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Spheromaks, solar prominences, and Alfvén instability of current sheets
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Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experi-
mental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has
been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vac-
uum chamber. The spheromak is formed without a flux conserver and internal A profiles have been measured.
Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar
prominences. The physics of these structures is closely related to spheromaks (low S, force-free, relaxed state
equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a
balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet
becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect
to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics

of collisionless reconnection.

1. Introduction
1.1 Force-free equilibria
Three topics related by common underlying physics will
be discussed: experimental studies of spheromak formation,
experimental simulations of solar prominences, and theoret-
ical analysis of Alfvén instability of current sheets.
Common to these three topics is the low S nature of the
plasma equilibrium. Because of the low 8, the MHD equa-
tion of motion

dU

Par =

in equilibrium reduces to simply J x B = 0 which implies
that yoJ = AB where A is a so-far undetermined scalar func-
tion of position. This gives the fundamental force-free rela-

tionship (Lundquist, 1950)

JxB-VP (1)

V xB=1B @)

a simple equation having an infinity of solutions depending
on the boundary conditions. If A is spatially uniform then
the curl of Eq. (2) gives a vector Helmholtz equation,

VB + A’B = 0. 3)
1.2 Properties of A
The divergence of Eq. (2) gives
B-VA=0 4)

which means that A is constant on a field line but may vary
across field lines (i.e., A may be thought of as a function of
the parameter which labels individual field lines). If there
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are flux surfaces, then X is a surface quantity (i.e., A is con-
stant on a flux surface, but may vary across flux surfaces).

Equation (2) has important limiting cases determined by
boundary conditions and also by X profiles. Boundary con-
ditions may have symmetries or lack thereof and also may
have open field lines or not. A may be spatially uniform (i.e.,
the Taylor (Taylor, 1974) state) or in the more general case
may be non-uniform. Helicity flows from high A to low A
(Jarboe et al., 1985; Fernandez et al., 1989) and so the uni-
form A situation corresponds to having no helicity flow. This
is analogous to thermodynamics where temperature plays
the role of A and heat flux plays the role of helicity. The
Taylor state (Taylor, 1974) (uniform A state) corresponds to
an isolated system in thermal equilibrium (i.e., a state with
uniform temperature).

A spheromak is a magnetohydrodynamic (MHD) plasma
equilibrium which, like a tokamak, has nested toroidal flux
surfaces formed by helical magnetic fields. However, unlike
a tokamak a spheromak has zero toroidal field at its surface.
This means that no external coils link the spheromak and
so allows the spheromak to be simply connected (spheroid-
like). This contrasts with a tokamak which is doubly con-
nected (toroid-like) and which has external coils linking the
toroid and producing toroidal fields which are non-zero at
the surface of the toroid. Spheromaks are of interest in fu-
sion research because, not having a “hole in the doughnut”,
spheromaks provide a much simpler method for achieving
the nested toroidal flux surfaces required for plasma con-
finement. Traditional laboratory spheromaks (Furth, 1983;
Jarboe, 1994; Bellan, 2000) correspond to axisymmetric so-
lutions of Eq. (2) over a finite volume.

Magnetic helicity is conserved on the relaxation (recon-
nection) time scale, but eventually becomes dissipated on
the much slower resistive time scale. Thus, if a spheromak
is to be sustained on the resistive time scale, it is necessary
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to inject helicity to make up for the slow resistive losses. It is
also necessary to inject helicity when creating a spheromak.
Helicity injection in spheromaks is typically accomplished
using a magnetized plasma gun source designed to impose a
finite electrostatic potential difference across the ends of an
open flux tube that intercepts the bounding surface.

In general, the bounding surface is a flux conserving wall
which imposes the condition that the normal magnetic field
vanishes except at the helicity injection source (plasma gun).
In contrast, solar prominences (Tandberg-Hanssen, 1995)
correspond to solutions of Eq. (2) with non-axisymmetric
boundary conditions and, instead of having a finite volume,
one boundary is a planar surface and the other boundaries
are at infinity. Boundary conditions are imposed on the pla-
nar surface. A is usually non-uniform since it is obviously
energetically impossible to fill up a semi-infinite space with
uniform A.

