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Volcanic eruptions preceded by seismicity, and great earthquakes (magnitude, M > 7.6) within 100 km depth
during a period of 123 years from 1880 to 2003 along the Pacific and Philippine Sea Plate in Japan are investigated.
Correlation coefficients show that the relationship between earthquakes and eruptions (r = 0.99), and time and
distance (r = —0.89) are highly correlated with 1% level of significance. The time-distance relationship between
major eruptions and great earthquakes are shown by the model, Y = 40.15 — 14.53 log(X), where Y and X indicate
time (time interval from the starting time of a major eruption to the occurrence of the earthquake) and distance
(distance from the volcano to the epicenter of the shock), respectively. Statistical analysis based on the relation
shows that the eruptions occurred earlier prior to the concerned shock if the epicenter of the earthquake is nearer
to the respective volcanic activity. This relation is recognized by various statistical testing procedures. Based
on this relation, the crustal strain accumulation time in the estimated epicenter should be known. This suggests
that eruptions may be a precursor for enough strain accumulation in the epicentral region where the increased
accumulated regional strain may squeeze up magmas before breaking the crust. If this is true then the occurrence

time of the shock may be predicted by a major eruption.

Key words: Least squares method, correlation, regression, regional strain, eruptions, earthquakes.

1. Introduction

Just as the satellite cloud atlas is important in weather
forecasting, the tectonic stress field in the earth’s crust is
very important in earthquake prediction. Although nobody
can directly get such a map by using present techniques, the
tectonic stress pattern within a seismic region can be indi-
rectly inferred from different kinds of information. Among
them, volcanic eruptions may most directly influence the na-
ture of earthquake generating stresses.

Japan is frequently affected by earthquakes. Nearly one
tenth of the earthquakes on the earth occur in or around the
Japanese islands. Large interplate earthquakes occur along
the plate boundaries off the Pacific coast of the Japan islands.
Interplate earthquakes within the continental plate take place
in the upper crust beneath the Japanese islands and along
the coast in the Sea of Japan. It is a widely accepted idea
that most large, shallow earthquakes along island arcs re-
sult from active subduction and collisions among four litho-
spheres plates (Pacific plate, North American plate, Eurasian
plate and Philippine Sea plate) in this region (Ishida, 1989;
Seno et al., 1993, 1996).

Tectonic strain accumulates in the lithosphere of the pre-
seismic stage and is released by the shocks (Kimura, 1978a).
Nakamura (1975) suggested that contractional strain gener-
ated by regional crustal stress around a magma reservoir can
squeeze up magma within an open conduit, causing a sum-
mit eruption on one hand and the formation of dike result-
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ing in flank eruptions through the increase of core pressure
on the other hand. If the eruptions are influenced by the
regional tectonic stresses causing earthquakes, some spatial
and temporal relations between large interplate earthquakes
and eruptions can be expected along the island arc systems.

A number of researchers have pointed out possible re-
lationships that existed between eruptive activity and seis-
mic activity since early times, although nobody can be sure
about the physical mechanisms connecting the volcanic ac-
tivities with seismicity. MacGregor (1949), for instance, in-
ferring from statistical studies, suggests that a temporal re-
lation exists between the local seismic activity and volcanic
eruptions in the Caribbean volcanic arc. Such local seismic
activity is thought to be directly involved in volcanic erup-
tions. Through his studies around the Japanese and New He-
brides areas, Blot (1956, 1972) showed that the deep seis-
mic activity migrates from a greater depth to a shallower one
and finally results in volcanic eruptions (Blot process). On
the basis of statistical and worldwide studies, Latter (1971)
states that Blot process would probably be a secondary phe-
nomenon and that the relationship would be primarily the
correlated sequence of seismic and volcanic events resulting
from periods of tectonic instability and perhaps increased
tensional conditions which affect very wide areas of the
earth’s surface for periods of several months to several years
at a time. On the other hand, many scientists have pointed
out that there exists some physical relation between volcanic
activity and tectonic seismicity (Tokarev, 1971; Yokoyama,
1971; Kaminuma, 1973).

The high number of correlations suggests that they are
largely governed by common physical process caused by re-
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Fig. 1. Distribution of active volcanoes (triangles) and great earthquakes (solid circles) of M > 7.6 since 1880 along the plate boundary of the Pacific
and Philippine Sea Plate in Japan. Plate boundaries are taken from the work of Kimura (1994). Arrows indicate directions of plate motion (Wessel
and Kroenke, 2000). Name of the volcanoes: (2) Raususan, (3) Shiretoko-lozan, (4) Meakandake, (5) Tokachidake, (6) Tarumaesan, (7) Usuzan,
(8) Hokkaido-Komagatake, (9) Iwakisan, (10) Akita-Yakeyama, (11) Iwatesan, (12) Akita-Komagatake, (13) Tyokaisan, (14) Kurikomayama, (15)
Zaozan, (16) Azumayama, (17) Bandaisan, (18) Adatarayama, (19) Niigata-Yakeyama, (20) Nasudake, (21) Nikko-Shiranesan, (22) Yakedake, (23)
Kusatsu-Shiranesan, (24) Asamayama, (25) Hakusan, (26) Ontakesan, (27) Fujisan, (28) Hakoneyama, (29) Teishi, (30) Oshima, (31) Kozushima,
(32) Miyakejima, (33) Hachijojima, (34) Bayonnaise, (35) Sumisujima, (36) Izu-Torishima, (37) Asosan, (38) Unzendake, (39) Kirishimayama, (40)
Sakurajima, (41) Tokara-Io, (42) Kuchinoerabujima, (43) Nakanoshima, (44) Suwanosejima and (45) Okinawa-Torishima.

