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An important observation associated with seismic activity on the Nagamachi-Rifu Fault is the existence of
tabular, fluid rich zones at mid-crustal levels. These zones resemble the “bright spots” seen in many seismic
images of the crust worldwide. The aim of this paper is to develop the mechanical foundations for the formation
of such zones. To do so requires an understanding of the distribution of pore fluid pressure in a deforming crust.
In a hydrostatically stressed porous material, the pore fluid pressure should equal the mean stress in order to
keep the pores from collapsing. Past discussions of this subject imply very high pore fluid pressures, two to
three times lithostatic. Considerations of plastic yielding together with continuity arguments, particularly at the
plastic/viscous transition, suggest that pressures closer to lithostatic are more the norm. Particularly just below
the plastic/viscous transition in compressive regimes, this leads to collapse of porosity with an associated collapse
in permeability resulting in an over-pressured region comprising that part of the lower crust that is characterised
by high mean stress. The base of the plastic region is at a strong discontinuity in stress difference where localised
deformation occurs. Tabular, dilatant fluid filled regions develop at and above this zone in close association
with dilatant tensional zones in the hanging-walls of faults and diffuse shear zone development in the upper to
mid crust. Some of these dilatant zones ultimately develop into listric transitions between steeply dipping, upper
crustal faults and shear zones associated with the plastic/viscous transition. These zones are also the sites of strong
mineral alteration that may, particularly in ancient examples, also contribute to the delineation of “bright spots”
in seismic images. For high geothermal gradients another class of fluid filled layers, in the form of “stagnant fluid
zones”, develops below the region of high mean stress in the viscous lower crust. Mineral alteration associated
with this second class of fluid rich layers is predicted to be asymmetric in distribution as opposed to the first class
that would be homogeneous in the mode of alteration.
Key words: Fluid reservoirs, bright spots, plastic viscous transition.

1. Motivation
Iio and Kobayashi (2002), in introducing the First Sendai

Conference, proposed that seismogenic faults in the up-
per crust may be associated with localised extensions into
the lower, viscous crust and that aseismic accumulation of
strain within these aseismic zones ultimately nucleates seis-
mic failure on the upper crustal fault. Further more, they
proposed that precursor, aseismic slip accelerates prior to
the seismic event and that such accelerated motion may be
expressed as accelerated tilt and/or distortion at the surface,
thereby providing an observable precursor deformation in
advance of a major seismic event.
The proposal is that there is an example of such a down-

ward continuation of a seismogenic fault in the Sendai re-
gion of NE Japan where the Nagamachi-Rifu Fault can be
imaged by seismic methods down to the base of the seis-
mogenic zone. This fault was the site of a magnitude 5
earthquake in 1998 at a depth of 12 km. In addition, seis-
mic studies reveal the existence of a thin, shallow dipping
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S-wave reflector, below the base of the seismogenic zone,
which is interpreted as a fluid filled shear zone (see Umino
et al., 2002; Drummond et al., 2004, this volume). It is pro-
posed that localised, aseismic shear flow within this shal-
low dipping zone preceded and nucleated the main seismic
event on the Nagamachi-Rifu Fault higher in the crust.
These observations prompt the following important ques-

tions regarding earthquake nucleation:

• What are the processes that lead to the accumulation
of fluid rich regions in the mid crust?

• What is the geometry of such regions?

• Are these regions shear zones that could act as sites for
aseismic slip?

In order to address these questions, this paper is structured
as follows: Since we are concerned with the origin and
significance of fluid filled regions in the crust it is funda-
mental that we first establish the fluid pressure distribution
in the crust; we consider this in Section 2. If one equates
the pore fluid pressure with the mean stress and follows the
discussions of Petrini and Podladchikov (2000) and Stuwe
and Sandiford (1994) then one concludes that the pore fluid
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pressures can be considerably larger than lithostatic. We at-
tempt to resolve discrepancies between these results and the
“classical” assumption that the fluid pressure below some
relatively shallow seal is approximately lithostatic in Sec-
tion 2. The transition between dominantly plastic and dom-
inantly viscous behaviour in the crust is commonly por-
trayed as a detachment zone as well as a region where fluids
are “ponded” (see for example, Cox et al., 1990). We con-
sider these issues in Section 3, and in Section 4 we present
some numerical simulations designed to clarify the discus-
sion. Finally in Section 5 we present some conclusions
with particular relevance to the Sendai example and con-
sider the implications of using elastic-plastic-viscous con-
stitutive laws to represent the mechanical behaviour of the
crust.

2. Fluid Pressure Distribution in the Crust
2.1 Introduction
For simplicity we consider a two dimensional situation

with Cartesian coordinate axes xi (i = 1, 2) and x2 vertical,
in which the total stresses are σi j , with σ1 ≥ σ2 and com-
pressive stresses positive. We define the deviatoric stresses
to be σ

/

i j given by:

σ
/

i j = σi j − δi jσ
o (1)

where σ o is the mean normal stress in the rock mass, i.e.,
σ o = σkk/2. δi j is the Kronecker delta. We also define the
effective stresses by:

σ eff
i j = σi j − δi j Pf (2a)

σ
/eff
i j = σ

/

i j − δi j Pf (2b)

where Pf is the fluid pressure in the rock pore space. The
concept of a deviatoric stress was introduced historically
because the constitutive behaviour of viscous (pressure in-
sensitive/temperature sensitive) materials is not (to first or-
der) influenced by normal stresses but by only the shear
stresses (see Nadai, 1950). On the other hand, the consti-
tutive behaviour of plastic (pressure sensitive/temperature
insensitive) materials is strongly influenced by normal
stresses. Thus, the concept of effective stress was intro-
duced (see Paterson, 1978 for a discussion) specifically for
the plastic deformation of materials where the strain is in-
fluenced by the pore fluid pressure that tends to force the
grains apart. The notions surrounding the concepts of devi-
atoric stress and effective stress are commonly used inter-
changeably in a loose manner in the geoscience literature
but the distinctions between them become fundamental in
the following discussion. Note that from (1) and (2),

