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The origins of electrical resistivity in magnetic reconnection:
Studies by 2D and 3D macro particle simulations
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This article argues the roles of electrical resistivity in magnetic reconnection, and also presents recent 3D particle
simulations of coalescing magnetized flux bundles. Anomalous resistivity of the lower-hybrid-drift (LHD) instability,
and collisionless effects of electron inertia and/or off-diagonal terms of electron pressure tensor are thought to break
the frozen-in state that prohibits magnetic reconnection. Studies show that, while well-known stabilization of the
LHD instability in high-beta plasma condition makes anomalous resistivity less likely, the electron inertia and/or
the off-diagonal electron pressure tensor terms make adequate contributions to break the frozen-in state, depending
on strength of the toroidal magnetic field. Large time and space scale particle simulations show that reconnection
in magnetized plasmas proceeds by means of electron inertia effect, and that electron acceleration results instead of
Joule heating of the MHD picture. Ion inertia contributes positively to reconnection, but ion finite Larmor radius
effect does negatively because of charge separation of ions and magnetized electrons. The collisionless processes
of the 2D and 3D simulations are similar in essence, and support the mediative role of electron inertia in magnetic

reconnection of magnetized plasmas.

1. Roles of Resistivity in Magnetic Reconnection
From the beginning of magnetic reconnection studies in
the middle of the 20th century, people recognized that merg-
ing of different magnetic field lines is possible if finite elec-
trical resistivity is present on the MHD (magnetohydrody-
namic) description (Dungey, 1961). However, the origins of
such resistivity remained a mystery, since magnetic recon-
nection occurs typically in a few (poloidal) Alfven times 74
which is by orders of magnitude less than the time t.,; of
classical binary collisions,

ey

In the solar wind and magnetospheric environments, the clas-
sical collision time amounts to a few days, while magnetic
reconnection breaks up in a few tens of minutes as observed
by satellites.

The following gedanken experiment illustrates the role of
electrical resistivity in the MHD picture. Two filaments that
carry the same directional current, J; and J, in Fig. 1, attract
each other. The magnetic field is enhanced in time between
the filaments. This induces the solenoidal electric field E;
via Faraday’s law, —cV x E = 0B/dt. If the filaments with
radius ry are placed in vacuum as shown in Fig. 1(a), there
is nothing to stop the process; the filaments should merge in
a time (/7 /2)t4, where T4 = ry/ V4 and the Alfven speed
V4 = B,//4mpy is defined using the rod mass density po
and the poloidal magnetic field B, on their surface (equation
(16) of Tanaka, 1995b). In a plasma of Fig. 1(b), by contrast,
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the electric field E; inevitably accelerates the plasma elec-
trons, forming the axial current J3 at the separatrix. It must
be noted that this current increases in time with its direction
opposite to that of the approaching filaments. The repulsive
forces acting between J; and J3 and between J, and J3 ex-
ceed the attractive force between J; and J,, which blocks
magnetic reconnection. However, if some mechanism exists
limiting the growth of the induced current J3, then the at-
tractive force between the filaments J; and J, can overcome
the repulsive ones, and magnetic reconnection proceeds. In
other words, if electrical resistivity is sufficiently large for a
given electric field E;,

E,=nJs, @)
the anti-reconnection current J3; = E, /1 is kept small. Thus,
the Ohm’s law (2) is interpreted as the law to yield finite (non-
infinite) solenoidal current at the separatrix via enhanced re-
sistivity . But, it must be emphasized that the Ohm’s law
E; = nJ of the MHD picture is an over-simplification, which
does not adequately represent the collisionless process that
is hidden behind the global reconnection process. For ex-
ample, Joule heating is replaced by electron acceleration for
the collisionless reconnection in magnetized plasmas, and by
accelerated meandering electrons and ions for reconnection
in the plasma sheet configuration.

For nearly half a century, people sought for the origins
of electrical resistivity in a collisionless plasma (Speiser,
1970; Krall and Liewer, 1971; Davidson and Gladd, 1975;
Winske, 1981; Tanaka, 1981, 1995a, b, 1996; Tanaka and
Sato, 1981; Tajima et al., 1982; Hoshino, 1987; Wesson,
1990; Biskamp et al., 1995; Shinohara, 1996; Dreher et al.,
1996; Cai et al., 1997; Hesse and Winske, 1998; Hesse et al.,
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Fig. 1. A gedanken experiment that illustrates the meaning of electrical
resistivity for magnetic reconnection (a) in vacuum, and (b) in a plasma
(dots represent plasma ions and electrons). The currents J; and J; flow
in the flux bundles, while J3 in the plasma does not exist initially and is
induced by the electric field E; during the reconnection process.

