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A smeared seismicity constitutive model
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The classical application of rate and state dependent frictional constitutive laws has involved the instabilities
developed between two sliding surfaces. In such a situation, the behaviour and evolution of asperities is the
controlling mechanism of velocity weakening. However, most faults have a substantial thickness and it would
appear that it is the bulk behaviour of the fault gouge, at whatever scale, that is important. The purpose of this
paper is to explore how bulk frictional sliding behaviour may be described. We explore here the consequences
of applying the rate and state framework initially developed to describe the frictional behaviour at the interface
between two interacting sliding blocks, to frictional behaviour within a layer of gouge that has bulk elastic-
plastic constitutive behaviour. The approach taken here is to replace the relative sliding velocity in the classical
formulation with the maximum shear strain rate, D, and the characteristic length with a characteristic shear strain,
y.. This means that the frictional behaviour of the bulk material now evolves with shear strain rate, D, over a
characteristic shear strain, y,. This approach still does not address the problem of reproducing natural recurrence
times between instabilities, but perhaps places the problem in a new framework.

Key words: Seismicity, constitutive model, rate and state dependant friction, bulk frictional elastic-plastic

behaviour.

1. Introduction

Understanding the seismic behaviour of large faults in-
volves studies at a range of length scales (see Fig. 1). At the
finest length scale one is concerned with the behaviour of
asperities at grain or fracture contacts. Here the microme-
chanical properties of the asperities are fundamental, and
friction (Dieterich, 1979), crystal-plastic (Bowden and Ta-
bor, 1950; Estrin and Brechet, 1996) or melting (Hirose
and Shimamoto, 2004) processes are paramount. At this
scale, discontinuum computational procedures are appro-
priate. At centimetre to kilometre scales, commonly the
issue may concern the behaviour of fault gouge or of my-
lonitic material. Here the constitutive behaviour of the bulk
fault filling material is the point of interest and continuum
computational procedures are appropriate; this is the fo-
cus of this paper. At larger scales, various combinations
of discontinuum and continuum schemes may be appropri-
ate until, at the largest scales (that of the crust and man-
tle), continuum codes involving coupling of various elas-
tic, plastic and viscous constitutive behaviours may be ap-
propriate (see lio et al., 2004). As always in such mul-
tiscaling problems, the challenge is to develop an overar-
ching strategy that enables ‘handshaking’ between the var-
ious scales. Such a strategy probably involves a thermo-
dynamic approach where the dissipation of Helmholtz free
energy is tracked across the scales (see Lavenda, 1978)
but this has not yet been fully developed for the seismic
problem although progress exists in other geoscience areas
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(Regenauer-Lieb and Yuen, 2004). Moreover, such an ap-
proach, based on non-equilibrium thermodynamics, is made
more appealing by the experimental demonstration (Hirose
and Shimamoto, 2004) that melting may be an important
part of the seismic instability process. As indicated, the
emphasis here is on that scale where a continuum descrip-
tion of the seismic process is appropriate, and our emphasis
is on plastic rather than thermal-viscous behaviour as may
be relevant to production of melt or to the bulk behaviour of
mylonites.

Experimental studies since Leonardo da Vinci (Mac-
Curdy, 1938) have confirmed that, to first-order, the fric-
tional shear stress T between two sliding blocks is linearly
related to the normal stress o . This relationship, T = poy,
where 1 is a constant known as the coefficient of friction,
is commonly referred to as Amontons’ Law (Amontons,
1699). Gu et al. (1984) have pointed out that it is the sec-
ond order departures from Amontons’ Law that may gov-
ern whether frictional sliding is stable or not. These depar-
tures from Amontons’ Law, which involve a dependence of
« upon both the velocity of sliding and upon the evolution
of the state of the sliding interfaces, lead to stability criteria
for sliding with new rock friction constitutive relations and
have important implications for earthquake mechanics.

However, real faults in the upper half of the crust com-
monly have a finite thickness and are comprised of a zone
of crushed rock particles or gouge. It appears that it is the
mechanical behaviour of this fault gouge that is important
in controlling the unstable sliding behaviour of many faults
rather than the frictional behaviour and the evolution of the
state of the discrete fault surfaces themselves. Of course,
it may be, in making such a statement, that the problem
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1 m scale: The
shear zone scale

1 mm scale: 10 mm scale: the
the asperity homogeneous
scale granular scale
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strongly structured
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10’s km scale: the crustal scale

Fig. 1. The multiscaling seismic problem. At the 1 mm scale, discontinuum mechanics is relevant. At the 10 mm to 1 km scale, continuum mechanics
may be more relevant, whilst at the crustal scale, coupled continuum models, as developed by lio ef al. (2004), may be a better representation of the

mechanics.

has simply been shifted to another scale, namely that of the
individual gouge particles, or that the unstable behaviour is
now developed upon a new surface that is propagated within
the gouge itself. The problem here is again emphasised by
Fig. 1; laboratory experiments are performed at the 1 mm to
10 mm scale, earthquakes occur within a crustal scale sys-
tem, and the geologist observes at the 1 m to 1 km scale.
Whatever is the mechanism for unstable behaviour at the
scale of the gouge layer, it seems profitable to explore a
“smeared” representation of the gouge layer by represent-
ing the gouge as a material with frictional constitutive be-
haviour, that is, the bulk constitutive behaviour is depen-
dent upon the normal stress across any plane within it, or,
as we will develop, the first invariant of the deviatoric stress
tensor, but with the added characteristic that the frictional
behaviour is also weakly dependent upon the shear strain
rate and upon parameters that describe the evolution of the
state of the gouge, and that evolve over a characteristic shear
strain. In order for this bulk constitutive behaviour to be in-
variant with respect to coordinate transformations, it is nec-
essary to express the constitutive laws in terms of stress,
strain, and strain-rate invariants. This is the approach taken
here so that the stress drop associated with an instability,
and the shear strain rate, are expressed as second invariants
of the respective deviatoric tensor.