(σ1 − σ2) = (σ
/

1 − σ
/

2 ) = (σ eff
1 − σ eff

2 ) (3a)

(σ1 + σ2) = (σ
/

1 + σ
/

2 ) + 2σ o = (σ eff
1 + σ eff

2 ) + 2Pf (3b)

What defines the values and orientations of principal
stresses in a deforming rock mass? In general the consti-
tutive relations plus the boundary conditions define the val-
ues and orientations of principal stresses. In addition, in

materials that exhibit yield behaviour, an extra requirement
is the existence of a flow rule. However some general state-
ments can be made without becoming specific about con-
stitutive relations and boundary conditions. The condition
for dynamic equilibrium is given by the generalisation of
Newton’s first law of motion:

ρr
∂ui

∂t
= ∂σi j

∂x j
+ ρr gi (4)

where ρr is the rock density, ui are the components of the
particle velocity and gi are the components of the accelera-
tion due to gravity. If we neglect particle accelerations and
shear stresses parallel to x1 and x2, and gradients in stress
parallel to x1, then (4) reduces to:

∂σ22

∂x2
= −ρr g2 (5)

so that for these conditions the vertical normal stress (which
under these conditions is equal to σ2) is given by ρr gh
where h is the vertical distance below the surface of the
Earth and g = g2 is the vertical component of the accel-
eration due to gravity. If particle accelerations are signif-
icant or shear stresses parallel to x1 and x2 are important,
as is the case with regional buckling or the development of
horizontal detachment zones then (5) is not necessarily ap-
proximately true. Some examples are given by Petrini and
Podladchikov (2000).
For a power law viscous material, the value of σ1 is then

fixed by the constitutive relation and (3a):

σ1 − σ2 = σ
/

1 − σ
/

2 = A1/N D1/N exp{Q/N RT } (6)

where A is a material constant, D is the deformation rate,
Q is an activation energy, R is the gas constant, T is the
absolute temperature and N is an exponent normally in the
range 1–5 (see Nicolas and Poirier, 1976). It is important
to note that the constitutive relation for power-law viscous
materials is written in terms of the second invariant of the
deviatoric stresses, but can be reduced to (6) (see Jaeger,
1962).
For a plastic material, typically represented by a Mohr-

Coulomb or a Drucker-Prager material, or some variant
between these two extremes (see Borja and Aydin, 2004,
2686–2693), the stress state is governed by a flow rule
which specifies the direction and magnitude of the incre-
mental plastic strain as a vector normal to a plastic potential
surface which, in turn, is defined in terms of q, a scalar
function of the stresses and of the dilatancy of the material.
For a Mohr-Coulomb material (see Vermeer and de Borst,
1984):

q = σ eff
1 − Nϕσ eff

2 − 2c
√

Nϕ (7)

Here, Nϕ = (1+ sinϕ)/(1− sinϕ), c is the cohesion and ϕ

is the dilation angle. The stress rate can then be expressed
in terms of the deformation rate and the total (elastic plus
plastic) strain rate (see Vermeer and de Borst, 1984, p. 24).
In general the stress rate cannot be analytically integrated to
obtain the stresses for a given strain history and numerical
procedures are required. Thus the values and orientations
of the principal stresses in a Mohr-Coulomb material are
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(a) (c)

(b) (d)

Fig. 1. Mohr diagrams showing the influence of various assumptions concerning the fluid pressure on the effective stress state. (a) Transformation, due
to a fluid pressure equal to the mean stress, of a stress state defined by σ1 and σ2 in a viscous solid with no tensile yield. (b) Transformation, due to a
fluid pressure less than the mean stress, of a stress state defined by σ1 and σ2 in a viscous solid with a tensile yield stress, T . (c) Transformation, due
to a fluid pressure equal to the mean stress, of a stress state defined by σ1 and σ2 in a Mohr-Coulomb solid with a tensile yield stress, T , and failure
envelope defined by the cohesion, c, and the friction angle, θ . The effective stress state now exceeds both the Mohr-Coulomb failure envelope and
the tensile failure criterion and hence cannot be sustained. (d) Transformation, due to a fluid pressure that just enables yield to occur, of a stress state
defined by σ1 and σ2 in a Mohr-Coulomb solid with a tensile yield stress, T , and failure envelope defined by the cohesion, c, and the friction angle, θ .

not defined solely by the boundary conditions and constitu-
tive relation, as is the case in an elastic or a power-law vis-
cous material, but also by the history of incremental strains,
which in turn is a function of the history of dilatancy and of
the history of fluid pressure.
2.2 Pore pressure distribution in deforming materials
It is widely observed that the uppermost crust is divided

into more or less horizontal compartments in which the pore
pressure gradient alternates between approximately hydro-
static and approximately lithostatic (see Hunt, 1990). In
the absence of a non-hydrostatic stress field, over a specific
column of rock, the mean pore pressure and the mean pore
pressure gradient must be lithostatic. This follows from the
fact that in a porous rock under a hydrostatic stress state the
fluid pressure in the rock must be less than or sufficient to
keep the pore space open, so that if the confining pressure is
close to the strength of the rock, the pore pressure at a par-
ticular point must be similar in magnitude to the mean pres-
sure given by ρr gh. This is the value of pore pressure clas-
sically adopted by metamorphic petrologists. The observed
distribution of compartments seems to be the result of self-
organisation resulting from two competing processes:
1. The tendency to move towards a global equilibrium

state where the pore pressure gradient is everywhere hydro-
static even though the mean pore fluid pressure is lithostatic.
The time scale, τ , for this to happen is given by the diffusion

equation,
τ = L2/κ (8)

where L is a length scale for the system and κ is the hy-
draulic diffusivity that in turn is given by (see Phillips,
1991)