1999; Kuznetsova et al., 2000). Electron inertia resistivity
(Speiser, 1970) was first proposed as early as 1970, and was
later applied to magnetically confined plasmas where strong
magnetic field produces magnetic islands of their thickness
roughly about the electron inertia length (Wesson, 1990).
Meanwhile, anomalous resistivity was extensively studied
without apparent success. In 1990’s, particle simulations by
different groups showed that electron inertia (Tanaka, 1995b,
1996; Biskamp et al., 1995) and/or off-diagonal terms of
electron pressure tensor (Dreher et al., 1996; Cai et al., 1997,
Hesse and Winske, 1998; Kuznetsova et al., 2000) make ad-
equate collisionless contributions to break the frozen-in state
of magnetized plasmas and the Harris-type equilibrium with
a magnetic null at the X-point, respectively.

It might be an irony of history that anomalous resistivity
became very popular in the research community of magnetic
reconnection in early 1970’s. Changes of magnetic topolo-
gies and heating of plasmas were argued in terms of various
micro instabilities and their nonlinear consequences (Krall
and Liewer, 1971; Davidson and Gladd, 1975). The electron
inertia resistivity was almost forgotten for twenty years until
it was re-spotlighted to explain the sawtooth oscillations of a
tokamak core plasma (Wesson, 1990), as mentioned above.

Anomalous resistivity is defined as the one that appears
as nonlinear effects of wave-particle interactions (Krall and
Liewer, 1971), in analogy to electron scattering by phonons
in solid-state physics. Waves can be generated by either
electron or ion beams, or pressure gradients. However, such
waves must be excited under the conditions of, say, the mag-
netosphere in which the plasma drift speed is rather small,
vy ~ vy, (ion thermal speed), and the electron and ion
temperatures are comparable, 7, ~ 7T;. Many instabili-
ties including those of ion acoustic and ion cyclotron waves
were eliminated under these conditions, except for the lower-
hybrid-drift (LHD) instability (Davidson and Gladd, 1975).
It is an electron drift wave that becomes unstable in resonance
with unmagnetized ions. Its frequency range w < Qpy
(lower-hybrid frequency) and persistence in the 7, ~ T;
condition favored the LHD instability. Quasi-linear the-
ory (Davidson and Gladd, 1975) and particle simulations

(Winske, 1981; Tanaka, 1981; Tanaka and Sato, 1981) con-
firmed generation of anomalous resistivity if the waves were
present.

Nevertheless, the LHD instability had a weakness, i.e. sta-
bilization under high-beta conditions including magnetic null
points. Data analysis of the GEOTAIL satellite shows that
the LHD waves are present in the periphery of the plasma
sheet but not at its center, and that their observed intensity
is about an order of magnitude low in order to account for
magnetic reconnection (Shinohara, 1996).

The electron inertia and/or the off-diagonal terms of elec-
tron pressure tensor break the frozen-in state of plasmas.
They appear in the electric field equation as

E=-v,xB/c—V-P,Jen— (m./e)(V.-V)V,. (3)

By comparing magnitudes of the second and third terms in
the right-hand side of Eq. (3), we can guess which of the
terms is dominant in collisionless magnetic reconnection:

R. = (V . Pe/en)/((me/e)(ve . V)Ve)
= (Le/Lp) (vie/v)e)? 4)

where L. and L, are the scale lengths of the parallel bulk ve-
locity and pressure of electrons, respectively, v;, the electron
thermal speed, and vy the electron parallel drift acquired by
acceleration during the X-point transit. We note the relation
Ute/ Va = (ﬂemi/me)l/z(Bt/Bp)s where ,Be = 87-”1]-‘6/32 is
electron beta value with n and T, electron density and temper-
ature, respectively, and B, and B, the poloidal and toroidal
magnetic field, respectively (B, corresponds to the recon-
necting magnetic field). In the magnetospheric plasma, the
relations vy, ~ V4 < v and L, < L, leadto R. > 1. This
corresponds to a series of particle simulations by Hesse and
his colleagues. On the other hand, in magnetically confined
plasmas, one has vy, ~ V4 ~ v, and L, <« L. Therefore,
one gets R. < 1; electron inertia effect dominates over that
of the pressure tensor term. These relations were confirmed
by the macro-particle simulations for plasmas with a guide
magnetic field (Tanaka, 1995b, 1996).