gional stresses in terms of plate tectonics (Nakamura, 1971,
1975; Kanamori, 1972). A probable relationship between
volcanic activity and large earthquakes was first shown in the
Kanto area when the Oshima volcano was in active stage and
a few years later the two earthquakes occurred concurrently
in that region (Kimura, 1976). Based on this information we
build up a model to verify the time-distance relation between
volcanic activities and large earthquakes exists. Further, the
magmatic and seismic activity of central Japan influences us
to predict time-distance relationships between volcanic erup-
tions and great earthquakes in Japan.

2. Data

The area selected in this paper is based on available data.
Scientific studies of volcanoes have been going on since the
nineteenth century in Japan (Suwa, 1970). Data based on
eruptions that have been occurring in Japan from 1880 till
today are used in this study. The data on eruptions are taken
from the secondary sources: (i) the Catalogue of Active Vol-
cano of the World Including Solfatara Fields, IAVCEI (In-
ternational Association of Volcanology and Chemistry of the
Earth’s Interior); (ii) the Bulletin of Volcanic Eruptions, Vol-
canological Society of Japan, (IAVCEI); (iii) the List of the
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Table 1. Name (serial number according to Fig. 1), location and eruption year of volcanoes and earthquakes during 1880 to 2003 with their characteristics
and damages due to eruptions are shown. 0; related eruptions, x; non-related eruptions, and *; same eruptions used for previous earthquakes. Symbols

are as usual meaning.

Volcano Location Eruption year and type | Earthquake Distance Year Remark
of eruption vear, place,
and location
5. Tokachidake 43°25'N, 142°41'E 1889 (oT) 290 5 0
3.Shiretoko-Tozan 44°08'N, 145°10'E 1889 (c0) 190 5 0
6.Tarumaesan 42°41'N, 141°23'E 1894 (0 7) 380 1 0
1894.3.22(7.9), Nemuro, 42°30'N, 146°00'E
20.Nasudake 37°07'N, 139°58'E 1881 (0 7 IX1) 440 15 X
17 Bandaisan 37°36'N, 140°03'E 1888 (=0*X 1) 400 8 X
5. Tokachidake 43°25'N, 142°41'E 1889 (0 7) 450 7 *
10.Akita- Yakeyama 39°58'N, 140°46'E 1890 unknown 280 6 0
12.Akita-Koma 39°45'N, 140°48'E 1890-91 (0 7) 280 6 0
6. Tarumaesan 42°41'N, 141°23'E 1894 (oT) 420 2 *
16.Azumayama 37°44'N, 140°15'E 1894(93-96) (0 T 1) 380 2 0
15.Zaozan 38°08'N, 140°18'E 1894 (o*) 360 2 0
1896.6.15(8.5), Sanriku, 39°30'N, 144°00'E
20 Nasudake 37°07'N, 139°58'E 1881 (o T X)) 320 16 *
17 Bandaisan 37°36'N, 140°05'E 1888 (0?1 1) 290 9 *
12.Akita-Koma 39°45'N, 140°48'E 1890-91 (0 7 ) 290 7 .
16.Azumayama 37°44'N, 140°15'E 1894 (93-96) (T 1) 280 4 *
15.Zaozan 38°08N, 140°18'E 1894 (o%) 260 3 .
10.Akita- Yakeyama 39°58'N, 140°46'E 1890 unknown 290 7 *
23 Kusatsu-Shirane 36°38'N, 138°32'E 1897 (0*) 460 1 0
1897.8.5(7.7), Sendai, 38°12'N, 142°06'E
45.0kmawwa-Ton 27°51N, 128°15E 1903 (0 7) 170 8 0
42 Kuchinoerabu 30°26'N, 130°13'E 1906 unknown 270 5 0
1911.6.15(8.0), Amami, 28°00'N, 130°00'E
30.0shima 34°43'N, 139°24'E 1912(0 T =) 80 11 0
24.Asamayama 36°24'N, 138°32'E 1913(7 1) 130 10 0
22 Yakedake 36°13'N, 137°35F 1915 (*~[X) 170 8 0
35 .Sumisujima 31°27'N, 14 0°02'E 1916 (/) 440 7 X
15.Zaozan 38°08'N, 140°18'E 1918(18-23) unknown 330 5 0
1923.9.1(7.9), Kanto, 35°06'N, 139°30'E
15.Za0zan 38°08N, 140°18'E 1918(18-23) unknown 380 15 *

Worlds Active Volcanoes, Special Issue of Bulletin of Vol-
canic Eruptions; (iv) Tokyo Astronomical Observatory (Sci-
ence Almanac) (v) Meteorological Office, and (vi) some pub-
lished papers on volcanic eruptive activities. Epicenter of

the great earthquakes within 100 km depth and magnitude of
M > 7.6 are taken from both JMA (Japan Meteorological
Agency) and Chronological Scientific. Events are ignored if
information does not coincide with both JMA and Chrono-



182 MD. MAHMUDUL ALAM AND M. KIMURA: TIME-DISTANCE RELATIONSHIP BETWEEN ERUPTIONS AND EARTHQUAKES

Table 1. (continued).