κ = K c2/μφ (9)

where c is the isothermal speed of sound in the rock (ca.
1.4 × 103ms−1), μ is the kinematic viscosity of the fluid
(for water at 0◦C ca. 10−6m2s−1), and φ is the porosity.
This means that for a rock with porosity 0.1, the magni-
tude of κ is ca. 1.96 × 1013 K. Hence, layers 5 km thick,
of different permeabilities, will evolve towards this global
hydrostatic state at different rates depending upon their per-
meabilities. A layer with permeability of 10−17m2 will take
ca. 3,950 years to reach an equilibrium hydrostatic gradient
condition whereas the same thickness layer with permeabil-
ity 10−18m2 will take ca. 39,500 years. These time scales
are short geologically so that in the absence of devolatilisa-
tion or supply of fluids from the mantle, a lithospheric pore
pressure gradient will rapidly relax to a hydrostatic gradi-
ent.
2. The mechanical necessity that only columns of finite

height of fluid with hydrostatic pore pressure gradients can
be supported. This height is controlled by the generation
of tensile effective stresses at the top of the column that
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hydrofracture the top of the column and the generation of
compressive deviatoric stresses at the base of the column
that tend to close the pore space by viscous flow. The
height of these compartments varies according to whether
the stress state is hydrostatic, compressive, extensional or
transpressive.
The development of fluid pressure compartments by

these processes has been elegantly discussed by Connolly
and Podladchikov (2000). The above discussion is true for
a rock mass under hydrostatic stress conditions. If the rock
mass is deforming, other considerations need to be made
and these are considered below.
2.2.1 Pore pressure in deforming power-law viscous

material We first explore the proposal that for a porous
power-law viscous material under non-hydrostatic stress the
pore pressure needed to keep the pores open is equal to
the mean total stress, (σ1 + σ2)/2 (Fig. 1(a)). This can be
substantially greater than the lithostatic pressure since the
mean deviatoric stress in such a material (see Stuwe and
Sandiford, 1994) is:

(σ
/

1 + σ
/

2 )/2 = σ
/

2 + 0.5A1/N D−1/N exp{Q/N RT } (10)

From (6) and (3) the mean total stress in a power law vis-
cous material is given by:

(σ1 + σ2)/2 = σ2 + 0.5A1/N D−1/N exp{Q/N RT }, (11)

which approaches σ2 as T increases and/or D decreases.
If σ2 is solely due to the overburden pressure (as indicated

by Eq. (5)) then the mean stress approaches lithostatic for
high T and/or low D but otherwise is substantially larger
(see Stuwe and Sandiford, 1994 for a discussion).
The above discussion regarding the magnitude of the

pore fluid pressure in a deforming porous power law ma-
terial is true so long as the material can support relatively
large tensile effective deviatoric stresses. If the viscous ma-
terial exhibits a tensile failure mode then the situation is bet-
ter represented by Fig. 1(b). It should be noted that exper-
imental work in order to establish constitutive relations for
power law viscous materials containing fluids is singularly
lacking. Some of the best approaches are those of Tvergaard
(1987), Needleman (1994) and Bercovici and Ricard (2002)
discussed by Regenauer-Lieb (1999) and Regeneauer-Lieb
and Yuen (2003). These constitutive relations show yield
behaviour, a feature that is lacking in the classical consti-
tutive relations for geological viscous materials and such
yield behaviour would further restrict the possible states of
fluid pressure as illustrated for plastic materials below.
2.2.2 Pore pressure in a deforming plastic, Mohr-

Coulomb material In the upper part of the crust, the de-
formation style is dominated by plastic (that is, pressure de-
pendent, temperature independent) constitutive behaviour.
Various forms of behaviour may be assumed but the com-
mon one is characterised by the Mohr-Coulomb constitutive
law where the constitutive behaviour is characterised by a
yield surface defined (see Vermeer and de Borst, 1984) by:

f = σ eff
1 − Nθσ

eff
2 − 2c

√
Nθ (12)

Here, f is the yield function, Nθ = (1+ sin θ)/(1− sin θ),
c is the cohesion and θ is the friction angle. Note the

resemblance to the plastic potential function, q, defined
in (7). If f = q the constitutive relation is associative;
otherwise it is non-associative. For f = 0 the material is at
plastic yield in shear and for ∂ f/∂t = 0, remains at yield,
where t is time; for f < 0 the material is undergoing elastic
deformation; the material cannot support stress states for
which f > 0. It follows from (12) and (3) that, at yield:

(σ1+σ2)/2 = σ2(Nθ +1)/2− Pf (Nθ −1)/2+c
√

Nθ (13)

For θ = 30◦, Nθ = 3 and so, (σ1+σ2)/2 = ρr gh +c
√
3 for

σ2 = ρr gh = Pf . Notice also that the shear stress is given
by:

(σ1−σ2)/2 = σ2(Nθ −1)/2− Pf (Nθ −1)/2+c
√

Nθ (14)