The role of electron pressure and its numerical verifica-
tions are nicely described in Kuznetsova et al. (2000), Hesse
etal. (1999). The effect of electron inertia is very simple: the
electrons that are the principal current carrier get accelerated
and stream out of the so-called diffusion region (reconnec-
tion region) while holding the acquired current J;. Hence, the
current at the separatrix does not grow infinitely but remains
finite. On equation, the separatrix current J; is expressed in
terms of the reconnection (solenoidal) electric field E;,

J = J9 ~ (ne?/m,)E,,, (5)

where e and m, are the electronic charge and mass, respec-
tively, and t;, is the electron transit time across the diffusion
region. Simply rewriting the above equation yields the pro-
portionality relation that has the form of the Ohm’s law,

E, = Nei Ji, Nei = me/eznftr' (6)

As remarked previously, released magnetic energy is con-
verted to directed energy of accelerated electrons, and not
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to Joule heating. This is clearly seen in the shifted distri-
bution function of electrons (cf. figure 7 of Tanaka, 1995b).
This tells us the limitation of electrical resistivity which is
an MHD-based concept.

Finally, collisionless reconnection was numerically inves-
tigated by several authors (Tajima et al., 1982; Hoshino,
1987; Biskamp et al., 1995; Tanaka, 1995a, b, 1996; Dreher
etal ., 1996; Caietal., 1997; Hesse and Winske, 1998; Hesse
et al., 1999; Kuznetsova ef al., 2000). Even newly emerged
particle simulation tools that can handle large space and time
scale kinetics (Vu and Brackbill, 1992; Tanaka, 1993, 1995a),
including the macro particle code (Section 2), were applied
to magnetic reconnection of magnetized flux bundles. It
showed that electron dynamics along the magnetic field lim-
its the separatrix current and causes magnetic reconnection
(Tanaka, 1995a, b, 1996). As a counter-proof, when the par-
allel electron motion (displacement) was numerically dis-
carded, as is treated in the MHD theory (simulation), the
separatrix current was tremendously enhanced, which pro-
hibited magnetic reconnection. Thus, the electron inertia
effect is proven to break the frozen-in condition and make
reconnection possible in magnetized plasmas.

2. Large Time and Space Scale Simulations

It is sometimes advantageous to deal with electron and
ion dynamics while leaving out small-scale, high-frequency
wave activities. In standard electromagnetic particle sim-
ulations, the grid size is taken at the Debye length, which
numerically tends to mix up the phenomena of very different
scales—small scale electrostatic phenomena and large scale
magnetic phenomena; it may lead us to wrong findings that
hardly occur in nature.

The macro-particle code HIDEN (Tanaka, 1993) and its
counterpart in Los Alamos CELESTE (Vu and Brackbill,
1992) were designed to deal with large time and space scale
plasma phenomena, in which the grid size Ax is typically the
order of electron skin depth, and the time step At is chosen
much larger than the plasma period,

Ax > hpe. AL o), (7

Here, Ap, is the Debye length and w,, is electron plasma
frequency. Noisy plasma oscillations at w ~ w,, are elim-
inated from the simulations by the choice of a large time
step, wp. At > 1. To realize large time and space scale sim-
ulations, a slightly backward time-decentering technique is
introduced (Tanaka, 1988, 1995a; Vu and Brackbill, 1992).
The Maxwell equations with time level suffices are written
as

