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Site-specific correlation of GPS height residuals with soil moisture variability
using artificial neural networks
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Historical time series generated from GPS sites reveal significant seasonal variations in the vertical direction.
It is well known that continental waters (soil moisture, snow, ground water) mass redistribution is one of the
potential contributors to these observed seasonal variations although their actual loading effects on GPS results
are least well understood. A number of hydrology model outputs exist with a fair degree of uncertainty. Studies of
interrelations between anomalous vertical variations observed at geodetic sites and hydrology model outputs are
useful, in particular, as the hydrology models continue to be refined. In this paper, artificial neural networks
is proposed for correlating GPS height residuals with the soil moisture variability. Time series from eight
sites of the global GPS network are used to correlate with the soil moisture information from the US National
Oceanographic and Atmospheric Administration (NOAA) Climate Prediction Center’s land data assimilation
system (CPC LDAS). The results show the feasibility of the neural interpretation in terms of the correlation
coefficients (∼0.6) and root mean square errors (about 15% of residual range). Other geodetic time series can be
used for the same purpose, such as from SLR, VLBI, and absolute gravity.
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1. Introduction
Historical time series generated from GPS sites reveal

significant seasonal variations in the vertical direction, in
particular, with an annual period. It is well known that con-
tinental waters (soil moisture, snow, ground water) mass
redistribution is one of the potential contributors to these
observed seasonal variations (Dong et al., 2002; van Dam
et al., 2001). Studies of the interrelations between the hy-
drology model outputs and anomalous vertical movements
observed at geodetic sites may be useful, in particular, as the
global hydrology models continue to be refined. Improve-
ments in the hydrologic (or water) load estimation would
eventually lead to a recommendation on the best procedure
for including water loading corrections into geodetic data,
with an added potential benefit of being able to fill or pre-
dict periods of data gaps or large uncertainties.

Presently the IERS (International Earth Rotation Service)
Special Bureau for Hydrology (SBH) distributes continental
water storage data from some of the latest hydrology model
developments at http://www.csr.utexas.edu/research/ggfc/.
Examples include monthly outputs from CPC LDAS model
and daily outputs from the NCEP (National Centers for
Environmental Predictions)/NCAR (National Center for
Atmospheric Research) models. This article adopts the
monthly CPC LDAS model outputs to assess the neural net-
work correlation between the water storage variations in top
layers of soil (hence soil moisture) and long-term GPS re-
sults. The objective is to train and validate a neural net-
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work methodology that transforms the input variables (soil
moisture) into corresponding non-linear signals that closely
approximates the seasonal trend of GPS height residuals.
The hypothesis is that if there is a fair amount of corre-
lation (∼50% or greater) between the non-linear signals
and the actual GPS data at the validation stage, the GPS
height results are impacted by the soil moisture variabil-
ity. The methodology, similar to finding the output from a
linear regression function, is capable of directly correlating
any number of input time series of forcing functions to the
output variable through interconnected nodes with trainable
weights and bias. In contrast to traditional harmonic analy-
sis, which only predicts the periodic components, it can be
trained to recognise and predict both non-linear and non-
periodic signals.

It is intended that the neural methodology would be
generally applicable to the tasks of correlating long-term
geodetic height results (GPS, SLR, VLBI, absolute gravity)
with soil moisture, in cases where the actual water loading
corrections to the geodetic results have not been modelled
or applied. Thus, it can be extended to water storage varia-
tions estimated by other models such as the NASA’s Global
Land Data Assimilation System (GLDAS, http://ldas.gsfc.
nasa.gov/, Rodell et al., 2004).

2. Soil Moisture and GPS Data
Data from eight different locations around the world, six

at mid-latitudes (in Western Australia, North Eastern United
States, Finland, Eastern Canada, Japan and China), and two
equatorial sites (in Africa and South America) are used in
the current study. Their geographic locations are depicted
in Fig. 1(a).
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Fig. 1. (a) GPS sites used in the study. (b) Hydrology signals (in cm) at
four epochs in the northern winter and summer of 2001 and 2002.

The soil moisture data were obtained from the CPC
LDAS model in the IERS SBH Data Archive (http://www.
csr.utexas.edu/research/ggfc/). These data were available
on a 1-degree-by-1-degree grid of monthly temporal reso-
lution (Jan. 1980–Dec. 2004) covering the continental ar-
eas and islands except Antarctica. The model is forced by
observed precipitation, derived from CPC daily and hourly
precipitation analyses, downward solar and long-wave radi-
ation, surface pressure, humidity, temperature and horizon-
tal wind speed from NCEP reanalysis (see also http://www.
cpc.ncep.noaa.gov/soilmst/). The output consists of soil
temperature and soil moisture, the soil moisture, in cm of
equivalent water thickness, represents the net water mass
stored over the continental areas and islands. Fig. 1(b) show
winter and summer epochs of 2001 and 2002.