8.Hokkaido-Koma 42°04'N, 140°41'E 1919 (o) 450 14 X
11.Iwatesan 39°51'N. 141°00E 1919 (=) 310 14 X
8. Hokkaido-Koma 42°04'N, 140°41'E 1922(0 1) 450 11 X
8. Hokkaido-Koma 42°04'N, 140°41'E 1929 (0 T X 1) 450 4 X
5.Tokachidake 43°25'N, 142°41'E 1928 (0 1) 490 5 X
12.Akita-Koma 39°45'N, 140°48'E 1932 (c01) 320 1 0

1933.3.3(8.1). Sanriku. 39712'N, 144°30'E

24.Asamayama 36°24'N, 138°32'E 1935-6 ( T violent) 340 9 X
23 Kusatsu-Shirane 36”38'N, 138°32'E 1937-39 (0*) 360 ) X
24.Asamayama 36°24'N, 138°32'E 1938 (o) 340 6 X
32.Miyake 34°05'N, 139°32'E 1940 (o0 1 1 =) 270 -4 0
24 Asamayama 36°24'N. 138°32'E 19413747 (T t) 340 3 0
23 Kusatsu-Shirane 36°38'N, 138°32'E 1942 unknown 360 2 0

1944.12.7(7.9). Tonankai. 33°48'N. 136°36'E

23 Kusatsu-Shirane 36°38'N, 138°32'E 1932 (=0t 1) 490 14 *
24 Asamayama 36°24'N, 138°32'E 1935-36( T violent) 460 11 =
23 Kusatsu-Shirane 36°38'N, 138°32'E 1937-39  (o?) 490 9 *
24.Asamayama 36°24'N, 138°32'E 1941(37-47) (T 1) 460 5 .
24 Asamayama 36°24'N, 138°32'E 1938 (0~) 460 8 *
23 Kusatsu-Shirane 36738'N. 138°32°E 1942 unknown 490 4 L4
34.Bayonnaise 31°55'N, 139°55'E 1946 (/) 420 1 0
40.Sakurajima 31°35'N, 130°40'E 1946 (T =) 490 1 0

1946.12.21(8.0), Nankai, 33°00'N, 135°36'E

12 Akita-Koma 39°45N, 140°48'E 1932 (20*) 360 20 *
11.Iwatesan 39°51'N, 141°00'E 1934 (1) 340 18 X
8.Hokkaido-Koma 42°04'N, 140°41'E 1935-42 (o T) 280 17 X
3.Shiretoko-Iojima 44°08'N. 145°10'E 1936 (—<2) 270 16 X
6.Tarumaesan 43°25'N, 142°41'E 1944 unknown 240 8 0
14 Kurikomayama 38757'N, 140°47'E 1950 ot 420 2 0
7.Usuzan 42°32'N, 140°51'E 1944-45 (== 1) 280 7 0
10.Akita-Yakeyama 39°58'N. 140°46'E 1949  (o*) 350 3 0

1952.3.4(8.0),  Tokachi. 41°48'N, 144°06'E

4 Meakandake 43723'N, 144°01'E 1962 (o) 300 6 0
10.Akita- Yakeyama 39°58'N. 140°46'E 1957 (0~—) 250 11 X
6.Tarumaesan 42°41'N, 141°23'E 1958 unknown 290 10 3
5.Tokachidake 43°25'N, 142°41'E 1962 (01 1) 310 6 0

1968.5.16(7.9). Tokachi. 40°42'N. 143°36'E

5.Tokachidake 43°25'N, 142°41'E 1985 (0*) 220 18 X

4. Meakandake 43°23'N, 144°01'E 1988 (0*) 180 15 X
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Table 1. (continued).

5.Tokachidake 43°25'N, 142°41°E 1988-89 (0* T ) 220 15 X

4.Meakandake 43°23'N, 144°01'E 1996, 98 unknown 180 7 0

8.Hokkaido-Koma 42°04'N, 140°41'E 1998 (0~) 280 5 0

7.Usuzan 42°32'N, 140°51'E 2000-01 (+ T =) 280 3 0

10. Akita-Yakeyama 39°58'N, 140°46'E 1997 (* T=) 340 6 X
2003.9.26(8.0), Tokachi, 41°47N, 144°05'E

logical Scientific (2002).

The volcanoes have their own specific stages, character-
ized generally by active and dormant stages. The degree of
eruptive activities are graded by Kimura (1978b) and major
eruptions are designated to represent eruptions in this paper.
Major eruption suggests the maximum eruptive activity in
the active stage (P,), and very much corresponds to great
eruptions (Kimura, 1976; 1988). The duration of the ac-
tive stage is approximately 20-30 years usually identified in
Japan (Kimura, 2003).

