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Testing a toroidal magnetic field imaging
method at the core-mantle boundary using
a numerical dynamo model
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Abstract

| quantitatively test a method of toroidal field imaging at the core-mantle boundary (CMB) using a synthetic magnetic
field and core surface flow data from a 3-D self-consistent numerical dynamo model with a thin electrically conducting
layer overlying the CMB, like the D" layer. With complete knowledge of the core flow, the imaged toroidal field well
reproduces the magnitude and pattern of the dynamo model toroidal field. However, quality of the imaging depends
strongly on latitude. In particular, the amplitude and correlation between the dynamo model and the imaged toroidal
fields decline substantially at low latitude. Such degradation in imaging quality is due to inability to account for the
radial derivative of the toroidal field, that is, an effect of magnetic diffusion, which is not incorporated in the method.
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Correspondence/findings

Introduction

The geomagnetic main field and its secular variation mea-
sured by orbiting satellites and at magnetic observatories
correspond to those of the poloidal constituent, whereas
the toroidal counterparts, which are bound to the core, are
not observable above the core-mantle boundary (CMB).
Constraining the strength, the spatial distribution and
secular variation of the toroidal component of the geo-
magnetic field are essentially important to understand not
only the dynamics of the geodynamo but also the electro-
magnetic (EM) core-mantle coupling, one of the possible
mechanisms of decadal variation in the length of day
(LOD) (Morrison 1979).

Finite electric current flows in the mantle. The man-
tle electrical conductivity o, ~ 1 S/m is small relative
to that of the core o, ~ 5 x 10° S/m. In particular,
the post-perovskite phase within the D” layer above the
CMB has greater electrical conductivity (approximately
10% S/m) (Ohta et al. 2008). Therefore, the electric current
or the corresponding toroidal field may leak into the man-
tle from the core, by which the EM coupling would occur.
Some attempts to observationally constrain the toroidal
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magnetic field at the CMB have been pursued by elec-
tric potential measurements over distances larger than
1,000 km (Lanzerotti et al. 1993; Shimizu et al. 1998),
whereas there are also some discussions on the consis-
tency of such observations with dynamo theory (Levy and
Pearce 1991; Shimizu and Utada 2004).

A global distribution of the toroidal field at the CMB
can be estimated by a method based on a core flow model
inverted from the radial components of the geomagnetic
field and its secular variation via frozen-flux approxima-
tion (Roberts and Scott 1965). Love and Bloxham (1994)
determine the toroidal field at the CMB to account for
LOD variation via the EM coupling assuming a steady core
flow. However, it is found that only an implausibly strong
and spatially complex toroidal field is consistent with flow
advection and LOD variation (Love and Bloxham 1994).
Such a difficulty may be alleviated to some extent by tak-
ing time-dependence of the core flow into account (Holme
1998). However, a fact must be kept in mind that the
inverted core flows are in principle non-unique (Backus
1968), and there is no way to know how well the toroidal
field is retrieved properly from such a flow model.

Here, I test the method to infer the toroidal field at
the CMB using a numerical dynamo model. It is a great
advantage to utilize numerical dynamo modeling, because
observations are limited, giving the poloidal field and
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indirectly the flow, while numerical dynamos have it all,
including the toroidal field. Therefore, the major concern
in this study is not an uncertainty arising from the non-
uniqueness of the core flow estimation but that arising
from several approximations to derive the toroidal field
imaging method as introduced below.

Numerical model

I extend my numerical dynamo model (Takahashi et al.
2005, 2008; Takahashi and Shimizu 2012) to implement
an electrically conducting mantle overlying the fluid outer
core. Thermally driven convection alone is considered for
simplicity, although thermo-chemical convection may be
more appropriate to the Earth’s core (Takahashi 2014).
The model solves numerically the magnetohydrodynamic
equations in a rotating spherical shell filled with an elec-
trically conducting fluid obeying the Boussinesq approxi-
mation. The radii of the inner and outer cores are r; and
7o, respectively, and the radius ratio r;/r, is 0.35. The solid
inner core is assumed to be insulating.