This paper explores such behaviour within the framework
of a non-associative, Mohr-Coulomb constitutive law (see
Vermeer and de Borst, 1984) for the bulk behaviour of the
gouge. We show that this approach enables bulk frictional
instabilities to be modelled. An additional advantage is
that this constitutive behaviour leads to the spontaneous
development of localised shear zones within the deforming
gouge as has been described by Marone (1998), allowing
the relation of unstable behaviour to the development of
these shear zones to be investigated in the future.

Elastic-plastic bulk constitutive relations other than
Mohr-Coulomb are possible, of course, including Drucker-
Prager constitutive behaviour and a range of other be-

haviours transitional between Drucker-Prager and Mohr-
Coulomb (see Borja and Aydin, 2004); however, Drucker-
Prager seems to be more relevant to weak soils or clays.
The Mohr-Coulomb behaviour is explored here because, of
all the elastic-plastic bulk constitutive relations, the pres-
ence of corners on the yield surface means that localisation,
or shear zone development, is favoured, even for an asso-
ciative material (see Besuelle and Rudnicki, 2004).

Here we fuse two empirical approaches: a robust crite-
rion for the failure of bulk material (the Mohr-Coulomb
plasticity model), and a generalisation of a laboratory de-
rived evolution equation for the frictional behaviour of brit-
tle surfaces (the rate and state variable friction approach).
1.1 Bulk frictional elastic-plastic behaviour

Deforming materials, which display frictional behaviour,
expressed as a dependence on pressure or on normal stress,
may be described by a plasticity model such as the Mohr-
Coulomb plasticity model, which is used to describe bulk
materials that yield when subjected to shear loading. The
constitutive parameters (see Vermeer and de Borst, 1984)
are the cohesion, c, the friction angle, ¢, the tensile strength,
and the dilation angle, 1. In addition, two elastic constants
are required for an isotropic elastic-plastic material; here
we employ the shear and bulk elastic moduli.

We use the Mohr-Coulomb yield function

5 =01 —03Ns +2¢/Ny (1)
where ¢ is the friction angle, ¢, the cohesion, and
Ng = (1 +sing)/(1 —sin¢) 2)

The shear potential function g* for (irreversible) plastic de-
formation, corresponds to a non-associated flow rule and
has the form

g’ =01 — 03Ny 3)
where v is the dilation angle and
Ny = (1 +siny)/(1 —siny) 4
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Throughout we consider only plane strain, and take the
principal stresses in the plane of deformation to be o and
o3 with |o7| > |o3| and compression negative.

Shear dilatancy, or dilatancy, is the change in volume
that occurs with shear distortion of a material. In a Mohr-
Coulomb material, for (irreversible) plastic deformation, di-
latancy is characterized by a dilation angle, v, which is re-
lated to the ratio of plastic volume change to plastic shear
strain. This angle can be specified in the Mohr-Coulomb
plasticity model (see Vermeer and de Borst, 1984) and is
found from a plot of volumetric strain versus axial strain
determined for triaxial tests or shear box tests. The initial
slope for this plot corresponds to the elastic regime, while
the slope used to measure the dilation angle corresponds
to the plastic regime (see Ord, 1991, for examples of the
derivation of this and other Mohr-Coulomb constitutive pa-
rameters for sandstone and marble).

These are the criteria which describe the conditions for
failure, or yield, of an elastic-plastic Mohr-Coulomb mate-
rial. Until the critical yield stress is reached, the material is
elastic, and any deformation is reversible. On yield, the ma-
terial may undergo irreversible or plastic deformation, and
the material behaviour during such plastic deformation is
described by the plastic potential g* or the flow rule which
defines the orientation of the incremental plastic strain-rate
vector for an imposed stress state. This incremental strain
rate vector is always normal to the potential surface defined
by Eq. (3). If this vector is also normal to the yield surface
defined by Eq. (1), (i.e. ¢ = ), then the constitutive be-
haviour is associative; otherwise it is non-associative. In the
models explored here, the shear flow rule is non-associated
and the tensile flow rule is associated.

Bifurcation, or a departure from homogeneous to inho-
mogeneous behaviour, is allowed in such a plasticity model
so long as the dilation angle does not equal the friction an-
gle; such material is called non-associative. Non-associated
Mohr-Coulomb materials can therefore localise at yield (i.e.
families of discontinuities such as shear bands develop in a
material that starts as a homogeneous continuum). How-
ever, as implied above, Mohr-Coulomb materials can also
localize when the stress state corresponds to a corner on
the yield surface (see Besuelle and Rudnicki, 2004). This
corresponds to stress states such as exist in axisymmetric
compression or extension.

