t) is the Bromwich integral of 
′
in(s):

G(t) ≡ 1

2π i

∫ σ+i∞

σ−i∞

′

in(s)e
st ds, (19)

which consists of the sum of residues at the poles and the
integral along the branch cut. It is written as

G(t) = 1

τα

{
− 2

3
√

π
exp

(
t

τc

)

− 4

3π

∞∑
n=1

√
n − 1/4

n!
�(n − 1/2)

· exp
( −t

2τn

)
sin

(√
3

2

t

τn

)

+ 1

3π2

∫ ∞

0

√
x |�(i x − 1/4)|2

· exp(−(4x)2/3t/τc − πx)dx

}
,

where τn = τc/(4n − 1)2/3, τα = −
′
0τA/πk denote the

ideal time scale and τc = τ
2/3
A τ

1/3
R /(ka)2/3 is the typical time

scale in the inner layer. Note that the amplitude of the tear-
ing mode stability parameter, 
′

0, affects to the ideal time
scale, τα . The right-hand side of Eq. (18) represents the ex-
ternally imposed boundary perturbation.

The time scale in the exponential function in the kernel
G(t) is the same as the typical time scale of the inner layer,
τc ∝ τ

2/3
A τ

1/3
R , because the kernel represents the response

of the inner layer to the applied boundary perturbation. At
t = 0 the integral part vanishes and ψe(0) = 0, and thus
the reconnected flux vanishes at t = 0 to satisfy the initial
condition.

The integral equation for the inner-layer reconnected flux
ψin(0, t) is deduced in the same way as the above method.

5. Initial Evolution
In this section, we preset the initial evolution of the forced

reconnection process by use of the integral equation,
Eq. (18), reduced in the previous section.
5.1 Reconnected flux

Since the integration in Eq. (18) is very small at t ≈ 0, the
reconnected flux increases as ψ1(0, t) � −
′

sψe(t)/
′
0 =

−
′
s/


′
0

{
ψ ′′

e (0)t2/(2!τ 2
e ) + · · · }. The initial evolution of

the reconnected flux is dominated by the first term of this
expansion, therefore its typical time scale is the same as the
time scale of the boundary perturbation, τe, and does not
include the Sweet-Parker time scale at all.

We can obtain a higher order expansion (Neumann series)
by substituting this into the integration in Eq. (18), and thus,
we have

ψ1(0, t) = −
′
s


′
0

{
ψ ′′

e (0)

τ 2
e

t2

2!
+ ψ ′′

e (0)

τατ 2
e

t3

3!
+ · · ·

}
. (20)

Note that the expansion is valid for τA � τα which corre-
sponds to near the ideal marginal stability, 1 � |
′

0|, to be
precise.
5.2 Current sheet

When the boundary perturbation is applied, a current
sheet is induced at the resonant surface. The amount of cur-
rent sheet is represented by the finite jump of the y-compo-
nent of the magnetic field at the resonant surface, x = 0,


By(t) ≡
[
∂ψ1(x, t)

∂x

]+0

−0
. (21)

Substituting Eq. (20) into Eq. (21) gives the initial evolution
of the current sheet as


By(t) = −
′
s

{
ψ ′′

e (0)

3!

t3

τατ 2
e

+ ψ ′′
e (0)

τ 2
ατ 2

e

t4

4!
+ · · ·

}
. (22)

In order to compare Eq. (22) with the result found in pre-
vious works, we consider the time evolution of the stability
parameter 
′(t) ≡ 
By/ψ1(0, t). The stability parameter

′(t) is negative in the initial evolution and 
′(t) = 0 at
t = 0, while it was claimed that 
′(t) → ∞ with the pos-
itive sign at t = 0 in previous works. The negative sign
of 
′(t) or 
By(t) implies that the current sheet is induced
so as to oppose the progress of the reconnection. However
the push caused by the imposed boundary deformation over-
comes this resistance to progress the reconnection.
5.3 Inner-layer reconnected flux

The reconnected flux derived above is defined at the ori-
gin of the outer variable x = 0. However the limit x → 0
of the outer variable corresponds to the limit x̂ → ∞ of the
inner variable as shown in the asymptotic matching. The
magnetic and dynamic structures in the inner layer make
the reconnected flux at x = 0 deviate from the one at x̂ =
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0. Therefore the exact reconnected flux in the inner layer
should be defined at x̂ = 0, as shown in Eq. (17). The
inner-layer reconnected flux is defined by the inverse of the
Laplace transform of ψ̃in(0, s). The inverse Laplace trans-
formation of the expansion of Eq. (17) for |s| → ∞ yields
the Taylor-series expansion of the inner-layer reconnected
flux:

ψin(0, t) = 
′
s


′
0

{
2ψ ′′

e (0)

τ 2
e τ 3

c

t5

5!
+ 2ψ ′′

e (0)

τατ 2
e τ 3

c

t6

6!
+ · · ·

}
.

Since the initial evolution is dominated by the first term, the
time scale of the initial evolution is τ

2/5
e τ

3/5
c . It is close

to the typical time scale of the inner layer, τc ∝ τ
2/3
A τ

1/3
R ,

compared with that of the reconnected flux, τe. Therefore
the time scale of the inner-layer reconnected flux is also
significantly different from, and can even be shorter than,
the Sweet-Parker time scale. We remark that the expansion
is valid for τA � τα which corresponds to near the ideal
marginal stability, 1 � |
′

0|.

6. Summary
We introduced the correct asymptotic matching to im-

prove the boundary layer analysis of forced reconnection
due to a boundary perturbation. The correct asymptotic
matching yields an integral equation for the time evolution
of the reconnected flux. It gives the exact reconnection pro-
cess which reflects the effect of plasma inertia in the inner
layer precisely.

We have shown that the integral equation produces a new
time scale at the initial evolution of the forced reconnec-
tion that is affected by the time scale of the boundary per-
turbation. The reconnected flux initially increases on the
same time scale as the boundary perturbation, τe, for near
the ideal MHD marginal stability case, |
′

0| � 1. It is dif-
ferent from the Sweet-Parker time scale, τsp = τ

1/2
A τ

1/2
R , for

the suddenly imposed boundary perturbation and the mod-
ified Sweet-Parker time scale, τ

2/(2+b)
sp τ

b/(2+b)
e , for the time

dependent boundary perturbation, ψe(t) ∝ (t/τe)
b in the

previous works.
To be precise the reconnection process is described by two

reconnected fluxes: the reconnected flux and the inner-layer
reconnected flux. The former determines the time evolution
of the quasi-static equilibrium of the outer region. The latter
is newly introduced and represents the reconnection in the
inner layer. The effect of inertia forces these reconnected
fluxes to differ. The time scale of the inner-layer recon-
nected flux is derived from not only the time scale of the

boundary perturbation but also the typical time scale of the
inner layer, τc ∝ τ

2/3
A τ

1/3
R .

The improved theory also yields the new feature of a cur-
rent sheet induced on the resonant surface. In the initial evo-
lution, the current sheet increases with 
′(t) < 0 so as to
oppose the progress of the reconnection. In contrast, it was
believed to be a typical feature of forced reconnection that

′(t) > 0 and 
′(t) → +∞ at t = 0, in previous works.
The negative sign of the tearing mode stability parameter,

′

0 < 0, leads to this negative increase in the current sheet,

′(t) < 0. Therefore the negative sign of the current sheet
stems from the fact that the original static equilibrium is sta-
ble.
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