Determination of the magnitudes of eruptions is based on
the category of IAVCEI classification, depending on the vol-
ume (V) of the erupted materials as: (a) V < 1 x 10* m>—
small eruption, (b) V = 1 x 10*~107 m?>—medium eruption,
and (c) V > 1 x 107 m’>—great eruption. Active volcanoes,
great earthquakes and plate boundaries are shown in Fig. 1,
and magnitudes, durations and lengths of all events from epi-
centers to volcanoes are shown in Table 1.

3. Methods
3.1 Selection criterion

(i) Activity of the Oshima volcano is directly related to the
occurrence of the great Kanto earthquake in 1923 and Boso-
oki earthquake in 1953 along the Sagami Trough (Fig. 2(a)).
The altitude of the Aburatsubo area in southern Kanto was
dropped before the earthquakes in 1923 and 1953. Since
the land mass dropped, the floor of the summit crater of the
Oshima volcano rose as much as 400 m, and the volcano
erupted. The earthquake occurred almost concurrently. The
crater’s floor fell when the land of southern Kanto area rose
again after the earthquake. It is suggested that the increased
compressional crustal stress along the trough squeezes up
magma beneath the Mihara-yama, and consequently, the
large earthquakes occur to release compressional strain along
the trough (Fig. 2(b)). This activity is regarded as a con-
tributing factor to both a major eruptions and earthquakes
(Kimura, 1976).

T and T, represent time intervals between major eruptions
of the Oshima volcano in 1912 and the earthquake of 1923,
and the eruptions (Oshima) of 1950 to the earthquake of 1953
as shown in Fig. 2(b). We noticed that the variation of time
intervals T; (11 years) is larger than T, (3 years). But D,
(distance between the Oshima volcano and the earthquake of
1923; 80 km) is smaller than D, (distance between the Os-
hima volcano to the earthquake of 1953; 230km: Fig. 2(a))
which shows that time interval decreases as distance in-
creases (Fig. 2). The relationship between time and distance

is almost linear. A log-linear relationship between time and
distance is also found for multiple eruptions to single earth-
quake in central Japan (Kimura, 2003). This occurs because
variations of time intervals strongly suggest that the crustal
strain migrates from the area where crustal rupture may ap-
pear in future; this was pointed out using all of the related
eruptions and large earthquakes in central Japan (Kimura,
2003).

Activity of volcanic eruptions, epicenters, magnitudes and
distribution of seismic intensity of great earthquakes were
examined to justify the time-distance relationships observed
by Kimura (1994) from 1880 to 1993. We used this to pro-
vide a testing ground for different kinds of statistical model-
ing and analytical procedures to understand more precisely
the time-distance relationships between volcanic eruptions
and great earthquakes in Japan. As a result, eruptions oc-
curred within 20 year and maximum 500 km from the epi-
center of great earthquakes along the Pacific and Philippine
Sea Plate in the Japanese territory (128° to 147°E and 28°
to 46°N) are chosen (Table 1). Eruptions and earthquakes
in the Kanto region are the basis for selection of a model
which shows a good correlation between time and log dis-
tance. Goodness of fit test is applied which recognize the
statistical significance of the model. Treating this model as
a standard and consequently extended to all events one after
another, to other parts of Japan.

(ii) The oldest eruption should be the nearest of the respec-
tive epicenter (Fig. 3). If there are several eruptions of a vol-
cano within 20 years before the occurrence of a great earth-
quake we test the oldest eruption first, if this eruption time
fits insignificantly our model, we then look for the next erup-
tion time and consequently search for all eruptions within
this range.

If several volcanoes erupted in the same year, the distance
between each volcano and the shock should follow the equa-
tion: B = A 4+ 0.5A, where A is the distance between the
nearest volcano and the shock. Events are omitted if distance
from volcano to epicenter exceed B.

Usually, events are chosen according to their age of erup-
tions following a sequence from the oldest to the youngest
(Figs. 3-4) and also the distance. For example, accord-
ing to criterion (i), five eruptions (Tokachi, 1988; Meakan,
1996; Akita-Yakeyama, 1997; Hokkaido-Koma, 1998 and
Usu, 2000) were found before the occurrence of the 2003
earthquake. The shortest distance from the epicenter of the
2003 earthquake to the Meakan volcano (1996) was 180 km.
Since the eruption of the Tokachi volcano (1988) is older
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Fig. 2. (a) Large earthquakes (X = epicenter; solid and broken out lines show aftershock areas and seismicity gap, respectively) that have occurred along
the Sagami Trough since 1880. Direction of slip of the northern Philippine Sea Plate (arrow), Sagami Trough (Sg), Nankai Trough (Nk), Japan Trance
(Jp), Izu-Bonin Trence (I-B), Oshima (Os), Miyakejima (My), Aburatsubo (Ab), Boso Peninsula (Bs), Izu Pensinula (Iz), Philippine Sea Plate (Ph),
Pacific Plate (Pc) and Eurasian Plate (Er) are shown. Dy and D, are the distance between the Oshima volcano and the earthquakes of 1923, and 1953.
(b) Relationship between large eruptions (dots) and change in level of floor of summit crater of Mihara-yama (line), and large earthquakes (vertical
bars) that have occurred along the Sagami Trough. (1) Record of large earthquakes and eruptions along Sagami Trough; (2) Heat energy discharged
by large eruptions of Mihara-yama; (3) Change in levels of floor of the summit crater of Mihara-yama (after Kimura, 1976) and (4) Change in level at
Aburatsubo (Solid line measured with precise leveling relative to datum at Tokyo Point, and the broken line was deduced from tidal data). T} and T, are
the time intervals between the Oshima volcano and occurrence of the shocks of 1923 and 1953, respectively.

than the Meakan but the distance (220 km) is greater than
the Meakan which fails to fulfill criterion (ii) (Fig. 3(h)).
The same thing also happened for the Akita-Yakeyama vol-
cano (Table 1, Figs. 3—4). Further test for residual analysis is
needed for justification.