For θ = 30◦ and σ2 = ρr gh = Pf , (σ1−σ2) = 2c
√
3. Here

Pf is the pore fluid pressure and in this instance corresponds
to that pore fluid pressure required to induce yield. Also,
if Pf = 0 in Eq. (13), then one recovers the result of
Petrini and Podladchikov (2000) that the mean stress in a
dry, cohesionless Mohr-Coulomb material with θ = 30◦ is
2ρr gh. However, the outcome of assuming the pore fluid
pressure is equal to the mean stress is illustrated in Fig. 1(c)
where it is clear that the effective stress state now exceeds
the yield in shear and commonly also in tension.
Although Eqs. (13) and (14) give the mean stress and the

shear stress at yield for a plastic material we still need the
pore pressure needed to take the total stress to yield (see
Fig. 1(d)). This is given by:

Pf = (σ1 + σ2)/2 − (σ1 − σ2)/2 sin θ + c/ tan θ. (15)

This is the pore pressure at failure that just keeps the pore
space open without exceeding the yield stress. For θ = 30◦

the largest σ1 can be is (3σ2 + 2c
√
3) which corresponds to

the situation where the stress circle just touches the failure
envelope with no fluid present. Otherwise, if one assumes
that σ2 = ρr gh, then Pf is always less than (3ρr gh +
2c

√
3)/2 and, in particular, the fluid pressure is hydrostatic

for σ1 = 2.26ρr gh + 2c
√
3 assuming a crustal density of

2700 kg m−3. Thus it is quite possible in a deformingMohr-
Coulomb material to have a hydrostatic pore fluid pressure
that satisfies the mechanical constraints of keeping the pore
volume open.
2.2.3 Implications for fluid flow regimes in the crust

The governing equations for pore fluid flow are (see Bear,
1972; Scheidegger, 1974):

∂ν1

∂x1
+ ∂v2

∂x2
= 0 (16)

ν1 = K

μ

(
−∂ Pf

∂x1

)
(17)

v2 = K

μ

(
−∂ Pf

∂x2
+ ρ f g

)
(18)

where vi are the components of Darcy fluid flow velocity,
K is the permeability, μ is the dynamic fluid viscosity, ρ f

is the fluid density. Equation (16) is the continuity equation
that describes the mass conservation of pore-fluid at each
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point in the crust for an incompressible fluid with no inter-
nal fluid sources; Eqs. (17) and (18) are the Darcy equations
for flow along horizontal and vertical pressure gradients in
the crust. In the simple case we want to consider here we as-
sume that there is no horizontal pore pressure gradient and
so ν1 = 0 and (16) reduces to ∂ν2/∂x2 = 0. Connolly and
Podladchikov (2004) have discussed the significance of as-
suming the fluid pressure to be equal to the mean stress in
the viscous regime and have shown, on the basis of such an
assumption, that just beneath the plastic/viscous transition
there exists a regime where the gradient of hydraulic head
is negative so that fluid flow is downwards. Below this is
a regime where the gradient in hydraulic head is zero; this
corresponds to a regime of stagnant fluid flow. Connolly
and Podladchikov then proceed to discuss the implications
of the existence of these regimes for the interpretation of
layering identified by seismic imaging in the lower crust.
We explore these concepts further in Sections 3, 4 and 5.

3. Coupling between the Upper and Lower Crust
Application of Eqs. (16) and (18) indicates that at the

boundary between plastic and viscous materials, the ver-
tical component of fluid flow and the gradient of pore pres-
sure must be continuous. If one adopts (15) and (11) as
the equations for the pore fluid pressure in the plastic and
viscous regimes respectively, then these conditions of con-
tinuity are not fulfilled at the boundary in the general case,
since the pore pressure in the viscous material at the bound-
ary exceeds that in the plastic material by approximately
[0.5A1/N D−1/N exp{Q/N RT }]. The maximum pore pres-
sure at the boundary is fixed by the plastic material and
since the matching pore pressure in the viscous material
needs to be significantly less than that given by (11), the
pore space in the viscous material must collapse with a re-
sultant decrease in permeability. This collapse in perme-
ability presumably results in very low permeabilities how-
ever increases in permeability induced by deformation can
result in the transient development of higher permeability.
This has been incorporated into the numerical models pre-
sented in Section 4 in the form of hydrofracturing; this
means that for plastic materials, if f = 0, where f is the
yield condition defined by (12), or the tensile yield strength
is reached for plastic or viscous materials then the perme-
ability is increased by a factor of ten. Thus the outcome
of imposing conditions of continuity of fluid flow across
the plastic-viscous boundary is the development of a low
permeability boundary just below the interface with over-
pressured fluid below the layer. The thickness of this layer
is governed by Eqs. (15) and (11) and hence is a function
of the geothermal gradient and the constitutive parameters
relevant to a particular lithology.

4. A Numerical Example
4.1 Properties of the model
In order to be specific about the principles discussed

above we present a numerical example of a section through
the crust, 100 km wide and 30 km deep. The top 15 km
is comprised of a plastic, elastic-Mohr-Coulomb material
whilst the lower 15 km is comprised of an elastic-power
law viscous material. The crust is lithologically homoge-

Fig. 2. Initial geometry and boundary conditions for the numerical models.
Some models were run with the lower temperature fixed at 1200◦C.