1 9E n+1/2 4

((5) v
C C

1 9B n+1/2

c <¥) =TV ®
c

V- En+l — 47T,On+1, (10)
V.B" =0, (11)

where E and B are the electric and magnetic fields, respec-
tively, and « is a decentering (implicitness) parameter. The
current density J and the charge density p in the Maxwell

equations are implicit quantities, which are not the sim-
ple sums of known particle quantities but are expressed in
terms of both the present and unknown future electromag-
netic fields. To describe the particle motions, either the
Newton-Lorentz equations or the drift-kinetic equations are
used. The former includes the full Larmor radius effects,
which is suited to treat meandering particles around mag-
netic null points (Tanaka, 1995a). The latter deals with the
drift motions that arise from averaging over Larmor radii, and
is more economical in computation when a guide magnetic
field is present (Tanaka, 1995b, 1996). The Newton-Lorentz
equations of motion are written as

n+1/2
dv, nt1/2 e; v
A — EnJrot . J Bn+a . ,
( T ) " (x;) + - X (x;)
(12)
dx. \ 172
(%) = 13

where x; and v; are the position and velocity of the jth parti-
cle, respectively. The parameter « that appears in the above
equations controls selective damping of high-frequency os-
cillations with the frequency wA¢ > 1; it should be chosen
in the range % < o < 1. By combining Egs. (8)—(13), we
obtain a closed set of implicit equations that determines the
electromagnetic fields, the particle positions and velocities
of the future time level. The algorithm and technique are
best summarized in the latest literature (Tanaka, 1995a).

3. Magnetic Reconnection by 2D Simulations

As a simple model of studying the collisionless process of
magnetic reconnection, we adopt merging of two flux bun-
dles that carry the same directional current (Tanaka, 1995b,
1996). This process is called coalescence and was previously
investigated as a mechanism of generating high-energy elec-
trons and X-ray emissions from the stellar nebula (Tajima
et al., 1982; Biskamp et al., 1995). The coalescence starts
without initial electric field or the X-point current, unlike so-
called driven reconnection. For this reason, one can identify
synchronized development of the current and electric field at
the X-point relatively at ease. This provides a clear physics
picture of collisionless reconnection.

The flux bundles are isolated and initially at rest. The
magnetic field is a sum of the poloidal magnetic field B, that
forms a separatrix between the flux bundles and the constant
applied field B,;p. The initial electric field is null every-
where; the reconnection electric field is the y-component
E,, which is decoupled in the 2D simulations from the elec-
trostatic component E,, = (E,, 0, E.) at the separatrix. This
is advantageous to examine the growth of the reconnection
electric field.

A charge-neutral plasma is initialized in the doubly-peri-
odic Cartesian system. The ions located in the core of the flux
bundles carry axial current to produce the poloidal magnetic
field. The systemsizeis Ly = 400c/wp.and L. = 300c/w .
with 320 x 72 grids. The interval of the grids is uneven in
the x direction, with Ax = 0.55¢/w,. in the central region
(denoted by a small square in Fig. 2(b)) and Ax = 1.6¢/w .
in the outer region; on the other hand, Az = 4.1c/w,, every-
where (note ¢/wp. = 7 ~ 15Ap,). The number of electrons
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Fig. 2.
t =2.51y4.

and ions is 64 per cell for each species with the particle
splitting technique to reduce discreteness noise. It is re-
marked that particle simulation has a reasonable resolution
even with fewer grid points than MHD (fluid) simulations
because the plasma current and charge are carried by La-
grangean particles (not by Eulerian grid quantities). The
physical parameters are the mass ratio m;/m, = 25-200,
the temperature ratio 7;/ 7, = 0.1-50, and the strength of
the applied field wc./w,e = 0-2 where w.. = eB;/m.c.
The electron beta value is B = 87nT,/B> = 0.04. Elec-
trons are well-magnetized (Larmor radius p, ~ lc¢/wp.), and
their drifts are properly treated; ions are weakly magnetized
(i ~ 10c/w,.). On the other hand, short-length waves with
kpe, kAo > 1 are not included here, where p, is electron Lar-
mor radius (see Eq. (7)). Interactions with these waves may
be neglected in the present large scale dynamics, since the
electron cyclotron waves are excited only when the perpen-
dicular temperature is high, 7'/ 7. > 1 or the parallel drift
is as large as thermal speed, V| > v,.