(iii) If several earthquakes occur within a very short time
interval (within one or two year) and within a very short dis-
tance, each eruption is thought to be related with only one
earthquake. Both earthquakes in 1896 and 1897 are related
to the eruptions of Akita-Yakeyama (1890), Akita-Koma
(1890), Azuma (1894), and Zao (1894). We have taken all
these eruptions for the earthquake of 1896 (Figs. 3(b) and 4).

(iv) Compare to the model of the Kanto region, events are
selected according to residual analysis and outlier test (stan-
dard residuals should belong within the limit of 3.0). Erup-
tions of Tokachidake (1988) and Akita-Yakeyama (1997)
events for the earthquakes of 2003 (Figs. 3(h) and 4) ex-
ceed the error limit and so we do not use these events for
our model.

Time relation between eruptions and earthquakes is also
a factor for selection criterion (Fig. 4). We can verify our
selected events according to Fig. 4. Related and non-related
events (eruptions occurred within 20 years and within 500
km from the epicenter of great earthquakes) are shown by
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Table 2. Major eruptions and their related great earthquakes (M>7.6) in Japan. Distance (km); Distance from a volcano to the epicenter of the respective

earthquake, Time (year); Time interval between major eruption and great earthquake, and Magnitude; Magnitude of the earthquake.

No. Volcano Eruption Earthquake Magnitude | Distance Time
year year (km) interval
5 | Tokachidake 1889 Nemuro 7.9 290 5
Shiretoke-lozan 1889 1894 190 5
Tarumaesan 1893 380 1
12 | Akita-Komagatake 1890 Sanriku 8.5 280 6
10 | Akita-Yakeyama 1890 1896 280 6
16 | Azumayama 1894 380 2
15 | Zaozan 1894 360 2
23 | Kusatsu-Shirane 1897 Sendai 1897 7.7 460 1
45 | Okinawa-Torishima 1903 Amami 8.0 170 8
42 | Kuchinoerabujima 1906 1911 270 5
30 | Oshima 1912 Kanto 7.9 80 11
24 | Asamayama 1913 1923 130 10
22 | Yakedake 1915 170 8
15 | Zaozan 1918 330 5
12 | Akita-Komagatake 1932 Sanriku 1933 8.1 320 1
32 | Miyake 1940 Tonankai 7.9 270 4
23 | Kusatsu-Shirane 1942 1944 360 2
24 | Asamayama 1941 340 3
34 | Bayonnaise 1946 Nankai 8.0 420 1
40 | Sakurajima 1946 1946 490 1
Tarumaesan 1944 Tokachi 8.0 240 8
Usuzan 1945 1952 280 7
10 | Akita-Yakeyama 1949 350 3
14 | Kurikomayama 1950 420 2
5 | Tokachidake 1962 Tokachi 7.9 310 6
4 | Meakandake 1962 1968 300 6
4 | Meakandake 1996 Tokachi 8.0 180 7
8 | Hokkaido-Koma 1998 2003 280 5
7 | Usuzan 2000 280 3

open circle and open triangle, respectively. No events (open
triangles) are found between circle and bold bar (earthquake
year) which primarily agree to our unbiased selection pro-
cedure. Figure 4 shows a reverse correlation between time
and distance, that is, the time interval decreases as distance
increases among the selected events. We also took into con-
sideration plate motion direction and seismic blocking when
selection was done. Considering all the factors described
above, selected events are shown in Table 2.
3.2 Regressions and model building

Regression analysis is a statistical technique for investi-
gating and modeling the relationship between variables. Ap-
plications of regression are numerous and occur in almost
every field. In fact, regression analysis may be the most
widely used statistical technique. We have a number of sam-
ple observations on time and distance between eruptions and
great earthquakes in Japan. Plotted observations are shown
in Fig. 5 which is called a scatter diagram. This display
clearly suggests a relationship between time and distance;
in fact, the impression is that the data points generally, but

not exactly, fall along a line. If we let Y represent time and
X represent log distance, then the equation relating to these
two variables is,

Y =60+ i X (1

where fy is the intercept and B; is the slope. Now the data
points do not fall exactly on a line, so Equation (1) should
be modified to account this. Let the difference between the
observed value of Y and the line (Y = By+ ;X 1) be an error
£. ¢ 1s a statistical error that is, it is a random variable that
accounts for the failure of the model to fit the data exactly.
Thus, a more plausible model for the time data is,

(i) Model-1: Y = By + 1 X1 +e. )