The equations are non-dimensionalized in terms of the
thickness of the shell d = r, —r; for length, the viscous dif-
fusion time d? /v for time, (2p41$2)/? for magnetic field,
and /;d for temperature, where v is the kinematic viscos-
ity, p is the fluid density, i is the magnetic permeability
in free space, n = 1/(o.u) is the core magnetic diffusivity,
2 is the angular velocity of the shell, and %; is the tem-
perature gradient at the inner core boundary (ICB). The
non-dimensional equations to be solved are

Ju 9
E E—l—qu—Vu =uxe,—Vp
r 1
+ Ra®— + —(V x B) x B, (1)
ro Pm
o8 1V2B+V( B) )
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ot _ Pm "
oT 1
— = VT —u-VT, (3)
ot Pr
V.u=V.-B=0. (4)

Hereu, B, T, p, and e, are the velocity field, the magnetic
field, the temperature, the pressure, and the unit vector
aligned to the rotation axis of the shell, respectively, while
© is the temperature perturbation. The non-dimensional
numbers in Equations 1, 2, and 3 are the Rayleigh num-
ber (Ra), the Ekman number (E), the magnetic Prandtl
number (Pm), and the Prandtl number (Pr) defined by

hid?
Ra:agoz ’ E:L, PWI:B, przz’ (5)
2Qv 2Qd? n K
where « is the thermal expansion coefficient, g, is the
gravitational acceleration at the CMB, and « is the thermal
diffusivity.
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I include a thin electrically conducting solid layer above
the CMB to mimic the D” layer. The thickness and elec-
trical conductivity of the layer can be specified arbitrarily.
The thickness of the layer § adopted here is fixed at 5%
of the core radius, §/r, = 0.05, which corresponds to
about 180 km for the Earth being comparable with D”
layer thickness (e.g., Schubert et al. 2001). The electrical
conductivity is assumed to be uniform within the layer.
The conductivity of the layer is specified by the relative
value with respect to the core conductivity as 6* = gy, /0.
Within the layer, the magnetic diffusion equation

0B 1

ot Pm*
is solved, where Pm* is the magnetic Prandtl number in
the layer. Here, I examine the case at o* = 1/2, 500, which
is comparable with the electrical conductivity of the post-
perovskite phase (Ohta et al. 2008).

Spherical harmonic expansion is truncated at degree
and order 95. The number of the radial grid points is 80
in the outer core and 20 in the D” layer. In the outer core,
radial derivatives are evaluated using combined compact
finite differencing (Takahashi 2012), whereas ordinary
finite differencing is used in the D” layer. At the ICB and
CMB, no-slip and fixed heat flux boundary conditions are
adopted for the velocity field and temperature, respec-
tively. Continuity of the magnetic field and the tangential
electric field is imposed at the CMB. At the top of the D”
layer, the toroidal field vanishes, while the poloidal field is
smoothly connected with the potential field.

In the present study, I set Ra = 1,500, E = 107%,
Pm = 2, and Pr = 1. The magnetic Reynolds number
and the Elsasser number of the run using the mean values
of the velocity and magnetic fields over the volume of the
spherical shell are 103 and 1.79, respectively. The model
lies in the dipole-dominated, non-reversing regime.

V’B (6)

Toroidal field imaging method

To retrieve the CMB toroidal magnetic field, I adopt a
procedure similar to Holme (1998) and Hagedoorn et al.
(2010). I briefly describe the method (see Holme 1998 and
Hagedoorn et al. 2010 for details). The magnetic field B is
represented by a poloidal-toroidal decomposition,

B=V xVx(Se)+Vx(Te,), (7)

where S, 7, and e, are the poloidal scalar function, the
toroidal scalar function, and the unit vector in the radial
direction, respectively. To calculate the toroidal scalar
function within the homogeneous D”, I solve the toroidal
part of the diffusion equation

37 2

— =nuV°T, 8

ot Nm ( )
where 1, = 1/(0uit). Assuming that the characteristic

time scale of the magnetic field variation is much greater
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than the mantle magnetic diffusion time (Stix and Roberts
1984), the temporal derivative term in the left-hand side of
Equation 8 is dropped. Then, with an approximation that
the D” layer is so thin that the horizontal derivative terms
are neglected with respect to the radial derivative term,
Equation 8 is eventually reduced to