In this paper we generalise the rate and state approach to
frictional sliding of a single block to apply to deformation
of cataclastic fault gouge by writing the evolution equations
in terms of the second invariants of the stress and strain rate
tensors within the framework of an elastic-plastic Mohr-
Coulomb material. As such, the frictional response of the
bulk gouge depends upon the pressure within the material
rather than the normal stress across a single sliding surface.
This is expressed as a conical yield surface in stress space
with a hexagonal cross section that expands in stress space
in the direction of the hydrostatic stress axis. The opening
angle of this cone is related to the angle of friction of the
material. Excellent discussions of this concept are given
by Borja and Aydin (2004), and by Besuelle and Rudnicki
(2004). The conventional expression of the Mohr-Coulomb
relationship is T = ¢ 4 poy where 7 is the shear stress on a
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plane with normal stress oy, c is the cohesion and pu is the
coefficient of friction equal to tan ¢ where ¢ is the angle of
friction. A way of writing this expression as a yield criterion
is f = v —c+ poy. Then, if f = 0 the material is at yield
and if / < O then the material is elastic. Equation (1) is the
identical expression for f written in terms of the principal
stresses rather than in terms of v and oy.

An additional intrinsic part of the formulation of these
constitutive properties is the existence of another conical
surface, namely, the potential surface, now existing in strain
rate space. This also is hexagonal in cross section for a
Mohr-Coulomb material but the opening angle of this cone
is related to the angle of dilation. The importance of the
potential surface is that the incremental strain rate vector
is normal to this surface and not the yield surface. Thus
the potential surface defines the deformation of the material
whereas the yield surface defines the stress state. The po-
tential surface defines the flow rule for the material whereas
the yield surface defines whether the material is at yield or
elastic for a prescribed stress state. These concepts as well
as the theory are discussed by Vermeer and de Borst, 1984.
Whereas the sliding direction of a single interface between
two pieces of rock is defined by the geometry of the sys-
tem plus the imposed forces, the bulk deformation of an
elastic-plastic material requires the definition of both the
yield surface and the potential surface together with the im-
posed stress or velocity field.

As we have indicated, Egs. (3) and (4) define the potential
surface in shear strain rate space, and hence in turn define
the increment of plastic shear strain once the stress state is
defined by Eqgs. (1) and (2). This is equivalent to solving the
partial differential equations known as the flow rule.

Briefly, the flow rule is expressed as:

Ael = y®ag’/do; i=1,3 5)
where Ae! are the principal incremental plastic strains,
g’ is the potential function given in Eq. (3), and o; are
the principal stresses. The constant A® is obtained in each
increment of deformation by requiring that the new stress
at the end of the increment be located on the yield surface
given in Eq. (1).

After considerable manipulation, one obtains:

= £, o))/ {(@1 = aaNy) = (@ = 1NNy} (6)

The superscript I refers to a new stress obtained by adding
an increment of elastic stress to the old stress that existed
at the beginning of the increment given the requirement
that the new stress state lies on the yield surface. «; and
oy are functions of both the elastic shear and bulk moduli
and N,, Ny are as given in Egs. (2) and (4). Thus the
implementation of the flow rule requires the use of Egs. (1),
(2), (3) and (4). This explanation is quite condensed. For
more insight one should examine Vermeer and de Borst
or better, the FLAC user’s manual (ITASCA, 2002; and
see Appendix A) to get a true appreciation of the process
involved. Similar discussions can be found in the textbook
by Malvern (1969) but in this case, the theory is applied
only to associated plastic materials where the yield and
potential surfaces are coincident.
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Fig. 2. a) Representation of the behaviour of the friction coefficient for velocity weakening behaviour (from Marone, 1998). b) Representation of the
behaviour of the friction coefficient for shear strain weakening behaviour, as developed in this paper.

1.2 Rate and state dependent frictional behaviour

Experimental studies on frictional sliding between two
surfaces as performed and interpreted by Dieterich (1978,
1979) and by Ruina (1980, 1983) have led to a constitutive
relation which describes shear stress T at constant normal
stress oy to be dependent on the relative slip velocity V
and the prior slip history in the form of dependence on a
set of phenomenological parameters called state variables
(6;). The state variables describe the state of the sliding
surface and they evolve, as the surface slides, with a set of
characteristic lengths D,;.

The general forms of these relations as given by Ruina
are:

T =F(V,O’N,91,92,...

Om) @)

db;
®)

— =G;V, , 01,0, ...
T V,on, 61,6,

During slip at a fixed slip rate and normal stress, the state
variables evolve toward steady-state values 6;° such that the
shear stress evolves towards a steady-state value of 7°°(V)
corresponding to the imposed fixed speed and normal stress.
The evolution of the coefficient of friction following a per-
turbation in the sliding velocity is shown in Fig. 2(a); here
the behaviour is that of velocity weakening so that an in-
crease in sliding velocity leads ultimately to a decrease in
the friction coefficient.

However, although such rate and state behaviour is com-
monly attributed to frictional evolution between two sliding
surfaces, identical behaviour is also observed when a layer
of gouge is intentionally placed between two sliding blocks

0,) i=1m

(see Marone, 1998, for a discussion). Thus, in extending
the relations given in Eqgs. (7) and (8) to the situation where
significant thicknesses of gouge are present, it seems prof-
itable to explore the results of generalising these equations
so that the frictional evolution is expressed in terms of con-
tinuum parameters such as strain rate and strain rather than
the discontinuum parameters, V and D,.

Equations (7) and (8) can be thought of as a discontinuum
formulation of the evolution of friction as two blocks move
with a relative velocity, V, parallel to the interface between
them. The generalisation of such equations to develop a
frame invariant constitutive relation that describes the evo-
lution of friction in a continuum means that the evolution
needs to be formulated in terms of invariants of the strain
and strain-rate tensors. Moreover, since the deformational
response is strongly non-linear, the incremental forms of the
constitutive relations are relevant. Thus, instead of the char-
acteristic distance, D., which is used in the discontinuum
description to describe the spatial scale for frictional evo-
lution (see Fig. 2(a)), we use a characteristic shear strain,
Ve-

Similarly, instead of the velocity, V, we use the maxi-
mum shear strain-rate, D, which is the square root of the
second invariant of the incremental strain rate deviator ten-
sor. We can then write:

T = F(D, opN, 91, 92, ..