The variable X (log distance) is called predictor or regressor
variable and Y (time) as the response variable. If more than
one regressor variable is involved in the model, the model is
called multiple linear regression models. The Model-1 can
be represented as a multiple regression model for adding one
more regressor variable X, (Magnitude) that is available in
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Fig. 3. Distance relations among eruptions and great earthquakes. Volcano/volcanoes with their age of eruptive activities within 20 years and 500 km
from the epicenter of respective great earthquake during the period of 1880 to 2003 are shown. Solid triangles are thought to be related eruptions of
respective shocks. Open triangles are the events that fulfill partly but not all of our criterions. Numerals aside the volcanoes are the eruption year
and volcanoes number according to Fig. 1. Strain migration directions from the epicentral region are shown by contour lines. (a) Eruptive activities
and seismicity during 1880—1894, (b) Eruptive activities and seismicity during 1895-1896, (c) Eruptive activities and seismicity during 1897-1911,
(d) Eruptive activities and seismicity during 1912-1932, (e) Eruptive activities and seismicity during 1933—-1945, (f) Eruptive activities and seismicity
during 1946-1967, (g) Eruptive activities and seismicity during 1968-2002, and (h) Eruptive activities and seismicity during 2003.

our collection, The errors are uncorrelated normally and independently dis-
. . . 2
(i) Model-2 : ¥ = By + 1 X1 + BoXo + &. 3) Fnbuted (NID) w1t2h mean zero and unknown variance (o)

i.e., e ~ NID(0, o°).
If we have k regressor variables, the multiple regression 32,1 Estimation of parameters by using least squares
models can be written as, method Suppose that n > k observations are available.

Y =Bo+BiXi+PoXo+ -+ Xy +e ) The parameters Bo, B1, B2, - - ., Br are unknown and must be
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Fig. 3. (continued).

estimated using sample data. For models in which some
transformation of any function is linear in the parameters,
least squares estimation can be used to estimate the parame-
ters of the model. That is, we will estimate the parameters in
Eq. (4) so that the sum of the squares of the differences be-
tween the observations (Y;,i = 1,2, ..., n) and the log lin-
ear model is a minimum. If the errors are normally and inde-
pendently distributed with mean zero and constant variance
(6?), the unknown parameters of the above models can be

estimated using least squares method as: B=XX)"'X'Y,
where ﬁ is a vector of order (k + 1) x 1, X is a matrix of
order n x (k+1) and Y is a vector of order n x 1. Here, k+ 1
and n are the number of parameters and number of sample
observations, respectively (Montgomery et al., 2001).

3.2.2 Test for significance of regression The test for
significance of regression is a test to determine if there is
a linear (log linear) relationship between the response Y
and any of the regressor variables X, X5, ..., X;. This
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Fig. 4. Time relation between eruptions and great earthquakes. Earthquakes (bold bars), related eruptions (open circle), and non-related eruptions (open
triangle) according to Table 1 are shown. Bold and broken lines are the distance (maximum 500 km) between eruptions and earthquakes. Thick broken
lines around the open circles suggest the reverse correlation between time and distance from the approximate epicenter (X).

procedure is often thought of as an overall test of model
adequacy. The appropriate hypotheses are,

Hy:pr=po=--=p=0
H, : Bi # 0for atleastone .

&)

Rejection of this null hypothesis implies that at least one
of the regressors (X1, X», ..., X;) contributes significantly
to the model. If the null hypothesis is true, then SSR (sum
of squares regression)/o? follows a sz distribution, which
has the same number of degrees of freedom as number of re-
gressor variables in the model. Also SSg.s (sum of squares
regression)/o? ~ Xf—k—p and that SSg and SSg.s are inde-
pendent. By the definition of F' statistic,

SSg/k M Sk

FO = =
SSRes/(n —k — 1) M SRes

(6

~ Fin—i-1

where n and k are the total number of observations and
parameters respectively, M Sg., and M Sk represent the mean
sum of squares residual and mean sum of squares regression,

respectively. A test of size « for the null hypothesis is given
by rejecting Hy if Fo > Fy.f n—k—1, Wwhere Fy. ,—r—1 denotes
the «% point of the F-distribution with k and n — k — 1
degrees of freedom (Hocking, 2003).

3.2.3 Test on individual regression coefficients Once
we have determined that at least one of the regressors is im-
portant, a logical question becomes which one(s). Adding
a variable to a regression model always causes the sum of
squares to decrease. We must decide whether the increase
in the regression sum of squares is sufficient to warrant us-
ing the additional regressior in the model. The addition of
a regressor also increases the variance of the fitted value
(Y = time), so we must be careful to include only regressors
that are of real value explaining the response. The hypoth-
esis for testing the significance of any individual regression
coefficient, such as B; are

Hy:Bj =0 (N
Hy:B; #0

If Hy : B; = 0 is not rejected, then this indicates that

j=12... k.
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Fig. 5. Scatter diagram showing the distribution of events. The distribution pattern is approximately log-linear (linear), that is, time and distance may have

a log-linear (or linear) relationship.

the regressor X ; can be deleted from the model. The test
statistic for this hypothesis is o = {8, — E(8,)}/se(B;) ~ t-
distribution with degrees of freedom (n — k — 1). The null
hypothesis Hy : B; = 0 is rejected if |to] > tg 1.
Here, I¢ n—k—1 denotes the value of the ¢ distribution such
that Pr(zr > t%,n,k,l) = % k, n, se and o are the number of
parameters, number of sample observations, standard error
and level of significance, respectively. This is really a partial
test because the regression coefficient ,3 ; depends on all of
the other regressor variables X; (i # j) that are in the model.
Thus, this is a test of the contribution of X ; given the other
regressors in the model (Montgomery et al., 2001).