The essence of the simulation results with an applied mag-
netic field is briefly described. Figure 2 is the time snapshots
of the poloidal flux function (Tanaka, 1995b) W defined by
B, = V x (¥)), for the times /74 = 0.75, 1.9 and 2.5,
where T4 = %d / V4 with d the initial separation of the flux
bundles, and ¥ is the poloidal Alfven speed. The temper-
ature for this run is 7;/ 7, = 1, the applied field strength
wee/wpe = 1 and typical value of the poloidal magnetic
field B,/B; ~ 0.2. The flux bundles with the same di-
rectional axial current attract each other by magnetic forces,
and they get flatly squeezed at the contact surface as shown in
Fig. 2(b) before an active phase of magnetic reconnection sets
in. The formation of an elongated (Y-shaped) current layer is
the characteristic feature of the Sweet-Parker reconnection
(Sweet, 1958; Parker, 1963). The thickness of the current
layer is a few times that of electron skin depth, L g ~ 3¢/,
(half thickness). The thickness increases with reduction of
the applied magnetic field B,/B;, and does slightly with
ion mass. Occurrence of magnetic reconnection is roughly
identified by counting the isolated poloidal flux contained
in the flux bundles. The number of the isolated W-contours
decreases between the panels (b) and (c).

The time histories of the toroidal current J,, and electric
field £, measured in a small region containing the separa-
trix (1L, 2L,) are shown in logarithmic scales in Fig. 3.

Snapshots of the poloidal flux function in (a) the equilibrium state 1 = 0.75t4, (b) the most active phase of reconnection t = 1.974 and (c)

1073
104 10
By 10~ Iy
1075
. 1072
10~
150.0
100.0
dP—P
50.0
0.0 | i | | 0'0
0.0 2.0 4.0
t / TA

Fig. 3. Time histories of the toroidal electric field £, and the toroidal
current J), in the upper panel, and those of the isolated poloidal flux
AW contained in the flux bundles, and the distance between the flux
bundle centers d,,_, in the lower panel. These quantities except d,,—
are measured at the separatrix, and the signs of £ and J, are reversed.

In the early phase up to # = 27, both the toroidal electric
field and current increase exponentially at the same growth
rate. The toroidal current is carried mostly by the electrons
that have been accelerated by the electric field during their
transit through the separatrix region. It is emphasized that
these electrons reside in the region only for a finite time. The
proportionality relation £, oc J, resembles the Ohm’s law,
although it has by no means been imposed in the particle sim-
ulations. In subsequent steady phase, the isolated poloidal
flux AW decreases linearly in time, as consistent with nearly
constant strength of the electric field £,. In the 2D simu-
lations, the isolated magnetic flux decreases monotonically
and almost completely.

The poloidal components of the ion and electron currents,
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Fig. 4. Enlarged plots of the poloidal quantities in the vicinity of the separatrix (in a small rectangular box of Fig. 2(b)). The ion and electron currents in

(a) and (b), respectively, and the electric and magnetic fields in (c) and (d).
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Fig. 5. Time history of the isolated poloidal flux for the standard run (solid), and for the special run (dashed) in which spatial displacement of electrons
along the magnetic field is discarded while keeping the toroidal current, i.e. the MHD case.

the electric and magnetic fields in a small rectangular region
denoted in Fig. 2(b) are shown in Fig. 4. Ions and electrons
stream vertically into the diffusion region with the veloc-
ity v;, ~ 0.3v4, and flow out sideways with the (poloidal)
Alfven speed, v,,; ~ V4 after having been accelerated. In-
terestingly, the divergence of the electron and ion currents are
separately non-zero, i.e. V - J® =£ 0 (s = e, i). The former
divergence is due to parallel motion of electrons along the
field lines, and the latter one by ion polarization drift (Tanaka,
1996) in order to satisfy V - J = 0 for the total current. The
plasma outflow is not narrowly channeled but spreads within
dual fans originating at the X-point. The plasma density is
slightly higher in the flux bundles to satisfy the pressure bal-
ance P + B?/8m = const, and is nearly homogeneous out-
side except for the current layer. A quadrapole sub-structure
develops within the layer (figure 2 of Tanaka, 1996). These
features are somewhat different from a simple model of the
Sweet-Parker reconnection.