Although MHD analysis shows that helicity flows from
regions of large A to regions of small A (Jarboe et al., 1985),
MHD says very little about the actual mechanism(s) caus-
ing the flow. In general large A gradients tend to drive MHD
instabilities which have the effect of reducing the A gradi-
ent. Helicity is an extensive quantity and A is the associated
intensive quantity. Helicity flow is a natural consequence
of helicity conservation. A conserved extensive quantity
(e.g., helicity, mass, energy) is fungible and may be trans-
ported from one place to another. Helicity is conserved on
the reconnection time scale (i.e., reconnection does not sig-
nificantly dissipate helicity) but helicity does decay on the
much longer resistive time scale (Bellan, 2000).

A has several related interpretations:

1. A is an eigenvalue of Eq. (3) and has the dimensions of
an inverse length (Jarboe et al., 1985), i.e., A ~ L7}
where L is a characteristic length of the system.

2. A is related to the twist of the field lines in a flux tube.
For the particular example of a long cylindrical flux
tube, the solution of Eq. (2) is B.(r) = BJy(Ar),
By(r) = BJy(Ar) and field line trajectories are given
by the relation rd0/By = dz/B,. Thus, for small r the
field line twist is d0/dz = By/r B, =~ A /2.

3. If one integrates Eq. (2) over the cross-section of a flux
tube, it is seen that A = (/' V x B-ds) / (/B - ds) or
A = pol/®. Thus A is just the axial current per axial
flux of a flux tube.

4. In an isolated system, Eq. (2) can be integrated to give
B = LA + V f where f is an arbitrary scalar function.
The magnetic energy W = f(Bz/Z,uo)d3r for an iso-
lated system with no open field lines can thus be written
as

2M0W:/B-V><Ad3r
=/(A.VXB+V-(AX(AA+Vf)))d3r

=/(,\A-B+v~(fB))d3r
— 3K (5)

where K = [A-Bd’r is the magnetic helicity
(Bellan, 2000; Turner et al., 1983) of the system. En-
ergy dissipating processes that conserve helicity (e.g.,
magnetic reconnection) will cause an isolated system to
relax to a minimum energy state with the lowest A al-
lowed by the boundary conditions (Taylor, 1974). He-
licity flows from regions of high X to low A because
such a flow will reduce the energy of the system since
W = ALK /2u,. Because A scales as an inverse length,
helicity flow will involve geometric expansion. Be-
cause A is proportional to energy per helicity and equiv-
alently to //® (also equivalently, X is proportional to
approximate inverse length and to approximate field
line twist), a system can reduce its magnetic energy
in a helicity-conserving fashion by having helicity flow
from small, highly twisted volumes into accessible
larger volumes which have less twisted field lines and
smaller //®.

5. When open flux tubes intercept biased electrodes, he-
licity can be injected into the volume of the open flux
tube. This is the basis of the magnetized plasma gun.
In particular if a power supply is connected to the elec-
trodes, the power supply can drive currents through the
open flux tube and so impose a Agy, = ol /P where
I is the driven current in the open flux tube and @ is
the flux intercepting the electrode. The rate of helicity
injection into the open flux tube is 2V ® where V is the
electrostatic potential of the electrode intercepting the
flux tube (Bellan, 2000; Jensen and Chu, 1984).

2. Spheromak Formation Experiment

In this experiment (Yee and Bellan, 2000) a coaxial mag-
netized plasma gun is mounted on a vacuum chamber that
is much larger than the gun dimensions. There is no flux
conserver so the plasma gun is effectively surrounded by
empty space. Four distinct operational regimes were ob-
served (Yee and Bellan, 2000) and these regimes were dis-
tinguished from each other by the value of A,4,, compared
to the nominal linear dimension L of the gun (the radial di-
mension).

The behavior is determined by a competition between two
different kinds of magnetic force: (i) the magnetic pressure
force, associated with the gun current and proportional to 72,
which tends to push plasma out of the gun and (ii) the mag-
netic tension force, associated with the gun flux and propor-
tional to ®2, which tries to restrain the plasma from exiting
the gun.

Operation at different values of A4, have revealed four
distinct experimental regimes:

1. For Ag,,L > 1, the magnetic tension is completely in-
adequate to restrain the magnetic pressure and so
plasma explodes out of the gun without restraint
(Regime I).