3.2.4 Test for correlation coefficient The sample cor-
relation coefficient is a measure of the linear association be-
tween Y (Time) and X (Distance). The estimator of the
population correlation p is the sample correlation coefficient
r o= %, where Syx, SSr and Syy is the sum of
squares X, sum of squares total and sum of the products of
X and Y, respectively. It is often useful to test the hypothesis
that the correlation coefficient equals zero, that is,

Hy:p=0
Hy:p#DO.

®)

The appropriate test statistic for this hypothesis is, 7 =
% which follows the ¢ distribution with degrees of free-
domn — 2 if Hy : p = 0 is true. Therefore, we would
reject the null hypothesis if || > ¢ ,—», where n and « are
the number of sample observations and level of significance,

respectively.

3.2.5 Confidence interval estimation The width of
the confidence intervals of the parameters is a measure of
the overall quality of the regression line. If the errors are
normally and independently distributed, then the sampling
distribution with some transformation follows ¢ distribution
with n — 2 degrees of freedom. Therefore, a 100(1 — «)
percent confidence interval of the parameters are given by,

Pr(B — ts ,_25e(B) < B < B+ 1tz y_2sef} = 100(1 — ).

©))
These confidence intervals have the usual frequency inter-
pretation. That is, if we were to take repeated samples of the
same size at the same X levels and construct, for example,
95% of those intervals will contain the true value of the pa-
rameters. The limits of the parameters depend on the value
of « (level of significance).

4. Results

In this paper, a simple log linear regression model is fitted
to investigate the time-distance relationships between vol-
canic eruptions and great earthquakes in Japan. Model-1 in-
cludes variables time and log distance, and Model-2 includes
variables time, log distance and magnitude.

Coefficient of determination (R?) is approximately 0.8808
that is 88.08% of the variability in time (Y) is accounted for
by the regression Model-1 and 88.15% by the Model-2 (Ta-
ble 3). Addition of one more variable (Magnitude; Model-2)
in the model results (Table 3) a slightly higher value of R?
(R? = 0.8815) than Model-1 (R?> = 0.8808). In general,
R? always increases when a regressor is added to the model,
regardless of the value of the contribution of that variable.
Therefore, it is difficult to judge whether an increase in R?
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Fig. 6. Time-distance relationship between eruptions and great earthquakes in Japan. Negative association between time and distance is shown by the

curve. That is, time interval decreases as distance increases.

Table 3. Model summary. R? shows the percentage of variation that can be explained by the models.

Model

Coefficient of determination, R?

Model - 1

0.8808

Model - 2

0.8815

is really telling us anything important. Additional variable
may have significant influence if the addition of the variable
reduces the residual mean square. In our analysis, resid-
ual mean square is smaller in Model-1 (1.87) than Model-
2 (1.93). Therefore, additional variable (Magnitude) may
not have significance influence on time-distance relationship.
Further test is required for justification (Tables 4-5).

Table 4 represents the analysis of variance test significance
of regression. Failing to reject the null hypothesis (Eq. (5))
implies that there is no significant relationship between time
and log distance. On the other hand, rejection of null hy-
pothesis implies that log distance is of value in explaining
the variability in time. However, rejection of null hypothesis
could mean either that the log linear model is adequate or
that even though there is a log linear effect of distance, better
result could be obtained with the addition of more regressor
variables or of higher order polynomial terms in log distance
(X). Our calculated results in Table 4 (P = 1 x 107°) sug-
gest that the overall regression is highly significant indicating
time may have a significant relationship with log distance.
Addition of a variable (Magnitude; Model-2) shows that the
P-value of the overall regression test (Model-2, Table 4) is
also very small (P = 1 x 107%) indicating time may have re-

lation to log distance and/or magnitude. However, this does
not necessarily imply that the relationship found is an appro-
priate one for predicting time as a function of log distance
and magnitude. Further tests of model adequacy are required
(Table 5).

We performed tests on individual regression coefficients
(Model-2, Table 5) to determine whether a significant in-
fluence of magnitude on time-distance relationship exists.
Since absolute value of the test statistic 7y (fp = 0.33) in
Table 5 is less than the true value of ¢ (fp.02527 = 2.05; this
value is found in any 7-distribution table), we may not reject
Hy : B> = 0 and conclude that the magnitude, or X,, con-
tributes insignificantly to the model given that log distance or
X1, 1s in the model. This implies magnitude may have a very
little influence on the time-distance relationship although sta-
tistically insignificant (P = 0.74 which is greater than 0.05).
Linear regression between time and magnitude, and log dis-
tance and magnitude are also tested but found no signifi-
cant association between them. So we may delete magnitude
from the model and the proposed model for the time-distance
relationship should be: ¥ = 40.15 — 14.53log(X), where
Y and X represent time and distance, respectively (Mont-
gomery et al., 2001).
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Table 4. Analysis of variance test. Table showing the mean squares of regression and residual along with F statistic for testing Hy:
B1 = B2 = ... = Br = 0. P-values are used for hypothesis testing.
Source Sum of Degrees of | Mean Square | Test Statistic P
Squares Freedom (Fo)
Model - 1
Regression 174.39 1 174.39 93.36 1x10°°
Residual 50.43 27 1.87
Total 224.83 28
Model - 2
Regression 174.61 2 87.30 45.20 1x10°
Residual 50.22 26 1.93
Total 224.83 28

Table 5. Table shows the standard errors of the estimates and intercepts along with the ¢ statistic for testing Ho: Bo = 0, Ho: 1 = 0 and Hp: 2 = 0.
The P-values for the test for significance of individual regression coefficients (distance and/or magnitude) are reported. 95% confidence intervals for
the parameters are also shown. LB and UB are the lower and upper limits of the parameters, respectively.