The time series of GPS height residuals were ob-
tained from the Scripps Orbit and Permanent Array Center
(SOPAC) in the form of daily solutions (available at http://
sopac.ucsd.edu) in 9∼10 year periods, mostly from January
1996 to December 2004. They represent the residuals after
known geophysical sources associated with the response of
the earth to surface mass loading have been removed. The
known geophysical sources include pole tides, ocean tides,
atmospheric mass loading, non-tidal ocean mass loading,
and are well studied by Dong et al. (2002). However, the

loading-induced seasonal deformations from terrestrial wa-
ter storage are the least well understood (van Dam et al.,
2001) and a reliable global hydrological model is not yet
available (Takle et al., 2005; Wilson and Chen, 2003). This
article uses the term residuals to refer to the GPS height re-
sults with the known geophysical sources removed except
those due to soil wetness (snow mass, soil moisture, ground
water) and other unmodelled error sources.

The daily residuals were averaged into weighted monthly
estimates that correspond to the epochs of the soil moisture
data. Both the resulting GPS time series and the soil mois-
ture data were mean-centered and linearly detrended before
being used in the analysis. It is assumed that water storage
loading may be the cause of some of the long-period vari-
ability, which is observed in the GPS time series, especially
where the water storage loading effect is large. Hence for
purposes of training the neural network, the first 60% (∼6
years) of water storage data values were regarded as input
and the corresponding GPS height residuals were treated as
output, and vice versa. The subsequent 40% of the input and
output pairs were then used to test (validate) the networks.
A separate network was developed for each location.

3. Artificial Neural Networks
In this paper, artificial neural network (ANN) method is

used to develop site-specific GPS-soil moisture models. Ar-
tificial neural networks are practical information processing
systems that provide methods for “learning” functions from
observations. An ANN roughly replicates the behaviour of
the organic brain by emulating the operations and connec-
tivity of biological neurons. This emulation, of course, is
done in a mathematical form that is greatly simplified from
the biological prototype. The advantage of ANNs in science
and practical (engineering) applications lies in their ability
to learn and capture information from data that describe the
behaviour or pattern in a real system (Bose and Liang, 1998;
Hammerstrom, 1993; Haykin, 1999; Wasserman, 1993). In
contrast to standard statistical test procedures, they can cor-
relate, both spatially and temporally, one or multiple input
variables (e.g. soil moisture+other variables) with a single
output signal (e.g. long-term GPS time series) through the
interconnected neurons with trainable weights and bias sig-
nals.

A trained neural network can provide a much faster sim-
ulation for predicting long-term patterns than standard pro-
cedures since its calculation requires no computational it-
eration. Moreover, they often work well even when the
data sets contain noise and measurement errors. Because
of these important properties, ANNs can be applied to net-
works where large volumes of data are analysed. Examples
of some relatively new applications in GPS and geodetic
science include coordinate transformations, regional com-
putation of GPS derived Total Electron Content (TEC),
modelling of geodetic deformations such as prediction of
subsidence due to underground mining, map-matching in
GPS navigation and location management in mobile net-
works (see e.g. Ambrozic and Turk, 2003; Leandro, 2004;
McKinnell, 2002; Winter and Taylor, 2003; Zaletnyik,
2005). In the context of this study, an ANN procedure is
applied to represent temporal site-specific relationship be-
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Fig. 2. Typical neural network prototype (left) and artificial neuron or
node (right).

tween the soil moisture variations and GPS height residuals.
There is no need to fully define the intermediate relation-
ships between the soil moisture data and GPS residuals—
the ANN identifies these during the “learning process”.

Figure 2 shows the structure prototype of an ANN model
composed of a sequence of layers that are classified as in-
put, hidden and output layers. Each layer of the network
consists of a set of one or more neurons (or nodes). Each
neuron has an activation function, which can be continuous,
linear, or nonlinear [i.e., nonlinear function that saturates at
finite value arguments like sigmoidal and tanh]. The neu-
rons in the input layer receive information from the input
variables, processes this information, and sends output to
the next layer of neurons in the network. Each neuron is
connected to neurons in the preceding layer, from which it
receives inputs, and to the neurons in the subsequent layer,
to which it passes its output.

The network “training” procedure can be described as
follows:

The input layer data are multiplied by initial trial weights
and a bias is added to the product. This weighted sum is
then transferred through either linear or nonlinear transfer
functions to yield an output. Thus, the output of a neuron
in any layer is determined by applying a linear or nonlinear
transformation (the activation function) to the sum of the
weighted inputs it receives from the neurons in the previous
layer. This output then becomes the input for the following
hidden layers and the procedure is continued till the out-
put layer is reached. The difference between the network
output and the target is used to determine an error func-
tion, and the error is propagated back (“backpropagation”)
to update the weights and biases using an optimization tech-
nique like the gradient descent which strives to minimise
the error. The entire procedure is repeated for a number
of epochs till the desired accuracy in outputs is achieved
(“training”). Once the network is trained it can be used to
validate against new data using the trained weights and bi-
ases. During validation, the model output variables are di-
rectly calculated, without iteration, from the input variables
and the trained weights and biases, thus taking much less
computation time.