--Om) €))

do;
— =Gi(D,oyn,01,0,, ...

- 0,) i=1,m (10)
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Fig. 3. a) Undeformed state of numerical grid. b) Deformed numerical
grid. c¢) Contours of shear stress. Note that the conjugate set of shear
bands is developed locally. Localities of histories shown in Fig. 4 are
plotted as X, Y, and Z.

In Egs. (9) and (10), oy should now be thought of as the first
invariant of the deviatoric stress tensor, (o1 + 022 + 033) /3.

In this paper we explore the effect of applying this kind
of frictional behaviour to the evolution of the friction angle
in the Mohr-Coulomb constitutive relation during a seismic
event. The implication here is that the variables 6; are state
variables of the gouge, and that these evolve over a char-
acteristic shear strain as the gouge deforms, with a depen-
dence on the local shear strain rate, as shown in Fig. 2(b),
now replacing Fig. 2(a). Throughout this paper from now
on, we refer to the square root of the second invariant of the
deviatoric stress tensor as the shear stress and the square
root of the second invariant of the incremental deviatoric
strain rate tensor as the shear strain rate.

The rate and state dependant behaviour is formulated in
this instance as a single state variable law (i.e. m = 1 in
Egs. (9) and (10)):

w=po+aln(D/Do)+ b(§) Y

where

dé/dt = —(& +1In(D/Do)D/y.. 12)

1 is the current friction coefficient, o a reference friction
coefficient, D the maximum shear strain rate at a point
in the continuum where p is measured, Do a reference
material maximum shear strain rate where p( is measured,
a and b are constitutive variables, £ is the state variable, and
Y. is a characteristic shear strain scaling the evolution of the
state variable.
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Table 1. Mechanical properties for the simple shearing model.

Mechanical Property

bulk modulus 47.0 GPa
shear modulus 28.0 GPa
density 2700 kg.m™3
friction angle 30.0 degrees
dilation angle 1.0 degrees
cohesion 20.0 MPa
tensile strength 2.0 MPa

Table 2. Values for parameters in Egs. (11), (12) and (13).

Parameter

reference maximum shear

strain rate D, 1x1073 7!
characteristic shear strain y, 2 x 1072

b 0.008

a 0.006

a—>b —0.002

steady state friction, jt¢, at 25 degrees

reference maximum shear strain rate

In order now to apply this constitutive framework to
a bulk material rather than a discrete sliding surface, we
assume that ¢, the friction angle included in the Mohr-
Coulomb plasticity model, may be replaced by arctan p,
where w is the friction coefficient involved in the rate and
state variable behaviour. The explicit behaviour of a single
sliding surface is in this way replaced by a smeared bulk
description of the bulk material. This represents a multi-
scaling from a distinct element description to a continuum
description of the same problem on a larger scale. The ap-
proach is similar to that of Lyakhovsky (2001; Lyakhovsky
etal.,2001) who treat the incorporation of damage mechan-
ics into a continuum code. In the formulation used here, the
state variable £ is updated in each time step according to

Enew = Eold — (S +1n(D /D)) (D /ye) At 13)

where At is the time step, which is calculated while the ex-
periment is stepping numerically. The resulting friction co-
efficient, updated through Eq. (11), is then returned to the
bulk Mohr-Coulomb constitutive behaviour through updat-
ing the friction angle.

In summary, our approach is to consider a non-associated
Mohr-Coulomb material as our primary material. This
is modified by specifying that the friction in the Mohr-
Coulomb constitutive model evolves with shear strain in a
manner analogous to rate and state dependent friction laws.
The dilation angle is also included in such a constitutive for-
mulation but we let it remain constant. Although there have
been suggestions (particularly by Marone, 1998) that evolu-
tion of dilatancy may be important for real fault behaviour
we have not explored evolution of dilatancy in this paper
since it would add even greater complexity.
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Fig. 4. Behaviour over 0.3 seconds for the three zones shown in Fig. 3(c), in the simple shearing model. (a), (b), (c): Friction angle versus time. (d),
(), (f): Shear stress versus time. (g), (h), (i): Shear strain rate versus time. (a), (d), (g): Position X in Fig. 3(c). (b), (e), (h): Position Y in Fig. 3(c).
(c), (f), (1): Position Z in Fig. 3(c).
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2. A Small Scale Model
2.1 Geological description

The development of structure in the form of shear bands
within the deforming gouge of the fault zone is documented
by various authors (see Marone, 1998, for a review). Such
localisation introduces another spatial scale, other than y,,
into the structural evolution of the material. The smeared
approach adopted in this paper now allows us to investigate
the evolution of instabilities during the development of such
structures, building on earlier work exploring the initiation
and development of shear zones and their patterning within
an elastic-plastic (Mohr-Coulomb) material (Ord, 1991).
One should note here that shear bands form spontaneously
at yield in non-associative elastic-plastic materials or in
elastic-plastic materials with corners on the yield surface
(see Besuelle and Rudnicki, 2004, for a discussion). The
spacing of the shear bands here depends on the grid size
used since there is no internal length scale incorporated
within the Mohr-Coulomb constitutive law.