A specially-designed simulation below confirms that the
electron parallel dynamics is a key element of collisionless
magnetic reconnection in magnetized plasmas. The poloidal
projection of the electron displacement due to their motions
along the magnetic field vyB/|B| is discarded, while their

215.

z/(c/wpe)

185.

z[(c/wpe)

Fig. 6. The poloidal and toroidal magnetic field for the special run in Fig. 5
att = 374. The plasmoid stays at the separatrix and impedes magnetic
reconnection.
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Fig. 7. The parametric dependences of the reconnection rate on (a) the ion mass (for p; = 1, 2¢/wp,), and (b) the ion Larmor radius (for m;/m. = 100).
Also in (a), the reconnection rates for the applied toroidal magnetic field of B, = 0 and 0.2 are plotted with solid and open squares, respectively.

current and perpendicular motions are treated in an ordinary
fashion (Tanaka, 1996). This situation is equivalent to the
MHD theory (simulation). The time history of the isolated
poloidal magnetic flux contained in the flux bundles is shown
in Fig. 5, with the solid and dashed lines for the standard and
special runs, respectively. In clear contrast to the standard
run, the poloidal flux for the special run does not decrease.
The enlarged plot of the magnetic field in the poloidal plane
of Fig. 6 shows the formation of a stagnant plasmoid at the
X-point. This is a direct consequence of slow removal of
the electrons (current carrier) out of the separatrix region.
The plasmoid current J;, < 0 impedes an incoming plasma
that carries the opposite-sign current J, > 0 by repulsive
magnetic forces. These results lead us to conclude that the
parallel dynamics (motion) of the electrons is the mechanism
of breaking the frozen-in state in magnetic reconnection of
magnetized plasmas.

The parameter dependence of the reconnection rate
(Tanaka, 1996) is depicted in Fig. 7. Figure 7(a) shows
the dependence on the ion inertia (electron mass is fixed).
The reconnection rate is a smoothly increasing function of
ion mass, and is scaled as (1/W¥)dW¥/dt o (m;/m.)"/® for
m;/m, > 50. For the collisionless reconnection mediated
by off-diagonal electron pressure tensor term (Hesse ef al.,
1999; Kuznetsova et al., 2000), the rate was shown to scale
(1/W)dW¥ /dt o (m;/m,)"/*. Bothscalings show monotonic
and weak dependence on the ion inertia. Further, we note
that the typical reconnection time [(1/¥)d W /dt]~" ~ 514is
shorter than the two-fluid simulations without compressibil-
ity and thermal effects (Biskamp ez al., 1995). A dependence
on the applied toroidal magnetic field is also shown with
square symbols for m; /m, = 100. The thickness of the cur-
rent layer D and the ratio D/L increase as the applied mag-
netic field is reduced. The reconnection rate increases only
by 20% when the applied field is nullified for the coalescence
process of mild-profile current. In this case, the plasma in
the current layer is compressed as (n;) ~ no(2+¢€)/(1 +¢€),
where € = B;/B, and ng is average plasma density. A
simplified model that balances the incoming and outgoing
mass fluxes in a rectangular box (diffusion region) yields,
dV/dt ~ V,D/L o (ng)'/?. This roughly agrees with the

Fig. 8. Schematic illustration of the geometry for the 3D simulation. The
dots represent the axial current J; and J; carried by ions, and contours on
the poloidal cross section show the y-component of the vector potential
Ay

-

4.0

t/ TAp

Fig. 9. The time histories of the toroidal electric field £, and current
Jy, the difference of the vector potential between the separatrix and flux
bundles A 4,, and the distance between the flux bundles d),, for the 3D
reconnection.
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y=(1/6)L,

t =347y

t=4.574p

Fig. 10. Snapshots of the y-component of the vector potential 4, at six cross sections along the y-direction (the order is from left to right, then top to

bottom), at four times 7/74 = 1.2,2.3, 3.4 and 4.5.

observed increase in the reconnection rate for B, — 0.