2. For Ag,,L slightly larger than unity the magnetic pres-
sure is marginally able to push the plasma out and it
is found via magnetic probes that closed flux surfaces
form, i.e., a spheromak configuration separated from
the gun by an x-point; this is called regime II. A very
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surprising feature of Regime II is that spheromaks are
formed even though there is no flux-conserving wall;
the spheromaks move away from the gun with constant
velocity and expand self-similarly. Measurements of
internal A show that AR remains constant where R is
the major radius. It is believed that inertial effects play
the role of an effective wall.

3. For Agu,L slightly smaller than unity, the magnetic
pressure is marginally unable to push the plasma out,
and a twisted bulbous structure is observed which pro-
trudes out from the gun, but does not quite detach; this
is called Regime II1.

4. In the case where A4, L < 1, the magnetic tension is
so strong that the plasma cannot leave the gun (Regime
V).

Measurements of internal magnetic fields (Yee and
Bellan, 2000) show that there is a significant difference be-
tween the internal A = uJy/By profile in Regimes II and
III. The internal A is peaked on the magnetic axis of the
spheromak in Regime II, indicating that the spheromak is
detached from the gun (not being driven by the gun). On
the other hand, in Regime III (where the plasma has not
quite detached to form a spheromak) the internal A decreases
monotonically from the gun into the plasma indicating that
helicity is flowing from the gun into the plasma. These two
contrasting observations of A profiles are in accord with the
concept that helicity flows from high A to low A.

3. Solar Prominence Simulation Experiment

In the solar prominence experiment (Bellan and Hansen,
1998; Hansen and Bellan, submitted) the magnetized plasma
gun has the shape of a horse-shoe magnet, i.e., has two op-
posite magnet poles separated by a distance L. The vac-
uum magnetic field produced by the magnet has an arched
shape. Applying a capacitor bank across the magnet poles
breaks down neutral gas puffed into the region between the
poles, creating a plasma. The capacitor then drives a current
through the plasma. Initially this current follows the vacuum
magnetic field lines, but as the current becomes stronger its
hoop force causes the arched field to bulge out. The hoop
force (Arzimovich, 1965; Bateman, 1978; Freidberg, 1987,
Miyamoto, 1989; Biskamp, 1993; Chen, 1989; Krall et al.,
2000) causes a current following a curved path to increase
its radius of curvature and is a direct consequence of the
mutual repulsion between anti-parallel currents (just as the
pinch force is the consequence of the mutual attraction be-
tween parallel currents). A circular loop of current (or cur-
rent hoop) will have anti-parallel currents on opposite sides
of the loop which mutually repel each other and cause the
radius of the loop to increase. Equivalently, the hoop force
can be thought of as the consequence of there being a higher
magnetic pressure on the inside of current loop than on the
outside (in the extreme example a long solenoid has mag-
netic pressure on the inside but not on the outside).

As in the spheromak case, field line tension opposes the
hoop force in the prominence experiment and what results is
the consequence of the competition between these two op-
posing magnetic forces. The restraining force is due to the

vacuum magnetic field while the hoop force is due to gra-
dients of magnetic pressure associated with the plasma cur-
rent. The field aligned plasma current also causes the current
channel to become twisted and to writhe as it goes from one
magnet pole to another. In all prominence simulation exper-
iments so far, the plasma has not detached from the gun and
so A is just the Ag4,,. These experiments are thus analogous
to Regime III of the spheromak experiments.

4. Alfvén Instability of Current Sheets

As mentioned earlier, MHD analysis predicts (Jarboe et
al., 1985; Fernandez et al., 1989) that helicity flows from
high A to low A; since A is proportional to L~!, the helic-
ity flux has the effect of tending to flatten A gradients. In
resistive MHD, one finds that peaked A profiles are unsta-
ble to resistive tearing modes (Furth ef al., 1963; Goldston
and Rutherford, 1995) which flatten the current profile and
hence the A profile. However, most plasmas of interest (so-
lar, magnetospheric, and laboratory) have insufficient resis-
tivity for resistive tearing modes to be relevant because their
growth rate is much too slow (hence the oft-used invocation
of ‘anomalous’ resistivity).