2.2 Computational model

This square model, 75 metres on edge (75x75 compu-
tational zones), is shown in plan view in the undeformed
state in Fig. 3(a); gravity is not turned on. The mechanical
properties of the model are as in Table 1.

Velocity boundary conditions are imposed which result
in isochoric bulk simple shearing. Rate and state variable
dependant behaviour is imposed, with properties as in Ta-
ble 2.

As described above, the classical rate and state formu-
lation is specifically for a sliding surface, for unstable be-
haviour along a discontinuity. We choose here that this re-
mains a critical behaviour at grain scale, and we scale up
to a continuum formulation for a shear zone by assuming
that the arc tan of the friction coefficient i, may be used as
the friction angle ¢ in the Mohr-Coulomb plasticity model.
Variations in the magnitude of D, as determined by theory
and by laboratory and field observations, are discussed by
Marone (1998). In this study, we have explored a range of
values for y. from 2 x 1072 to 2 x 10?, and provide results
for y. of 2 x 1072
2.3 Results from the small scale model

Zones of localised deformation develop in the model,
represented as planar distortions in the otherwise square
grid (Fig. 3(b)) and also as zones roughly parallel to the
shearing direction of alternating high and low shear stress
(Fig. 3(c)). Histories were tracked of friction angle, the
second invariant of the deviatoric stress tensor (the shear
stress), and the second invariant of the deviatoric strain rate
tensor (the strain rate) for three zones shown in Fig. 3(c)
from different positions in the model. The resulting be-
haviours, patterns and magnitudes, were similar for the
three zones (demonstrating the ‘well behaved continuum
behaviour’ referred to in Appendix C, with deformation oc-
curring in a coherent manner across adjacent zones). Fig-
ure 4 shows the behaviour of these 3 variables over 20000
numerical steps, within a total run of 3.1 million steps,
equivalent to a model time of about 170 seconds. This takes
about 45 hours running a Pentium 4 chip with a CPU of 3.20
GHz. Figure 5 shows the detailed behaviour of these 3 vari-
ables from a slightly later part of this time series, over just
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Fig. 5. Detailed behaviour over about 1.0e-5 seconds for zone Y in the
simple shearing model shown in Fig. 3(c). a) Shear strain rate versus
time. b) Shear stress versus time. ¢) Friction angle versus time.

1.0 x 1073 seconds. There is a shear stress increase (ap-
proximately 1 MPa; Fig. 5(b)) accompanying the increase
in shear strain rate following the stick-slip event (Fig. 5(a)),
but instability in the system rapidly overtakes the stress evo-
lution and drives it into a rapid stress drop of approximately
10 MPa. The friction angle (Fig. 5(c)) continues to evolve
within this constrained system.

The stick-slip behaviour exhibited by these results pro-
vides a degree of validation as to the inclusion of rate and
state dependant variable behaviour within a continuum for-
mulation for an elastic-plastic material with cohesion.

Clearly, there is slightly different behaviour in each of
the three zones shown in Fig. 3(c). Although these three
zones occupy slightly different positions relative to the
shear zones, it is not clear whether the different behaviours
are related to these different deformation environments. To
ascertain this, a much finer resolution model is needed, and
this will be the subject of future work.

3. A Large Scale Model
3.1 Geological description

The particular model described here was developed in
parallel with that described by Hobbs et al. (2004, this vol-
ume), and reflects interpretations of the Nagamichi-Rifu
seismogenic fault in the Sendai region of NE Japan (Sato et
al., 2002). Discussions at the Sendai conference, the first of
this series, focussed on processes operating at some depth
corresponding to the base of the seismogenic zone (Ito et



1128

30 km

A. ORD et al.: A SMEARED SEISMICITY CONSTITUTIVE MODEL

Fig. 6. a) Undeformed mesh for the crustal model. b) Position of region (dark grey) for which the rate and state dependant variable behaviour is applied.
The markers, ¥, represent regions for which histories of variables are stored throughout the numerical experiments.

Table 3. Mechanical properties of the large scale crustal model.

Mechanical Property

bulk modulus 4.7 GPa
shear modulus 2.8 GPa
density 2700 kg.m™3
friction angle 30.0 degrees
initial friction angle within fault 25.0 degrees
dilation angle 1.0 degrees
cohesion 20.0 MPa
tensile strength 2.0 MPa

al., 2002), including the classical mechanism involving in-
stability of frictional sliding in the brittle regime (Byerlee
friction) for the production of large earthquakes at this depth
(Hobbs et al., 2002). This section extends these discus-
sions through exploration of the application of rate and state
dependant variable behaviour combined with elastic-plastic
bulk material behaviour to the development and evolution
of instabilities within a crustal-scale fault.
3.2 Computational model

As a first step, we choose a model 100 km long and 30
km deep for simulation of the Earth’s crust (see Fig. 6(a) for
computational grid). We assume at this stage that the ma-
terial behaviour is temperature independent and has elastic-
plastic rheology only. No fluids are present. The mechan-
ical properties are assumed to be homogeneous, as a first
step towards understanding the system, and are provided
in Table 3. A shear zone is incorporated a priori into the
model; it dips at 45 degrees from the ground surface down
to 15 km depth and is 1.4 km thick. The fault has the same
mechanical properties as the surrounding material except
for the friction angle, which is initially 25 degrees; this

means the fault has a lower yield stress than the surround-
ing material. The friction angle of each zone within the fault
changes continuously throughout the model with the appli-
cation of the rate and state dependant variable behaviour
shown in Table 2.