Predictor Coefficients Standard Test P 95% Confidence
Error Statistic Interval
(to) LB UB
Model — 1
Constant A 3.67 10.89 1x107 32.59 47.71
B,=40.15
Log distance | f=-14.53 1.50 -9.66 1x107 | -17.62 | -11.45
Model —2
Constant A 10.41 3.55 0.001 15.54 58.32
B,=36.93
Log distance B=-14.61 1.55 -9.45 1x107 -17.78 | -11.43
Magnitude ﬁz =0.42 1.28 0.33 0.74 -2.20 3.05

Table 6. Correlation coefficients among distance, earthquake, eruption, magnitude, and time. ** indicates the significant correlation between the variables

at 1% level (according to test statistic ¢, Eq. (8)).

Distance | Earthquake | Eruption Time Magnitude
Distance 1.000 -0.04 0.04 -0.89%%* 0.09
Earthquake 1.00 0.996%* 0.06 -0.30
Eruption 1.00 -0.03 -0.29
Time 1.00 -0.10
Magnitude 1.00

The negative value of the coefficient 8; indicates that
the eruption occurs prior to the concerned shock if the epi-
center of the earthquake is nearer to the respective vol-
cano/volcanoes. Table 5 shows the 95% confidence intervals
for the parameters of the models. That is, if we choose re-
peated samples of the same size then 95% of those intervals
will contain the true value of the parameters.

The correlation coefficient between earthquakes and erup-
tions is 0.99 which indicates that the earthquakes and erup-
tions are highly correlated with 1% level of significance.
Again the correlation coefficient between time and distance
is about —0.89 which shows a highly significant negative
correlation. But the correlation coefficients between time

and magnitude, and distance and magnitude are —0.10 and
0.09, respectively, are statistically insignificant which mean
magnitude may not have significant association with time
and/or distance. Other pairs do not show any significant cor-
relation (Table 6). The Variance Inflation Factors (VIF =
1.00) suggest that the data used in the analysis is free from
multicolinearity. Outliers and the effects of autocorrelations
on the data set were also tested.

5. Discussion and Conclusions

There have been some studies, however, in which trig-
gering of earthquakes by volcanic eruptions (Kimura, 1994)
was proposed. We examine here the records of eruptions
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and earthquakes to see if there are indeed significant earth-
quakes following eruptions to show the time-distance rela-
tionship between them. Earthquakes usually accompany vol-
canic eruptions; they may occur before or after the initial
eruptions as magma movement stresses the surrounding crust
(Linde and Sacks, 1998). Our concern was only to study
those earthquakes occurred after the eruptions.

We considered the area of Japan to justify whether the
time-distance relationship exists between volcanic activity
and great earthquakes. We performed three kinds of mod-
els belonging to simple, linear, log linear and logistic re-
gressions. Logistic regressions and a simple log linear re-
gressions provided similar fits. Results of the analysis for
log linear regression models are shown in Tables 3—-6 and
Fig. 6. Statistical analyses suggest that time and log distance
is significantly related but magnitude may not have signif-
icant relation with the time-distance relation. Correlation
coefficients between magnitude and other focal parameters
also suggest that magnitude may not have significance asso-
ciation with them. This implies that the earthquake prepara-
tion process is larger scale and not a function of the size of
the impending event. It also implies that mode of rupture is
not controlled by stress and crustal condition which suggest
that the size of the earthquakes may not play a significant
role for model building. Further theoretical and experimental
work including numerical simulation is needed to conform
the tectonic cause for happening of both volcanic eruptions
and great earthquakes.

All the results also suggest that volcanic activities and
occurrence of great earthquakes are closely related to the
change of stress activity. Volcanic activity increases prior
to the occurrence of large earthquakes due to accumulation
of regional strain around the seismic and volcanic region. As
a result, volcanoes in critical state erupt but other volcanoes,
not in critical state may not erupt at the same time. The near-
est volcano of the epicentral area may be affected earlier by
the migration of accumulated strain and erupted first. Con-
sequently, other volcanoes are affected and erupted by the
same way according to distance. In general, when the volca-
noes are erupted, enough strain accumulated in the eventual
epicentral region following earthquakes.

In conclusion, it is suggested that the criterion for occur-
rence of a great earthquake based on timing of a volcanic
eruptions has a time-distance relationship. That is, volcanoes
nearer to the eventual epicentral region erupt earlier than the
others. This result strongly suggests that time-distance rela-
tions may help to predict an earthquake before it strikes if
the epicentral location can be identified in advance and if the
activity of the volcanoes is well monitored.
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