Observational evidence points to some kind of collision-
less reconnection process which similarly feeds on A gradi-
ents and flattens these gradients but at a much faster rate than
resistive reconnection. Controversy exists on whether these
collisionless processes are continuous or transient; either sit-
uation may occur depending on boundary conditions, scale
sizes, and symmetries. Observations also indicate that there
is often an anomalous ion heating associated with reconnec-
tion (Mayo et al., 1991; Ono et al., 1996) and that vari-
ous waves are excited as part of the reconnection (Gekelman
and Stenzel, 1984). It has been postulated (Axford and
McKenzie, 1992) that the high speed solar wind is accel-
erated by Alfvén waves originating from tiny reconnection
regions in microflares in coronal holes at the base of the
corona.

A simple model has been developed (Bellan, 1999) which
shows that force-free equilibria with extremely peaked A
profiles are linearly unstable with respect to emission of
inertial or kinetic Alfvén waves (Stasiewicz et al., 2000).
This model was motivated by an earlier calculation (Bellan,
1998) showing that the transient localized field-aligned cur-
rent associated with magnetic reconnection must act as an
antenna radiating Alfvén waves. The radiation resistance
experienced by this antenna was postulated (Bellan, 1998)
as constituting the anomalous resistivity required for rapid
reconnection. Also, calculations of the field pattern excited
by a transient, localized field-aligned current showed that
this field pattern was consistent with observed auroral oscil-
lations if one assumed that the source was far away and the
disturbance propagated dispersively from the source to the
point of observation (Bellan, 1996); this is the behavior one
would expect for the waves emitted by a localized reconnec-
tion event.

If the equilibrium is low 8 and the magnetic field lines
are locally straight, then the magnetic field magnitude is in-
variant. In this case all the field can do is rotate its direc-
tion. A region of peaked A confined to a plane corresponds
to a current sheet with associated magnetic field rotational
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discontinuity across the current sheet. MHD analysis of
evolving complex field topology shows that current sheets
typically develop when flux tubes become braided (Parker,
1983; Longbottom et al., 1998).

If the local angle of rotation of B inside a rotational dis-
continuity is denoted by 6(x) and the total angle of rotation
across the discontinuity is A, then the force-free magnetic
field in the vicinity of the rotational discontinuity can be
written as

B(x) = pBsin[6(x)] + zB cos[6(x)] (6)

where
(x) = / "y’ 7
0

gives the local angle of rotation. Equation (6) is an exact
solution of Eq. (2). Suppose the current sheet has width a
and assume that A is uniform in the current sheet and zero
outside the current sheet. In this case integration of Eq. (7)
across the current sheet gives the relation

A =ah. ¥

However, using | B| = const. together with Eq. (2) gives
J(x) = A(x)B/ug. These relations can be combined to give
the electron flow velocity w0 in the current sheet,

J AB
u||€0 = — = =
ng  nqupo  anqi

AB cA
—u— (9
Wpid

Thus if aw,;/c < A, the field-aligned electron flow be-
comes super-Alfvenic and destabilization of Alfvén waves
becomes a possibility. It is interesting that this low g scal-
ing of critical current sheet width in terms of the ion skin
depth appears similar to high g8 collisionless reconnection
models which also show that current sheet widths smaller
than the ion skin depth are necessary (Drake et al., 1994;
Bhattacharjee et al., 1999; Yamada et al., 2000) and that in-
stability of collisionless waves is associated with reconnec-
tion. Although the scaling with ion skin depth is similar, the
physics is somewhat different in the low v. high B cases,
because in the low S case instability results from super-
Alfvenic field-aligned electron flow whereas in the high 8
case the current is not field-aligned and there is a null in the
magnetic field at the middle of the current sheet.

Destabilization at a rotational discontinuity in a low
plasma is examined by calculating Alfvén wave behavior
using a kinetic description for parallel particle motion and
taking into account the presence of the beam of field-aligned
electrons with streaming velocity w0 = J/nq in the cur-
rent sheet region —a/2 < x < a/2. We assume that per-
turbed quantities vary as g(x)exp(ik;(x)s — iwt) where
o K W, kj =k, cosf, and s is the distance along B. Us-
ing a standard Vlasov analysis, the parallel wave current is
given by

Ji = Z%/dvuvnfa(vn)

ia)E” 1 S w— k||u||ao>
= E VA 10
> Zkﬁ)‘%)o < k”UTU ( )

Hoc?

where Z is the plasma dispersion function and vy, =
V26T, [mg.