2
°T
or?
To solve the equation, boundary conditions at the top
and bottom (CMB) of the D” layer are required. The
boundary condition on the tangential part of the electric

field at the CMB can be written in the non-dimensional
form as (Stix and Roberts 1984; Holme 1998)

1 10

Pm* r2 or

)
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I 2
t o 2 or L*Dlr=r,»  (10)
where Vy is the surface gradient and L? is the angu-
lar momentum operator. According to the frozen-flux
approximation (Roberts and Scott 1965), the diffusional
contribution in the right-hand side of Equation 10 is elim-
inated. Furthermore, by an approximation for a continuity
of the horizontal electric field across the viscous boundary

layer of the thickness d,, Equation 10 is reduced to
1 19

2 —
Pi}’ﬂ*éa L*T)lr=r, = € - Vi X (ByW)|y=y,q,- (11)
By integrating the non-dimensional version of
Equation 9 in terms of radius with boundary conditions of
Equation 11 and 7 = 0 at r = r, +§, [ have the expression

for the toroidal function at the CMB

T(ro) = —Pm*r;8L e, - Vir X (BoW)ly—=r,—a (12)

v

Therefore, the toroidal field can, in principle, be
retrieved from the knowledge of the radial magnetic field,
the core flow, and the electrical conductivity (more pre-
cisely conductance, ,,8) of the D” layer.

The discarded term in Equation 11 represents leakage
of the electric current due to diffusion, which induces the
leakage EM torque on the mantle. The influence of remov-
ing it on imaging quality is also examined. It is noted
that the expression given in Equation 12 includes uncer-
tainty regarding effective thickness of the viscous bound-
ary layer. Hence, core flows at different depths beneath the
CMB are tried for imaging.

Results

In the following, I show the results of an investigation with
spatial resolution up to the truncation level of spherical
harmonic expansion in the dynamo run and the results
with the spatial resolution truncated at spherical har-
monic degree 12 as in actual measurements. The former
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case is termed full resolution (FR) from hereafter, while
the latter is termed truncated resolution (TR). To image
the toroidal field at the CMB, I use snapshot data obtained
from a dynamo model. In Figure 1, displayed are typi-
cal snapshots of the radial component of the magnetic
field, B,, at the CMB and the horizontal component of
the velocity field, uy, at r = 0.984r, in FR and TR. The
depth is considered to be an effective one of the Ekman
boundary layer as explained below. As seen in Figure 1, a
predominantly dipolar dynamo solution is selected.

The azimuthal component of the toroidal field, Brg, is
imaged at the CMB using B, and uy shown in Figure 1.
The dynamo model toroidal field, B?qﬁ’ and the corre-
sponding imaged toroidal field, BIT¢, are compared in
Figure 2. As a whole, the toroidal field is appreciably
well reproduced with respect to the amplitude and spa-
tial pattern in both the FR and TR cases. However, an
obvious discrepancy is found around the equator, where
the amplitude of the field tends to be underestimated,
and the direction is even reversed in several places. Plots
same as Figure 2 but for the co-latitudinal component of
the toroidal field, Bry, are displayed in Figure 3. Since
arguments for the component are similar to those for the
azimuthal component, the azimuthal component alone is
focused in the following.

I quantitatively evaluate the imaging method in terms
of the magnitude and spatial pattern. In Figure 4, plots of
the BIqu against the B?¢ are shown. A proportional coef-

ficient of the BIT¢ against the B?¢ is calculated by way of
principal component analysis, in which the first princi-
pal component is obtained by coordinate transformation
maximizing the unbiased variance. In FR (Figure 4a), the
BIT » tends to be slightly overestimated, whereas the BIT i

weaker than the B? ¢ in TR (Figure 4b). On the other hand,
correlation coefficient is beyond 0.9 in both cases.

Then, the depth dependence of amplitude and correla-
tion coefficient are examined. In the examination, uy at
different depths down to r = 0.91r, is used for imag-
ing the CMB toroidal field, while for the other quantities
such as B, and B%ﬁ, those at the CMB are used. Regard-
ing amplitude, the above-mentioned tendency remains
unchanged with the depth below the viscous boundary
layer in FR and TR cases (Figure 4c). In both cases, the
ratio steeply increases from the CMB and reaches the
maximum at r ~ 0.98r,, then gradually declines (it is
the reason why I show plots at » = 0.984r, as below the
Ekman boundary layer of thickness d,).