neous with constitutive properties similar to those of gran-
ite (see Table 1). A weaker, plastic fault dipping at 45◦ is
included in the plastic part of the crust in order to simu-
late the Nagamachi-Rifu Fault in the Sendai situation (see
Fig. 2). The temperature at the top of the crust is fixed at
0◦C whilst that at the base is fixed at 600◦C, corresponding
to the Sendai situation. We also consider the result of in-
creasing the thermal gradient so that the base of the crust is
1200◦C. The crust is fully saturated with water. No advec-
tion of heat in the fluid as it moves is included. The fluid
pressure in the plastic part of the model is given by Eq. (15).
The permeability of the crust is set initially everywhere at
10−15m2. The results flowing from these models are in-
sensitive to the absolute values of permeability assumed so
the values selected here are somewhat arbitrary. Although
somewhat higher values (say 10−18m2 may be measured in
intact core, it is widely observed (see for instance, Schei-
degger, 1974) that permeabilities measured at a regional
scale are generally several orders of magnitude larger than
laboratory determined values due to the existence of other
imperfections such as joints at the larger scale. Hence val-
ues of 10−15m2 to 10−16m2 are reasonable. In the viscous
part of the crust, if the mean stress given by Eq. (11) is
greater than (σ2 + T ), where T is the tensile strength of the
viscous material, the pore pressure is set at (σ2 + T ) and
the permeability collapsed to 10−16m2; otherwise the pore
pressure is set to σ2. The model is shortened horizontally at
0.7×10−13s−1 with roller boundary conditions at the base of
the model. In order to simulate natural observations, a pres-
sure seal consisting of a layer with permeability 10−16m2 is
placed at a depth of 3 km with a hydrostatic fluid pressure
gradient above the seal.
An explicit, commercially available, finite difference

program is used (Fast Lagrangian Analysis of Continua,
FLAC) to explore the non-linear behaviour within this
model. In the finite difference method (see for example
Desai and Christian 1977), every derivative in the set of
governing equations is replaced directly by an algebraic ex-
pression written in terms of the field variables (e.g., stress
or displacement) at discrete points in space; these variables
are undefined within elements although physical and chem-
ical parameters such as elastic moduli, permeability and
thermal conductivity are defined within elements. The dy-
namic equations of motion are included in the formulation
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Table 1. Physical properties used in numerical models

Property: units Value

Elastic mohr coulomb and power law
viscous materials:

Shear Modulus (plastic layer): Pa 2.8 × 109

Shear Modulus (viscous layer): Pa 5.47 × 1010

Bulk Modulus (plastic layer): Pa 4.67 × 109

Bulk Modulus (viscous layer): Pa 10.61 × 1010

Bulk Modulus (water): Pa 2 × 108

Friction Angle (bulk material): degrees 30

Friction Angle (fault): degrees 20

Dilation Angle (bulk material): degrees 1

Dilation Angle (fault): degrees 10

Cohesion (bulk material): Pa 2 × 107

Cohesion (fault): Pa 1 × 107

Tensile cut off: Pa 2 × 106

Density of Rock: kg m−3 2700

Density of Water: kg m−3 1000

N 1.8

Q: J mol−1 151 × 103

A: Pa−N s−1 4.17 × 10−20

Thermal Conductivity: W m−1 K−1 2.5

Specific Heat: J kg−1 K−1 1.255 × 103

Burger material (Fig. 7):

Kelvin bulk modulus: Pa 11.66 × 1010

Kelvin shear modulus: Pa 7.0 × 1010

Kelvin viscosity: Pa s; given by η = η0 exp(Q B/RT )

η0 : Pa s 2.844 × 1019

Q B : J mol−1 13307

Maxwell bulk modulus: Pa 11.66 × 1010

Maxwell shear modulus: Pa 7.0 × 1010

Maxwell viscosity = Kelvin viscosity

Mohr-Coulomb cohesion (bulk material): Pa 1.0 × 107

Mohr-Coulomb cohesion (fault): Pa 1.0 × 107

Mohr-Coulomb friction angle (bulk material): degrees 30

Mohr-Coulomb friction angle (fault): degrees 20

Mohr-Coulomb dilation angle (bulk material): degrees 10

Mohr-Coulomb dilation angle (fault): degrees 0

Tensile cut off: Pa 5.0 × 106

with the aim of ensuring that the numerical scheme is stable
when the physical system being modelled is unstable. Iner-
tial terms are included and kinetic energy is generated and
dissipated.
The general calculation procedure (ITASCA, 2002) for

the coupled deformation-fluid flow-thermal conduction
problem explored here involves three distinct modes; these
three modes correspond respectively to the individual pro-
cesses of deformation, fluid flow and thermal conduction
and they are performed sequentially during the calculation.
The first, or deformation mode, first invokes the equations
of motion to derive new velocities and displacements from
stresses and forces. Second, strain rates are derived from
velocities, and new stresses from strain rates using defined
constitutive relations and flow rules. This mode uses in-
puts such as temperature and pore fluid pressure from other

modes to calculate dependent parameters such as strain-
rate or effective stress. The second, or fluid flow mode,
invokes Darcy’s Law to derive new Darcy flow velocities
from pore pressure updates supplied by the deformation
mode; these pore pressure changes are induced by dilational
changes during deformation. The third, or thermal conduc-
tion mode, invokes Fourier’s Law to derive the new temper-
ature distribution in the crust given the deformation that has
occurred up to that stage. As indicated elsewhere, advec-
tion of heat in the moving fluid is not explored in this paper.
This new temperature is passed on to the next deformation
mode to influence the strain rate and stress. One time step
is taken for one full computational cycle. Time steps are
chosen for each of the deformation, fluid flow, and ther-
mal transport modes, which are sufficiently small that infor-
mation cannot physically pass from one element to another
in that interval. Disturbances propagate across several ele-
ments only after several cycles. The aim is to ensure that the
calculation ‘wave speed’ always keeps ahead of the physi-
cal, fluid and thermal wave speeds. These critical time steps
are calculated within the program using expressions for the
velocity of stress propagation through an elastic solid, and
the diffusion equations for transport of fluid pressure in a
porous medium and for thermal diffusion. Details are given
in the FLAC Users’ Manual (ITASCA, 2002). The usual
procedure is to perform a number of cycles in the defor-
mation mode with no fluid flow or thermal transport, then
switch to the fluid flow mode with no deformation or ther-
mal transport, and then switch to the thermal mode with no
deformation or fluid flow. This sequence is then repeated
many times. Care must be taken to ensure that throughout
this switching, the number of time steps performed within
each mode preserves the true physical time for the coupled
deformation-fluid flow-thermal transport problem. The pro-
gram performs a ‘Lagrangian’ analysis in that coordinates
are updated at each time step in large-strain mode; the incre-
mental displacements are added to the coordinates so that
the grid moves and deforms with the material it represents.
4.2 Results of numerical modelling
Figures 3 and 4 show the distribution of stress, pore pres-

sure and deformation after 2% total horizontal shortening.
Figure 3(a) is the vertical distribution of (σ1 − σ2) and il-
lustrates the influence of pore pressure particularly on the
plastic part of the crust where the concept of effective stress
is important. The stress difference in the plastic part of the
crust is 2c