Analysis of perpendicular particle dynamics shows that
both electrons and ions have identical E x B drifts which
therefore do not result in any perpendicular current. The
lowest order perpendicular current thus comes from polar-
ization drift, and since this is proportional to ion mass, the
ion polarization drift ©i; o = (m; /q,-BZ)BE /0t is the domi-
nant contributor to perpendicular current. Thus, the perpen-
dicular wave current is

7 1 9E "
HodL = Ui o (11)

Using Faraday’s and Ampere’s laws, all field components
can be written in terms of “]H- Combining the parallel com-
ponent of Ampere’s law with Eq. (10) gives the Alfvén wave
equation (Bellan, 1999)

CZVJz_/]H = (Cz)2 — kﬁvi)

1 — kyuy, ~
[Z 7.2 Z/<w 3 - 0)] Ay. (12)
> Zkll)"Da ||vTa

For a uniform plasma this reduces to the kinetic Alfvén wave
dispersion relation @* = kjv3 (1 + k7 p}) if vy K w/ky <
vre and to the inertial Alfvén dispersion relation
®? = kﬁvi/(l + kicz/wf,e) if vy, K< w/ky. If there is
no perpendicular dependence then Eq. (12) reduces to the
MHD Alfvén wave dispersion w? = kﬁ v2. By retaining dis-
placement current, Eq. (12) can be extended to correspond
to the standard low-frequency electrostatic dispersion rela-
tion which gives ion acoustic waves (Bellan, in press) in a
magnetized plasma.

Thus, when there is a sufficiently strong current sheet,
the field-aligned electrons flow super-Alfvenically inside the
current sheet and so cause the argument of the electron Z’
function to become negative in the current sheet. This causes
the imaginary part of Z’ to produce destabilization (instead
of Landau damping) and so within the current sheet there is
a source of instability. On the other hand, the waves desta-
bilized inside the thin current sheet propagate out of the cur-
rent sheet and this loss of wave energy to the exterior region
will constitute a loading on the gain mechanism within the
current sheet. The entire system (current sheet plus exterior
region) will become unstable when the rate of creation of
wave energy within the current sheet exceeds the rate of dis-
sipation of wave energy in the exterior region. Numerical
solutions of Eq. (12) show that destabilization occurs when
the electrons become slightly super-Alfvenic.

Since the Alfvén wave instability feeds on the peaked
A profile, it is expected that non-linear analysis will show
that the instability will tend to diminish this peaking and so
spread out A. Thus, the Alfvén instability tends to flatten A
profiles. It is also found that while the Alfvén waves are in
general much faster than the ion thermal velocity (in accor-
dance with the low B assumption) the rotation of the mag-
netic field at the current sheet causes w/ k inside the current
sheet to be slower than outside and so there can be signifi-
cant Landau damping of destabilized Alfvén waves on ions
within the current sheet. The net effect would be to produce
beams of energetic ions in the current sheet as a side effect.
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This analysis shows that peaked A profiles become lin-
early unstable with respect to Alfvén wave emission when
the condition

< A

(13)

C/a)pi

is satisfied. This indicates that the ion skin depth c/w; is the
appropriate ‘yardstick’ for measuring current sheet widths,
and that instability results when the sheet width measured in
units of ion skin depth is smaller than the angle of rotation
of the magnetic field across the current sheet.

5. Summary and Conclusions

If a plasma is approximately force-free and approximately
in equilibrium, then its magnetic field is determined by the
simple force-free equation V x B = AB. The behavior of the
solutions to this equation are determined by boundary con-
ditions and by the internal A profile. Spheromaks and solar
prominences are distinguished by their differing boundary
conditions: spheromaks have azimuthal symmetry whereas
prominences have mirror symmetry about a plane. In prin-
ciple, spheromaks also differ in being bounded by a flux-
conserving wall, but the experiments reported here show that
unbounded spheromaks can be formed transiently.

Instabilities tend to flatten the XA profile and so cause he-
licity to flow from regions of high to low A. If X is sharply
peaked, this corresponds to a current-sheet and at suffi-
ciently strong peaking, the electron flow velocity in the cur-
rent sheet becomes super-Alfvenic resulting in the sponta-
neous emission of Alfvén waves. This Alfvén instability is
a form of beam-plasma instability (kinetic instability) and
occurs when the current sheet width measured in units of
ion collisionless skin depth becomes somewhat smaller than
the rotation angle of the magnetic field across the current
sheet.
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