The correlation coefficient behaves differently in FR and
TR (Figure 4d). In FR, the correlation coefficient takes the
maximum at r ~ 0.98r, just beneath the boundary layer
like the amplitude ratio, whereas the maximum correla-
tion in TR is obtained using a core flow slightly deeper
than that in FR, although improvement in correlation is
insignificant.
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FR

(b) TR

Figure 1 Synthetic data from a dynamo model. (a, b) The radial component of the magnetic field B, at the CMB and (¢, d) the core surface flow
uy at r = 0.984r,. Spatial resolution is truncated at spherical harmonic degree 12 in (b) and (d).
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As stated above, quality of the imaging method seems to
vary with latitude. To investigate the latitude dependence,
I divide the CMB into three latitude bands: high-latitude
band (|lat.| > 60°), mid-latitude band (30° < |lat.| < 60°),
and low-latitude band (|lat.| < 30°). Then, I calculate the
amplitude ratio and correlation coefficient of each lati-
tude band, which are given in Figure 5. It is confirmed that
imaging quality is substantially poorer in the low-latitude

band, compared with that in the high- and mid-latitude
bands. It is also found that imaging degradation occurs in
both FR and TR.

Based on Equation 10, I investigate why the imag-
ing quality is poor in low latitude compared with other
regions. Figure 6 shows maps of the left-hand side of
Equation 10 at the CMB and the first term (advection)
and second term (diffusion) in the right-hand side of

—
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-0.004

-0.002 0.000

Figure 2 Comparison of the imaged toroidal field with the dynamo model. The azimuthal component of the CMB toroidal magnetic field, Brg.
(a, ¢) Dynamo model magnetic field B%) and (b, d) the imaged magnetic field B/T¢‘ (a) and (b) are in FR, while (c) and (d) are in TR.
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Figure 3 Comparison of the imaged toroidal field the with dynamo model. The co-latitudinal component of the CMB toroidal magnetic field,
Brg. (a, €) Dynamo model magnetic field B% and (b, d) the imaged magnetic field B’m. (a) and (b) are in FR, while (c) and (d) are in TR.

Equation 10 but at r = 0.984r,. If neglecting the effects in TR than in FR. In addition, diffusion of the toroidal
of diffusion in the core side was a good approximation, field seems to play a role in toroidal field generation in
the leakage in the D” layer (Figure 6a,b) would mostly low-latitude (Figure 6f). Thus, I consider that degradation
be explained by the advection term beneath the bound- in imaging quality at low latitude is ascribed to the fact
ary layer (Figure 6¢,d). However, correspondence is not  that I have neglected effects of diffusion in retrieving the
good in the low-latitude region, which is more clearly seen  toroidal field.
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Figure 4 Quantitative evaluation of the imaged toroidal field Br. Correspondence of the imaged toroidal field to the dynamo model toroidal
field using uy at r = 0.984r, in the case of (a) FR and (b) TR. The radial profiles of (€) amplitude ratio and (d) correlation coefficient. In (a) and (b),
solid lines represent the amplitude ratio determined by the principal component analysis, and dashed lines represent the lines of slope one. In (c)
and (d), black (gray) lines represent the case in FR (TR). Solid lines denote the mean values and dashed lines denote the mean + 1o
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Figure 5 Radial profiles of the amplitude ratio and correlation of Bry. Mean values of (a) the amplitude ratio and (b) the correlation of the
imaged toroidal field to dynamo model toroidal field for three latitude bands. Red lines represent those for high-latitude band, green lines
mid-latitude band, and blue lines low-latitude band. Cases in FR (TR) are denoted by solid (dashed) lines.
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Discussion and concluding remarks

In this study, I have examined the quality of the method
to image the toroidal field at the CMB using numerical
dynamo modeling. With perfect knowledge of the radial
magnetic field, core surface flow, and the electrical con-
ductivity of the D” layer, the imaging method can repro-
duce much of the CMB toroidal field in terms of mag-
nitude and pattern in FR and TR. However, the method
fails to well reconstruct the toroidal field in low latitude,

where the toroidal field generation is not dominated by
the advection of the radial magnetic field alone. Since
effects of magnetic diffusion are not taken into account in
the present method, the low-latitude toroidal field could
be underestimated by as much as 50%. Thus, the present
method would provide us with a lower bound of the CMB
toroidal field in the low-latitude region. Whether it is also
the case in dynamo models at more Earth-like parameters,
that is, lower E and Pm, should carefully be examined.