The dependence on the ion Larmor radius is shown in
Fig. 7(b) [ion inertia is fixed, m;/m, = 100]. The re-
connection rate is reduced when the ion Larmor radius be-
comes comparable with the ion skin depth, p; > c/w,,;.
This dependence is scaled as, d\W/dt ~ F[p;/(c/wpi) %
(m,-/me)(l_")/z] where v = 2.7 and the F(x) profile is given
by Fig. 7(b). For the mass ratio m;/m, = 1836, we expect
the ion Larmor radius effect to set in for p; /(c/w,;) > 10.
The negative role of the ion finite Larmor radius effect is
attributed to charge separation of magnetized electrons and
unmagnetized ions, as p, < Lz < p;. Since incoming ions
tend to reside outside of the current layer due to large Larmor
radii, a charge separation results; the poloidal electric field
pointing to the current layer was actually observed in the
macro particle simulation. This electric field generates the
current J, < 0 via the £ x B drift of magnetized electrons,
while ions hardly respond to this small scale electric field.
Thus, the enhanced X-point current by the electron £ x B
drift suppresses magnetic reconnection (see the discussion
of Fig. 1 for the relation between the X-point current and
reconnection speed).

4. Magnetic Reconnection by 3D Simulations
The settings of the 3D simulations are the same as those of
the 2D ones except for addition of the y coordinate (Tanaka,

2000). The size along the y-direction is L, = 2000c/w,.,
with the periodic boundary condition. The number of grids
in the y-direction is 60; the grid size is Ay = 33c/w,.. The
number of electrons and ions is 16 per cell for each species,
and the mass ratio is m; /m, = 100. In order to let magnetic
reconnection occur at one point, the initial currents of the flux
bundles are slightly curved toward the separatrix at y = %L s
as illustrated in Fig. 8. The separation of the flux bundles
is0.5L,aty =0and 04L, at y = %Ly. The separatrix
is a line of the length AY = 11_0L , going through the point
% (L, Ly, L;). Like the 2D simulations, reconnection occurs
spontaneously by attraction of the flux bundles; there is no
initial and external electric field that drives reconnection.

First, it is remarked that, when the initial loading is made
2D-like (no y-dependence), then reconnection occurs in a
2D fashion even for the 3D simulation environments. Re-
connection proceeds monotonically and simultaneously in
all the poloidal cross sections. Transition of the reconnec-
tion features from the 3D to 2D ones occurs gradually as L,
decreases since rapidly moving electrons along the magnetic
field (with the E x B drift) tend to homogenize the anisotropy.
The bifurcation of 2D and 3D-type reconnections is consid-
ered to occur around the separatrix length AY ~ 1L, since
half the domain in the y-direction needs to be a source and
the other half a sink of plasma flow.

For the results below, the 3D initial loading is adopted.
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Fig. 11. Snapshots of the scalar potential ¢ (E, = —Vg) at six cross sections along the y-direction (the order is from left to right, then top to bottom), at

four times /74 = 1.2,2.3, 3.4 and 4.5.

Figure 9 shows the time histories of the electric field E,,
the toroidal current J,, the difference of the vector potential
A, between the separatrix and the center of the flux bundle,
and the distance between the flux bundles d,_,, measured
at (y,z) = %(L y, L). In the early time, plasma undergoes
a self-adjustment stage toward an equilibrium. Then, the
toroidal electric field and current repeat in-phase growth and
decay, and the flux bundles bounce inward and outward in
the 3D case. The amount of magnetic flux contained in the
flux bundles decreases in a stepwise fashion. By contrast, in
the 2D case of Fig. 3, magnetic flux decreased monotonically
without intermission. Also, the reconnection rate was sen-
sitive to the electron thermal speed in the 2D case (Tanaka,
1996), but is found not so in the 3D case. These differences
may be attributed to easiness of the current removal out of
the separatrix for the 3D geometry, and partly to magnetic
tension of curved magnetic field lines. In the 2D geometry,
current-carrying electrons stream out of the separatrix region
from a point to lines sideways, whereas in the 3D geometry
the electrons spread out from a point to surfaces. The latter
has more freedom of motion; magnetic reconnection may
more directly reflect the global circumstances of the plasma.

Figure 10 shows the y-component of the vector potential
4, in consecutive six cross sections along the y-direction
at four different phases, (a) equilibration at ¢ = 1.274,, (b)
first active phase at t = 2.374,, (c) pause at t = 3.41y,

and (d) second active phase at t = 4.574,, where 74, is
the Alfven time defined by the poloidal magnetic field. For
t > 2.31,, the contours are well squeezed at y ~ %L y. An
elongated current layer is well and steadily formed only at this
position, and the current layer in other y locations varies in
time. Thus, magnetic reconnection is sensitive to the plasma
conditions. Apart from the central region to both the y-
directions, antisymmetric helical deviation of the magnetic
surfaces is seen in the poloidal cross-cuts. This asymmetry
due to that of the toroidal electron current in the vicinity of
the separatrix is characteristic of the 3D coalescence process
with the applied magnetic field.