√
3 as indicated in Section 2 whereas in the vis-

cous part the stress difference is given by Eq. (6). Some
comment is needed on Fig. 3(a) because the distribution
of stress difference through the crust is not the classical
“Christmas tree” distribution. We address this in Section 5.
Figure 3(b) shows the vertical distribution of the mean to-
tal stress; this again follows Eqs. (11) and (13); the mean
stress is approximately (ρr gh + c

√
3) in the plastic regime

but increases rapidly at the plastic/viscous boundary as dis-
cussed by Stuwe and Sandiford (1994) and indicated by
Eq. (11). Figure 3(c) shows the vertical distribution of pore
fluid pressure. Notice that this distribution is close to litho-
static, in the low geothermal gradient example. In the high
geothermal gradient example, the pore pressure rises above
lithostatic in the region of porosity collapse just below the
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plastic/viscous transition but ultimately recovers to litho-
static towards the base of the crust. The vertical distribu-
tion of hydraulic head that follows from Fig. 3(c) in the low
geothermal gradient example indicates that there are no re-
gions of downward flow or of stagnant flow whereas in the
high geothermal gradient example two stagnant flow layers
are developed (see Connolly and Podladchikov, 2004).
Figure 4(a) shows the spatial distribution of (σ1 − σ2)

and highlights the discontinuity of stress difference at the
top of the viscous layer. This correlates with a concentra-
tion of the maximum shear strain rate in Fig. 4(b) indicating
a listric transition from the initial fault dipping at 45◦ into a
shear zone corresponding to the base of the plastic regime.
Figure 4(c) shows the spatial distribution of the mode of
plastic failure whilst Figure 4(d) shows the spatial distri-
bution of permeability arising from hydrofracture evolution
together with the resulting Darcy flow pattern.
Both the plastic and viscous portions of the crust dilate

during deformation and the patterns of dilatancy are shown
in Fig. 5 for various amounts of shortening and for the two
geothermal gradients of 20◦C km−1 and 40◦C km−1. These
dilatant regions correspond to regions of higher porosity
and hence higher fluid content. It is proposed that these cor-
respond to the “bright-spots” identified in S-wave seismic
images. The crust as a whole has deformed in these models
by the formation of a plastic wedge as shown in Fig. 6(a).
The dilatant regions are commonly tabular in shape with
shallow dips and correspond to dilatant zones on the imme-
diate hanging-wall of the fault as shown in Fig. 6(b) or to en
echelon dilatant arrays within broad shear zones as shown
in Fig. 6(c). This en echelon pattern is particularly well de-
veloped in Fig. 5(c). In all cases these dilatant regions have
failed in tension and correspond to regions of increased per-
meability. Fluid flow is instantaneously increased at yield
with strong flow upwards across the isotherms as shown
in Fig. 4(d). These regions contrast with those proposed
by Connolly and Podladchikov (2004) in that they are not
“ponding zones” but regions of active upward transport of
fluid when yielding occurs.

5. Summary and Discussion
At first thought, the proposal that the pore pressure in

a deforming rock mass should be equal to the mean rock
stress seems quite realistic. However, this situation is not
possible in a plastic material characterised by a yield func-
tion because in general the material will yield either in shear
or tension before this pore pressure is attained. In a Mohr-
Coulomb material with a friction angle of 30◦ and with
σ2 = ρr gh the pore pressure at yield in compression is
always less than (3ρr gh + 2c

√
3)/2. Moreover, in the vis-

cous regime, continuity of normal stress, pore pressure and
pore pressure gradient across the plastic/viscous transition
means that large pore pressures consistent with the mean
stress distribution discussed by Stuwe and Sandiford (1994)
cannot be achieved and the pore space within the upper part
of the viscous regime must collapse since the pore pressure
cannot match the mean rock stress. This situation is re-
inforced if the viscous material cannot support significant
effective tensile stresses when the maximum fluid pressure
possible is (σ2 + T ), or approximately (ρr gh + T ) where T

(a)

(b)

(c)

Fig. 3. Plots of stress and pore pressure against depth for low geothermal
gradient (20◦C km−1) on the left and high geothermal gradient (40◦C
km−1) on the right. (a) Plot of (σ1 − σ2) against depth. (b) Plot of the
mean stress, (σ1 + σ2)/2, against depth. (c) Plot of pore fluid pressure
against depth. For the low geothermal gradient, the pore pressure jumps
by an amount equal to the viscous tensile strength at the plastic/viscous
transition but otherwise the gradient is close to lithostatic except in the
top 3 km. For the high geothermal gradient, the pore pressure again
jumps by an amount equal to the viscous tensile strength (somewhat ex-
aggerated here to emphasise the effect) at the plastic/viscous transition
but otherwise, again, the gradient is close to lithostatic except in the
top 3 km. Following the arguments presented by Connolly and Podlad-
chikov (2004) there are now two zones defined in the lower crust where
fluid stagnation occurs. Above each of these zones the fluid flow is
downwards whilst below each of these zones the fluid flow is upwards.