Gravity is applied to the model. The lower horizontal
surface is a roller boundary in the x direction, and the two
vertical surfaces are roller boundaries in the z direction. The
top surface is left free. A bulk horizontal shortening rate of
about 2 x 107s~! is imposed through applying an hori-
zontal velocity to each of the vertical boundaries. A litho-
static stress regime is initialised throughout the model, and
the model is brought to a steady state under these bound-
ary conditions (200,000 numerical steps). Similar damping
conditions to the small scale shearing model were also im-
posed, and are considered in Appendix B.

The rate and state formulation used is the same as in the
simple shearing model, with the same values for parameters
as in Table 2. As a first exploration of the behaviour of
the fault, this formulation was applied only to the dipping
region described earlier, and only from 2.4 km beneath
the ground surface down to 15 km depth. The friction
angle for the material within this region was updated every
step according to the above-described bulk rate and state
dependant formulation.

3.3 Results for the crustal scale model

The following results are examples of the solution that
we obtain with the specific boundary conditions and pa-
rameters that we have chosen for our analysis. Our goal
for this contribution was to formulate a numerically sound
description of a hybrid continuum-rate and state variable
friction approach. We have not done an extensive param-
eter search for comparison with natural scenarios. This is
clearly the next step after the initial successful formulation
of the model. The following results therefore should not be
compared one-on-one with nature. We feel that a careful
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Fig. 7. Behaviour over 2500 seconds for the three zones shown in Fig. 6(b), in the crustal model. (a), (b), (c): Friction angle versus time. (d), (e), (f):
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discussion of the basic features of our smeared continuum
method is warranted first.

Histories were collected continuously of the friction an-
gle, shear stress, and strain rate for 3 zones at different
depths within the fault region, originally at positions 6.3
km (point 3), 10.3 km (point 2), and 14.2 km (point 1) be-
neath the surface, as shown in Fig. 6(b). We show here just
three unstable events (Fig. 7), occurring in a continuing nu-
merical run. The zonal stick-slip behaviour described above
occurs within these events, and is described in detail for the
first event occurring at 10.3 km, in Fig. 8.

A zone situated near the middle of the fault (point 2
at 10.3 km in Fig. 6(b)) demonstrates behaviours similar
to those described above for the simple shearing model:
Stick-slip in the shear strain rate (Fig. 8(a)) is accompa-
nied by a stress drop of 3.5 MPa (from 93.5 to 90.2 MPa;
Fig. 8(b)) and an instantaneous increase in the friction angle
(Fig. 8(c)), followed by a gentle decrease. In this case, the
rapid rise and fall of the strain rate (Fig. 8(a)) is followed
by a less abrupt increase and decrease also in the strain rate.
The stress drop occurs over only 0.05 seconds (Fig. 8(b)).
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Figure 7 shows that this behaviour of the strain rate at 10.3
km depth (Fig. 7(b)) appears to be reflected by zones both
lower, at 14.2 km (Fig. 7(c); point 1, Fig. 6(b)), and higher
in the crust, at 6.3 km (Fig. 7(a); point 3, Fig. 6(b)). It ap-
pears that instability is nucleated simultaneously at all three
points in the fault.

4. Discussion

We have shown in this paper that the incorporation of a
“smeared” rate and state formulation of friction evolution
into otherwise bulk Mohr-Coulomb elastic plastic constitu-
tive behaviour is capable of generating unstable behaviour
within deforming fault gouge. This behaviour is identical to
that demonstrated in other applications of rate and state de-
pendant constitutive behaviour to discrete sliding surfaces
(e.g. Tse and Rice, 1986; Lorig and Hobbs, 1990) in that an
unstable event is accompanied by a stress drop, frictional
evolution, and stick-slip behaviour. As indicated above, this
approach is equivalent to the introduction of smeared dam-
age mechanics into continuum codes (Lyakhovsky, 2001;
Lyakhovsky et al., 2001). Again, as with other numerical
studies of unstable sliding of discrete surfaces the recur-
rence time between unstable events seems to be controlled
by the elasticity of the system, as discussed by Rice (1983),
Rice and Tse (1986), and by Tse and Rice (1986), and is
dramatically short in comparison to recurrence times on nat-
ural faults. Various attempts have been made to address this
problem with possible solutions including thermal pressur-
ization (Sibson, 1973; see Noda and Shimamoto, 2004, for a
review) and various aspects of melt generation (see Hirose
and Shimamoto, 2004, for a review) with various degrees
of success. An interesting alternative to the introduction
of increasingly complex mechanisms has been explored by
lio (2004, this volume) in the form of feedback coupling
between far-field sliding on a subduction zone through a
viscous lower crust. This approach replaces the crust with
a system of elastic springs, frictional sliders and dashpots
(Fig. 1) and provides the opportunity for strong instanta-
neous (elastic) and long-term (viscous) feedback interac-
tions between various parts of the crust. These types of cou-
pled mechanical systems are more realistic representations
of the crust than simple spring slider systems; they show
considerable promise and are the subject of future work.

Experimental work by Shimamoto (1986), and Chester
and Higgs (1992) has shown that even for a material that
exhibits velocity weakening at a velocity v = vy, that mate-
rial may evolve at velocities greater than v, to exhibit veloc-
ity strengthening behaviour. This evolution in frictional be-
haviour is particularly appealing because it supplies a mech-
anism of inhibiting unstable slip once it has been nucleated
at velocity v;. Such behaviour may also be important in
enabling relatively long recurrence times between unstable
events and this issue should also be the subject of future
work.