This asymmetry in 3D reconnection is better seen in the
scalar potential ¢ (E, = —Vg) of Fig. 11, as in the same
format as for Fig. 10. The E, field drives the plasma into
and out of the separatrix through the E x B drift (B = B, ).
A quadrapole structure that pushes plasma vertically inward
toward the separatrix and ejects it sideways is formed only at
the y = %L y cross section. The other quadrapole structure
at the y = 0 cross section for t = 2.37,, is opposite in
sign (dashed contours correspond to negative values), which
pumps the plasma out of the separatrix; a closed circulation
of the plasma flow is established in the toroidal plane.

Figure 12 shows the enlarged plot of the ion and electron
currents J;, J,, and the electric and magnetic fields £, B ina
small square region (see Fig. 2(b)) at the central cross section
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y= %L , for the first active phase t = 2.374,. The upper and
lower panels correspond to the poloidal and toroidal compo-
nents, respectively. We see dual ejection fans originating at
the separatrix in the poloidal currents J; and J,, and also the
clearly formed current layer in the toroidal current J, ,. The
thickness of the current layer, the open angle of the ejection
fans, and the ejection speed of the plasma (V,,;, = V) are
quite the same as their 2D counterparts depicted in Fig. 4
(plot formats of Figs. 4 and 12 are identical). The poloidal
motions of the ions and electrons deduced from J; and J, are
consistent with the £ x B drift calculated with the poloidal
electric field of Fig. 11. The formation of the Y-shaped elon-
gated current layer is also seen in the poloidal magnetic field.

Ji Je
Xz
T
X

" 8

z z

Fig. 12. Enlarged plots of the poloidal quantities in the vicinity of the
separatrix at t = 2.37,4 of Fig. 9 (plot format is the same as that of Fig. 4).
The ion and electron currents J; and J, in the top row, and the electric
and magnetic fields £, B in the bottom row. In each group, the upper
and lower panels correspond to the poloidal and toroidal components,
respectively.
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Although the repetitive time histories of Fig. 9 and insensitiv-
ity to the electron thermal speed showed 3D characteristics,
the physics quantities at the separatrix (Fig. 12) are much
like their 2D counterparts.

Other interesting feature of the 3D reconnection is the
oscillations of magnetic field on a long time scale, as depicted
in Fig. 13. The oscillation amplitude of magnetic energy B>
increases when the coalescence process is almost finished.
These oscillations have a period of = 21, which is roughly
equal to 7" = RN/ V,, with R" the radius of merged
flux bundles. This phenomenon that is observed for non-
turbulent reconnection is mainly attributed to the toroidal
component of the magnetic field, in which (electro)magnetic
waves of k; # 0 are involved. This phenomenon will be
analyzed and reported in near future.

5. Summary

It was argued in this article that the frozen-in state of a
plasma that prohibits magnetic reconnection is broken ei-
ther by electron inertia or the off-diagonal terms of pressure
tensor depending on whether the plasma is magnetized or
unmagnetized. Namely, in the former case the growth of the
separatrix current that suppresses magnetic reconnection is
limited by the escape of current-carrier electrons along the
magnetic field. This is intrinsically a non-MHD effect, and
is termed as electron inertia resistivity. However, this is not
real dissipation, and collisionless reconnection leads to bulk
acceleration of electrons along the magnetic field, instead
of Joule heating. On the other hand, anomalous resistivity
can still add to inertia resistivity although the lower-hybrid-
drift instability was argued as less likely by theoretical and
observational points of view.

The instantaneous features of the 3D collisionless recon-
nection at the separatrix were similar to those of the 2D re-
connection. However, differences were insensitivity of the
reconnection rate to the electron temperature (thermal speed),
and more sensitivity to the plasma conditions in the 3D case.
This reflects the easiness of the separatrix current removal,
in which electrons escape from the X point to surfaces for
the 3D geometry.
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Fig. 13. Oscillations in the magnetic energy B on a long time scale, which are mainly due to the toroidal component of the magnetic field.
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