is the tensile strength of the viscous material.
The outcome is that the fluid pressure distribution

through the crust must be close to lithostatic except at the
base of the region of porosity collapse below the plas-
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(a) (c)

(b)

(d)

Fig. 4. Zoom into model with low geothermal gradient in vicinity of fault. Total shortening is 2%. (a) Plot of (σ1 − σ2). Fault outlined in green.
Red is minimum and corresponds to 0–500 MPa; Darkest blue is maximum and corresponds to 3 GPa and greater. Contour interval: 500 MPa. (b)
Plot of instantaneous maximum shear strain rate. The highest strain rate is 1.6 × 10−11s−1 (dark blue); light green is 0.64 × 10−11s−1; yellow is
3.2×10−12s−1; purple is 1×10−12s−1; strain rate contour interval 3.2×10−12s−1. Contours of pore pressure shown in white; pore pressure contour
interval 200 MPa. (c) Plot of failure condition; purple: elastic now but has been at yield in the past, yellow: at yield in tension, red: at yield in shear,
pink: at yield, viscous. (d) Plot of permeability after permeability has evolved due to hydrofracture. Purple: 10−14m2; dark red: 10−15m2; pink:
10−16m2. Darcy flow vectors in black; maximum flow rate: 5.5 × 10−7m s−1; temperature contours in black, contour interval 100◦C.

tic/viscous transition where regions of down-flow or of fluid
stagnation occur if the geothermal gradient is high. The re-
sult is a rapid, but continuous, change in the pore pressure
at the plastic/viscous transition but the jump is only as large
as the tensile strength of the viscous material.
As noted in the text, the distribution of (σ1 − σ2) through

the crust, reported here is not the classical “Christmas tree”
distribution and some discussion is needed. In classical dis-
cussions of the distribution of stress difference in the crust
under compression, Byerlee’s Law is taken as defining the
distribution of (σ1 − σ2) for the dry state and the influ-
ence of adding a fluid pressure is obtained by the equiv-
alent of the following three steps: (i) loading the crust to
very small elastic strain, in the dry state, (ii) injecting fluid
at a prescribed pressure into the crust and (iii) compress-
ing the crust until yield occurs (see Sibson, 1974; Ranalli,
1987, p. 221). Under such conditions, σ eff

2 is defined by
Eqs. (5) and (2) and σ eff

1 at yield is defined by the yield
surface, which, for Byerlee’s Law, is that of a cohesionless
frictional solid. Under such assumptions, (σ1 − σ2) can be
very large if the pore pressure is small, especially just above
the plastic-ductile transition. The approach in this paper is
to consider a crust initially saturated with fluid and with
a fluid pressure just sufficient to hold the pore space open

without causing plastic failure; the crust is then shortened
at a given strain rate. σ2 is then given by Eq. (5) and σ1 in
the plastic regime can be then derived from Eq. (14); as in-
dicated in the text for the constitutive parameters assumed
here σ1 = σ2 + 2c

√
3 ≈ (ρr gh + 6.9× 107) Pa. The differ-

ence between these two approaches lies only in the assumed
constitutive relation. In the classical instance this is one of
a cohesionless frictional solid; in the present paper the fric-
tional solid has a finite cohesion and hence can also exhibit
tensile failure. These two approaches can be compared by
rewriting Eq. (14) for a cohesionless solid, so that c = 0,
and substituting Pf = λρr gh together with σ2 = ρr gh (see
Ranalli, 1987, p. 221). Then Eq. (14) becomes

(σ1 − σ2) = ρr gh(1 − λ)(Nθ − 1) (19)

from which the classical distributions of stress difference
with depth for various imposed pore fluid pressures may be
derived. Notice in particular that for Pf = ρr gh in this
classical case (σ1 − σ2) = 0 since λ = 1, whereas for
the Mohr-Coulomb material used here (σ1 − σ2) = 2c

√
3.

Thus for the classical Byerlee type of behaviour the stress
at the plastic-viscous transition for lithostatic fluid pressures
is zero whist for the Mohr-Coulomb material it is relatively
small but finite. Here the stress difference that develops
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(a)
(c)

(b)

(d)

Fig. 5. Plots of instantaneous volumetric strain rate (a) Zoom into model with geothermal gradient 20◦C km−1. Dark Red: 1.6 × 10−11s−1: Purple:
1.2 × 10−11s−1: Yellow: 0.8 × 10−11s−1. Contour interval: 4 × 10−12s−1. Total shortening 1.3%. (b) Zoom into model with geothermal gradient
20◦C km−1. Dark blue: 6 × 10−11s−1: Light Green: 1.4 × 10−11s−1: Yellow: 4 × 10−12s−1. Contour interval: 2 × 10−12s−1. Total shortening 2%.
(c) Zoom into model with geothermal gradient 40◦C km−1. Dark green: 3.2× 10−11s−1: Yellow: 2.4× 10−11s−1: Purple: 1.6× 10−11s−1. Contour
interval: 0.8 × 10−11s−1. Total shortening 1.5%. (d) Zoom into model with geothermal gradient 40◦C km−1. Dark green: 2 × 10−11s−1: Yellow:
1.2 × 10−11s−1: Purple: 0.8 × 10−11s−1. Contour interval: 4 × 10−12s−1. Total shortening 2%.