5. Conclusions

Modelling the behaviour from continuum to discrete de-
formation and from quasistatic to fully dynamic behaviour
is one of the great challenges in the Geosciences. Several
approaches have been proposed but none has been able fully
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to reproduce the patterns observed in nature. This contri-
bution provides some encouraging results for future anal-
yses, particularly in investigation and comparison of two
end-member approaches: one in which the best empirical
data are combined to reproduce the basic phenomenon of
earthquakes (this paper belongs to this class) and the other
where earthquakes are simulated by an ‘ab initio’ approach
avoiding, if possible, any empirical description. A novel
computational method for understanding the mechanisms
of earthquakes should be devised as a result of comparison
of these two end members.

In this approach rate and state variable behaviour has
been incorporated into a bulk constitutive model and ap-
plied to prediction of unstable behaviour in a homogeneous
crustal model. Since in the second model described here,
all 30 km thickness of crust was assumed to be represented
by an elastic-plastic Mohr-Coulomb behaviour; there was
no possible feedback between an upper elastic-plastic crust,
and a lower viscous crust. It is suggested that such coupling
and feedback is a requirement before geologically realis-
tic recurrence times for instabilities may be attained, and
before physically realistic energies are involved during the
co-seismic slip periods. Future work based on this approach
should include coupling with fluid flow, and exploration of
the behaviour of fluid flow through the crust associated with
faulting and earthquakes, leading to improved understand-
ing of the feedback between earthquakes, faulting, and fluid
flow.
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Appendix A. Numerical Technique

Modelling of frictional sliding between two surfaces has
been noted by Aagaard et al. (2001) to have been addressed
in two distinct ways, through exploring the evolution of
stress on the fault, and through modelling the rupture be-
haviour during earthquakes. Formulation of the rate- and
state-dependant models (see review by Marone, 1998) has
evolved through research on the former topic, while work
on the latter topic has included either slip-weakening, or
a combination of slip-weakening and rate-weakening be-
haviour. Incorporation of rupture dynamics in simulations
of earthquakes and related processes has been explored in
detail by many researchers including Tse and Rice (1986),
Horowitz and Ruina (1989), Rice (1993), Cochard and
Madariaga (1994), Ben-Zion and Rice (1995), Ben-Zion
(1996), Cochard and Madariaga (1996), Rice and Ben-Zion
(1996), Ben-Zion (2001), and Rice et al. (2001).

Advances in computer chip technology as well as in com-
putational architectures and languages have allowed more
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efficient and faster computational modelling. Aagaard et
al. (2001) note the increase in researchers using finite ele-
ment, finite difference, and boundary integral methods with
which to explore dynamic rupturing, moving into three di-
mensions.

Research has also addressed the incorporation of fric-
tion laws into continuum approximations supposing steady-
state. In this case, Amontons’ law is incorporated into
the continuum formulation, with allowance made for time-
dependence of frictional strength through an arbitrary
strain-rate softening coefficient (Neumann and Zuber, 1995;
Behn et al., 2002), using a Lagrangian visco-plastic finite
element model.

In this paper, allowance is made for rate- and state-
dependence of the frictional strength. An explicit, finite
difference program is used (Fast Lagrangian Analysis of
Continua, FLAC) to explore this non-linear, dynamic be-
haviour. The numerical formulation is described in detail
in the Users Handbook for FLAC (ITASCA, 2002). In
summary, the approach is conceptually similar to that of
dynamic relaxation (proposed by Otter et al., 1966), with
adaptations for arbitrary grid shapes and large-strains; the
finite difference scheme follows the approach of Wilkins
(1964). In the finite difference method (see for example
Desai and Christian, 1977), every derivative in the set of
governing equations is replaced directly by an algebraic ex-
pression written in terms of the field variables (e.g. stress or
displacement) at discrete points in space; these variables are
undefined within elements. The full dynamic equations of
motion are included in the formulation with the aim of en-
suring that the numerical scheme is stable when the physical
system being modelled is unstable. Inertial terms are in-
cluded and kinetic energy is generated and dissipated, with
the influences of such energy generation and dissipation on
the solution fully taken into account.

The general calculation procedure (ITASCA, 2002) first
invokes the equations of motion to derive new velocities and
displacements from stresses and forces. Second, strain rates
are derived from velocities, and new stresses from strain
rates. One timestep is taken for one full computational
cycle. A timestep is chosen which is sufficiently small
that information cannot physically pass from one element
to another in that interval. Disturbances propagate across
several elements only after several cycles. The aim is to
ensure that the calculational ‘wave speed’ always keeps
ahead of the physical wave speed. The stability condition
for an elastic solid discretized into elements of size Ax is

At < Ax/C

where C is the maximum speed at which information can
propagate, typically, the p-wave speed, C,,, where

C,=((K+4G/3)/p)*°  (see Jaeger, 1969).

Here K is the bulk elastic modulus, G is the shear elastic
modulus, and p is the density.

Given the parameters for both models described here,
for the small scale model, the primary wave velocity is
C, = 5589 m.s™! and the shear wave velocity is C; = 3220
m.s~!; for the large scale model, the primary wave veloc-
ity is C, = 1767 m.s™! and the shear wave velocity is
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C, = 1018 m.s~!. This implies that for a typical time step
of 0.000125 seconds, as in the small scale model, the p-
wave travels 0.7 metres and the s-wave travels 0.4 metres.
Similarly, for a typical time step of 0.05 seconds, as in the
large scale model, the p-wave travel 89 metres and the s-
wave travels 51 metres. The element size is always 1 metre
in the small scale model, and is always larger than 100 me-
tres in the large scale model so that the above condition, that
more than one step is always needed to propagate informa-
tion across an element, is always satisfied.