—

a)

TR
(b)

0(*T)/Pm’r ?

()

curl(Bru,),

—_

e)

(f)

-2000-1000 O

0 (r*T)/Pmr ? {

1000 2000

Figure 6 Effects of the toroidal field diffusion. Snapshots of (a, b) the diffusion term at the CMB (the left-hand side of the Equation 10), (¢, d) the
advection term at r = 0.984r,, and (e, f) the diffusion term at r = 0.984r,,. (a, ¢, ) are in FRand (b, d, f) in TR.

-300 -150 O 150 300
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Contrary to the low latitude, the toroidal field in mid
and high latitudes is generated by the process of flow
advection. The recovered toroidal field tends to be slightly
overestimated at FR in these regions. Such an overesti-
mation may be the influence of an approximation that
the D” layer is a thin sheet, whereby the horizontal dif-
fusion is neglected relative to the radial diffusion. Let /
be the horizontal scale of the toroidal field in the D”.
Then, the relative significance of the horizontal diffusion
to the radial diffusion scales as D = (§/1)%. The condi-
tion D « 1 for verifying the thin sheet approximation is
not met on small scales. Indeed, D ~ 1 at spherical har-
monic degree n = 20, given [ ~ r,/n. It is anticipated that
the overestimation is alleviated in a formulation without
the thin sheet approximation. The effective conductance
of the mantle will decrease with »n, whereas Equation 12
includes the mantle conductance fixed at the D” conduc-
tance. Nevertheless, the overestimation is no more than
20% in the FR case. This indicates the peripheral contri-
bution of flow advection on small scales, which basically
agrees with Figure seven in Holme (1998). Underestima-
tion in TR arises probably from a different cause. The
most likely one is that contributions from the small-scale
components in B, and ugy to the generation processes of
the large-scale toroidal field are not properly represented
in TR.

As to spatial correlation, the overall imaging quality is
fairly well in both FR and TR cases (correlation coefficient
is larger than 0.8) and not very sensitive to the depth of
the core flows adopted for imaging as long as the core flow
beneath the boundary layer is used.

In conclusion, any approximations adopted in the pre-
sent method do not cause a serious problem. Therefore,
the toroidal field imaging method based on Equation 12
may be applicable with some care to real observational
data. However, the fact must be kept in mind before apply-
ing the method to observational data that the results in
the present study are derived from the perfectly known
core flows by forward modeling. Thus, effects must be
understood on the ability and quality of the toroidal
field reconstruction method of using inverted non-unique
core flows with different a priori assumptions such as a
purely toroidal flow (Whaler 1980), steady flow (Voorhies
and Backus 1985), tangentially geostrophic flow (LeMouél
1984), helical flow (Amit and Olson 2004), and tangen-
tially magnetostrophic flow (Asari and Lesur 2011). This is
obviously the next step of the study, where dynamo mod-
eling would also be a help (Rau et al. 2000; Amit et al. 2007;
Fournier et al. 2011; Aubert and Fournier 2011). Amit
and Christensen (2008) find in numerical dynamos that
poloidal field diffusion is roughly evenly distributed at all
latitudes. The present model is also the case (although not
shown). However, if poloidal field diffusion should also
be concentrated at low latitude in the geomagnetic field,
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core flow inversions from geomagnetic secular variation
may be affected, in particular, at low latitude (Amit and
Christensen 2008).

Besides, to reliably image the CMB toroidal magnetic
field, an accurate electrical conductivity structure in the
D” layer (conductance) is required, which is to be deter-
mined by experimental, theoretical, and observational
studies. Then, the magnitude of the toroidal field that may
be imaged by the present method could be compared with
other estimates based on torsional oscillations (Buffett
et al. 2009; Gillet et al. 2010).
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