is totally controlled by the fluid pressure as indicated by
Eq. (14). On the other hand, for the viscous part of the
crust, σ2 is still given by Eq. (5) and σ1 can then be obtained
from Eq. (6) and is independent of the straining history or of
the fluid pressure. Clearly, (σ1 − σ2) in the viscous material
can now be relatively large especially just below the plastic-
viscous transition and is independent of fluid pressure as
indicated by Eqs. (2) and (6). This lack of dependence
upon fluid pressure in a viscous material is an expression
of the fact that the influence of fluid on the mechanical
properties of viscous materials is of a chemical nature, and
is expressed through effects upon A and Q in Eq. (6) (see
Regenauer-Lieb and Yuen, 2003) whereas the influence of
fluids upon the mechanical properties of plastic materials
is, to first order, of a mechanical nature such that the grains
are forced apart by the fluid thus influencing the effective
normal stresses and bringing the stress state to, or closer to,
the yield surface.
This situation is not changed substantially by introduc-

ing more complicated constitutive relations, such as elastic-
plastic-viscous behaviour, as one approaches the plastic-
viscous transition from above. A simple elastic-plastic-
viscous constitutive law is the Burger Solid consisting of
an elastic-viscous element, in this case a Kelvin element in

series with a Maxwell element (see Jaeger, 1962), in turn in
series with a Mohr-Coulomb element. The viscosity used
here in both the Maxwell and Kelvin elements are linear
Newtonian with a weak temperature dependence. The me-
chanical parameters assumed here are given in Table 1. This
kind of behaviour is what might be expected from pres-
sure solution operating in conjunction with fracturing and
other brittle processes in the mid to upper crust. Figure 7
shows the results of using such an elastic-plastic-viscous
material. Shear zones are well developed in the upper crust
as shown in Fig. 7(a) and strong horizontal dilational re-
gions are again developed especially at the plastic-viscous
transition (Fig. 7b). The influence of fluid pressure upon
(σ1 − σ2) in the upper part of the crust is similar to using a
Mohr Coulomb material as shown in Fig. 7(c) although the
general value of (σ1 − σ2) is now larger than with a strict
elastic-Mohr Coulomb material, particularly within shear
zones.
With the above basic principles in mind, it is then pos-

sible to model the geometry of the Nagamachi-Rifu Fault.
Dilatant zones, representing zones of increased porosity and
hence fluid content, develop as approximately horizontal
tabular regions mainly on the hanging wall of the fault and
as en echelon arrays along a diffuse shear zone conjugate to
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(a)

(b)

(c)

Fig. 6. Cartoons summarising the essence of the results. (a) Almost all of
the strain in the model is partitioned to form a plastic wedge, bounded on
the left by the initial weak fault and on the right by a diffuse shear zone.
The development of this wedge is accommodated by sliding on the
boundary between the weak plastic upper crust and the strong portion
of the viscous lower crust. (b) Cartoon showing the development of
tensional dilatant zones on the hangingwall of a thrust fault. (c) Cartoon
showing the development of tensional en echelon dilatant zones within
a broad shear zone on the hangingwall of a thrust fault.

the main fault. This pattern of dilatancy is the direct result
of the formation of a plastic wedge and the shear accom-
modation at the base of the plastic upper crust as shown
in Fig. 6(a). As the deformation continues the main re-
gion of dilatancy is concentrated into a horizontal tabular
zone coincident with the listric continuation of the origi-
nal fault. This mimics the observed seismic images of the
Nagamachi-Rifu Fault system quite closely and suggests a
general origin for seismic reflectors in other environments
(see Drummond et al., 2004, this volume).
In particular, as indicated in Fig. 4(d), the dilatant re-

gions that develop are regions of strong instantaneous fluid
flow upwards across isotherms. Hence, following the ar-
guments of Phillips (1991, p. 107) that the rate of mineral
alteration is proportional to the scalar product of Darcy flow
and the temperature gradient, one would expect mineral
alteration haloes such as precipitation of quartz and alter-

(a)

(b)

(c)

Fig. 7. Results using a Burger elastic-plastic-viscous model of the upper
crust. Otherwise the situation is as illustrated in Fig. 2. (a) Spatial
distribution of (σ1 − σ2); dark blue: 700 MPa, yellow: 200–300 MPa;
dark red: less than 100 Mpa, contour interval: 100 MPa. Outline of fault
and of seal layer in green. (b) Zoom into area around the initial fault
showing distribution of instantaneous volumetric strain rate; Darkest
blue: 1.5 × 10−12s−1, yellow: 2.5 to 5.0 × 10−13s−1; contour interval:
2.5 × 10−13s−1. (c) Vertical distribution of (σ1 − σ2); section is 40 km
from left hand side of Fig. 7(a).

ation of feldspar to micas in association with these regions.
Although the increase in fluid content associated with in-
creased porosity is presumably what is imaged by seismic
studies in modern terrains, it is perhaps this alteration that
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is identified in modern seismic images of ancient “bright
spots” (see Drummond et al., 2004, this volume).
In addition to the above processes, regions of stagnant

fluid flow develop in the viscous lower crust as discussed
by Connolly and Podladchikov (2004). Here, reversals in
the gradient of hydraulic head in the lower crust result in
down flow and up flow regions with stagnant flow regions
between. The development of these layers in the models
presented here is not accompanied by inelastic porosity in-
creases as in the plastic upper crust because no coupling
between deformation and volumetric strain rate is included
in the viscous constitutive laws. Mineral alteration will still
be associated with these zones but the style of alteration
will be asymmetric in the sense that it will be different on
the upper and lower surfaces of the layers. This arises since
the top of one of these layers is associated with fluid flow
up a thermal gradient whereas the base of the layer is as-
sociated with fluid flow down a thermal gradient. Perhaps
future seismic imaging can distinguish between the homo-
geneous alteration patterns to be expected with bright spots
in the upper crust as opposed to asymmetric alteration to be
expected with bright spots in the lower crust?
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