The program performs a ‘Lagrangian’ analysis in that co-
ordinates are updated at each timestep in large-strain mode;
the incremental displacements are added to the coordinates
so that the grid moves and deforms with the material it rep-
resents.

Appendix B. Dynamic Damping

For a dynamic analysis, the damping in the numeri-
cal simulation should reproduce in magnitude and form
the energy losses in the natural system when subjected
to a dynamic loading. What is normally attempted in
a dynamic analysis is the reproduction of the frequency-
independent damping of materials, particularly geologi-
cal materials (Biggs, 1964; Cundall, 1976) at the correct
level. However, in analyses that use a plasticity constitu-
tive model such as Mohr-Coulomb, a considerable amount
of energy dissipation can occur during plastic flow. Thus,
for many dynamic analyses that involve large-strain, only
a minimal percentage of damping (e.g. 0.5%) may be re-
quired. Further, dissipation will increase with amplitude for
stress/strain cycles that involve plastic flow.

For dynamic calculations, a certain fraction of critical
damping is usually required over a given frequency range.
This type of damping is known as Rayleigh damping, where
the fraction of critical damping operating at the centre fre-
quency (in cycle/sec or Hertz) is input by the user. In this
case, we used normal Rayleigh damping, and did not restrict
the model to stiffness or mass-proportional damping.

As part of the dynamic analysis, quiet boundaries (that
is, energy absorbing) were initially applied to the two verti-
cal and lower horizontal boundaries. For reasons discussed
below this approach was later abandoned. Numerical meth-
ods relying on the discretization of a finite region of space
require that appropriate conditions be enforced at the artifi-
cial numerical boundaries. In static analyses, fixed or elas-
tic boundaries can be realistically placed at some distance
from the region of interest. In dynamic problems, however,
such boundary conditions cause the reflection of outward
propagating waves back into the model and do not allow
the necessary energy radiation. The use of a larger model
can minimize the problem, since material damping will ab-
sorb most of the energy in the waves reflected from distant
boundaries. However, this solution leads to a large com-
putational burden. The alternative is to use quiet (or ab-
sorbing) boundaries. The viscous boundary developed by
Lysmer and Kuhlemeyer (1969) is used in this case. It is
based on the use of independent dashpots in the normal and
shear directions at the model boundaries (ITASCA, 2002).

The application of this approach proceeds by assuming
first that the model has been brought to quasi-static equilib-
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rium for the conditions of choice before the dynamic anal-
ysis is begun. In the case of the larger, crustal model, we
are shortening the model using constant velocity boundary
conditions on each vertical boundary. On initiation of the
dynamic analysis, including application of the quiet bound-
aries, the code calculates the reaction forces obtained at the
two vertical boundaries, and then replaces the applied ve-
locity boundary conditions with equal and opposite reaction
forces for the duration of the dynamic analysis. However,
at least for the purpose of the crustal models run here, ap-
plying reaction forces instead of constant velocities at the
boundaries leads to entirely the wrong result. The veloc-
ity boundary conditions appear to provide a driving force
for the ‘earthquake system’ that is not sustained with the
reaction force boundary conditions. Instead, in the latter
case, as the model tends to equilibrium (remembering that
the top surface is free to move), the forces in the model
decrease and, as a consequence, in order to maintain the re-
action forces at the boundary conditions, the code imposes
higher and higher velocities. At the same stage in a num-
ber of models (~ 6 x 10° steps or ~ 20 x 10° seconds),
the variables which are being tracked by histories become
completely stable, and remain stable out past 107 steps or
3 x 10’ seconds. Quiet boundaries were therefore not ap-
plied for any further experiments. This approach worked
also for the smaller, shearing model for which it was suf-
ficient to initialize the velocity boundary conditions before
beginning the dynamic analysis. We rely on material damp-
ing and the larger model for absorption of reflected energy.

Appendix C. Mesh Sensitivity

Rice (1993) was the first to focus on the dependence
of the results of numerical simulations on cell, or compu-
tational grid, size, allowing for ‘inherently discrete’ fault
models (fault models that have no well-defined continuum
limit). Ben-Zion (2001) summarises the resulting research
on the dependency of numerical results on the grid size,
which occurs for simulations in which the assumed consti-
tutive laws do not include a length scale over which ma-
terial properties evolve, one example being the frictional
law (Behn et al., 2002). Further (see Ben-Zion, 2001),
it is suggested by Rice and Ben-Zion (1996) that earth-
quake complexities observed from simulations with dis-
crete and continuum systems (defined according to the suc-
cess or otherwise of the coupling between the mathemati-
cal structures and the numerical calculations) are generated
primarily by strong fault heterogeneities rather than any
time-dependence of the system through quasi-static (Tse
and Rice, 1986), quasi-dynamic (Rice, 1993; Ben-Zion and
Rice, 1995), or fully dynamic (Rice and Ben-Zion, 1996:
‘we have found no evidence that inclusion of fully iner-
tial elastodynamics brings small event complexity of G-
R (Gutenberg-Richter) type to our smooth fault models’)
simulations. Failure in a model may include the gradual
and cooperative behaviour of many numerical cells (a well-
behaved continuum behaviour); or failure may occur dis-
continuously with slip so that numerical zones may fail in-
dividually for any grid size (a poorly-behaved continuum
behaviour, ‘inherently discrete’).

The models represented here exhibit continuum be-
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haviour, according to this description, in that many numeri-
cal cells behave cooperatively, as shown in Figs. 4 and 7.
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