Mathematically, the training process is similar to ap-
proximating a multivariable function (GPS height resid-
uals), g(X), by another function G(W, X), where X =
[x1, x2, . . . , xn] is the input vector (hydrology signals),
and W = [w1, w2, . . . , wn] the coefficient or weight vec-

tor. The training task is to find the weight vector W that pro-
vides the best possible approximation of the function g(X)

based on the training input [X ]. By using the gradient de-
scent method, weight changes move the weights in the di-
rection where the error declines most quickly. Training is
carried out by assigning random initial weights to each of
the neurons (usually between 0.1 and 1.0) and then present-
ing sets of known input and target (output) values to the
network. The network estimates the output value from the
inputs, compares the model predicted output to the target
value, and then adjusts the weights in order to reduce the
mean squared difference between the network output and
the target values. The complete input-output sets are run
through the network for several iterations (or epochs) until
either the mean square error is reduced to a given level or
reaches a minimum, or until the network has been trained
for a given number of iterations.

The structure of the ANN model is decided upon through
the selection of the number of hidden layers and the specifi-
cation of the number of nodes per layer. The latter is usually
achieved by trial-and-error, as was the case in this study. A
simple structure based on one hidden layer (H ) and one out-
put layer (O) was found to be optimal for forecasting both
the residuals and water storage. Log-sigmoidal and tan-
sigmoidal transfer functions were used for the hidden and
output layers, respectively, and the input-output decks were
scaled to a [−1, 1] range. A two-way analysis was done for
each location. The first was done with an input deck (I )
of soil moisture and an output deck (O) of GPS residuals,
herein later referred to as the water-to-GPS model. The sec-
ond analysis was in reverse order, hence referred to as GPS-
to-water model. The performance functions were the root
mean square errors ‘RMSE’ and the correlation coefficients
‘R’. All the networks were trained for 500 epochs over one
data set (∼6 years) and evaluated over another data set (∼3
years) not included in the training. The trained weights and
biases were retained for validation.

4. Results and Discussion
All computations of the neural network model were done

within the MATLAB 7.0 (Mathworks, 2004). There was
fairly good correlation from training and validation. The
final structure of the networks was typically of the type
I30H1O1 (30 Input nodes 1 Hidden node 1 Output node).
This architecture seem to be both time efficient and ade-
quate to handle the rather small amount of data in the cur-
rent study. Other parameters that were adjusted in order
to achieve accurate results were the goal value of the error
function of the network during training, calculated by the
Mean Square Error (MSE), the learning rate of the network,
and the number of epochs or network feeds. The need for
adjustment of these parameters lies in the danger of over-
training, an effect that is analogous to over-fitting a poly-
nomial function. An interesting property of neural network
models is that they often work well even when the training
data sets contain noise and measurement errors (Hammer-
strom, 1993). It is therefore prudent to select models that
are more likely to generalize than over-parametrized mod-
els that may become tuned to noise within the training data.

Using the water-to-GPS model, ANN estimates of the
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Fig. 3. Soil water variations (blue, cm), GPS height residuals (thick grey, mm) and ANN model (thin black, mm) at selected GPS sites. The time series
are separated by vertical solid line for training and validation of the ANN model. The water residuals are offset by 30 cm for clarity.

GPS height residuals were derived with the soil mois-
ture as input to the model. In general satisfactory results
were produced with the correlation coefficients ‘R’ equal to
∼0.6 and RMSE of about 15% of residual range (residual
range = 20.6 to 35.6 mm, mean ∼27.4 mm). In Fig. 3, we
superimpose the ANN model (thin black lines) onto GPS
height residuals (thick grey lines) for the selected sites. The
ANN model track the observed residuals reasonably well at
all of these sites, demonstrating that water loading may in-
deed be the cause of some of the seasonal variability which
is observed in long term GPS time series (see also van Dam
et al., 2001). The water storage plots (bold blue lines) are
included for visual comparison with the GPS height residu-
als. The mean RMSE for the GPS-to-water model was 4.27
cm, minimum and maximum residual ranges were respec-
tively 19.3 cm and 44.8 cm (mean residual range was 28.2
cm).

The ANN model was able to successfully transform ob-
served input vectors into reasonably accurate estimation of
the outputs for all the locations. Its adequacy is demon-
strated by the quality of the estimates as discussed above.
The results demonstrates that there is an underlying signifi-
cant relationship between the GPS height residuals and the
CPC LDAS soil water storage variations at the sites that
have been analyzed (in spite of the fact that the soil mois-
ture data are numerically modelled (rather than observed)
and thus have a fair degree of uncertainty). Other poten-
tial error sources contributing to the height residuals would
include bedrock thermal expansion, errors in phase center
variation models, errors in orbital modelling, the effects of
employing different analysis strategies, and the unmodelled
troposphere effects (see e.g. Dong et al., 2002).

The neural methodology can be applied to other geodetic
time series and hydrological models provided site-specific
training and validation are carried out appropriately. It can
be better tested if actual in-situ soil moisture data are ob-
served over time with additional near-surface meteorologi-
cal parameters.
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